
Abstract

Given a simple noun such as apple, and a question such as ‘‘Is it edible?,’’ what processes take place in the human
brain? More specifically, given the stimulus, what are the interactions between (groups of) neurons (also known as
functional connectivity) and how can we automatically infer those interactions, given measurements of the brain
activity? Furthermore, how does this connectivity differ across different human subjects?

In this work, we show that this problem, even though originating from the field of neuroscience, can benefit from
big data techniques; we present a simple, novel good-enough brain model, or GEBM in short, and a novel
algorithm Sparse-SysId, which are able to effectively model the dynamics of the neuron interactions and infer the
functional connectivity. Moreover, GEBM is able to simulate basic psychological phenomena such as habituation
and priming (whose definition we provide in the main text).

We evaluate GEBM by using real brain data. GEBM produces brain activity patterns that are strikingly similar
to the real ones, where the inferred functional connectivity is able to provide neuroscientific insights toward a better
understanding of the way that neurons interact with each other, as well as detect regularities and outliers in
multisubject brain activity measurements.

1. Introduction

Consider human subject ‘‘Alice,’’ who is reading a typed

noun (e.g., apple) and has to answer a simple yes/no question

(e.g., Can you eat it?). How do different parts of Alice’s brain

communicate during this task? This type of communication

is formally defined as functional connectivity of the human

brain and is an active field of research in neuroscience.

Coming up with a comprehensive model that captures the

dynamics of the functional connectivity is of paramount

importance. Achieving that will effectively provide a better

understanding of how the human brain works and can have a

great impact both on machine and human learning. In this

work, we tackle the above problem in a scenario where

multiple human subjects are shown simple nouns and answer

a set of questions for each noun, and we record their brain

activity using magentoencephalography (MEG).

Although this might seem like a problem that is of sole in-

terest to the field of neuroscience, in fact, it can also benefit

from a big data approach. For the human subjects, what we

essentially have is a set of MEG sensors recording a time series

of the magnetic activity of their brain, and our ultimate goal

is to infer a (hidden) underlying network between different

regions of their brain. Effectively, we are dealing with a

problem of the broad family of network discovery, which is an

active field of big data research; for instance, in Verscheure

et al.1 the authors induce a communication network between
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VoIP users through time-series analysis, while in Sadilek

et al.2 the authors infer a friendship network between Twitter

users by using various signals of user behavior.

Besides the nature of the problem itself, the data involved in

our problem call for big data techniques: For the human

subjects, an experiment involves recording their brain activ-

ity for all combinations of nouns and questions, which results

in a big number of data points that need to be processed,

summarized, and analyzed; as the task becomes more com-

plicated (e.g., the subject has to read an entire sentence, or a

book instead of a single typed noun, or even look at a pic-

ture), the data volume and complexity explode. In addition to

that, different measurement techniques have complementary

strengths (e.g., MEG has fine time

granularity but poor spatial resolu-

tion, and conversely fMRI has very

high, 1 mm spatial resolution but

poor temporal resolution), and we

would like to collect and exploit all

potential benefits from all tech-

niques, a factor that significantly in-

creases the size of the problem; for

instance, even for a small number of

human subjects, all measurements

span hundreds of gigabytes. Thus, it

is important to view this problem

through a big data analytics lens, and this article constitutes a

step in this direction.

Our approach: Discovering the multibillion connections

among the tens of billions3,4 of neurons would be the holy

grail, and clearly outside the current scientific and techno-

logical capabilities. How close can we approach this ideal? We

propose to use a good-enough approach, and try to explain as

much as we can by assuming a small, manageable count of

neuron-regions and their interconnections, and trying to

guess the connectivity from the available MEG data. In more

detail, we propose to formulate the problem as ‘‘system

identification’’ from control theory, and we develop novel

algorithms to find sparse solutions.

We show that our good-enough approach is a very good first

step, leading to a tractable, yet effective model (the good-

enough brain model, or GeBM),

that can answer the above ques-

tions. Figure 1 gives the high-level

overview: At the bottom right, the

blue, dashed-line time sequences

correspond to measured brain ac-

tivity; the red lines correspond to

the guess of our GeBM model.

Notice the qualitative goodness of

fit. At the top right, the arrows in-

dicate interaction between brain

regions that our analysis learned,

with the weight being the strength

of interaction. Thus we see that the vision cortex (‘‘occipital

lobe’’) is well connected to the language-processing part

‘‘THUS, IT IS IMPORTANT
TO VIEW THIS PROBLEM
THROUGH A BIG DATA

ANALYTICS LENS, AND THIS
ARTICLE CONSTITUTES

A STEP IN THIS DIRECTION.’’

FIG. 1. Big picture: Our good-enough brain model (GeBM) estimates the hidden functional connectivity (top right, weighted arrows
indicating number of inferred connections), when given multiple human subjects (left) that respond to yes/no questions (e.g., edible?) for
typed words (e.g., apple). (Bottom right) GeBM also produces brain activity (in solid red) that matches reality (in dashed blue).
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(‘‘temporal lobe’’), which agrees with neuroscience, since all

our experiments involved typed words.

Our contributions are as follows:

� Novel analytical model and algorithm: We propose the

GeBM model [see section 3, and Eq. (2)–(3)]. We

also introduce Sparse-SysId, a novel sparse system-

identification algorithm (see section 3).
� Effectiveness: Our model can explain psychological

phenomena, such as habituation

and priming (see section 5.4); it

also gives results that agree with

experts’ intuition (see section

5.1).
� Multisubject analysis: Our

Sparse-SysId, applied on nine

human subjects (section 5.2),

showed that (a) eight of them

had very consistent brain-con-

nectivity patterns while (b) the

outlier was due to exogenous factors (excessive road-

traffic noise during the outlier’s experiment).
� Cross-disciplinary connections: Our GeBM highlights

connections between multiple, mostly disparate areas:

(1) neuroscience, (2) control theory & system identi-

fication, and (3) psychology. Additionally, we provide

insights on the relation of GeBM to recurrent neural

networks, a field that is gaining increasing popularity

among big data techniques, especially with the rise of

deep learning, pointing out ways that both can benefit

from each other.

Reproducibility: Our implementation is publicly available

online.5 Due to privacy reasons, we are not able to release the

MEG data, however, in the online version of the code we

include the synthetic benchmarks, as well as the simulation of

psychological phenomena using GeBM.

The present manuscript is an extension of our work that

appeared in the ACM SIGKDD Conference on Knowledge

Discovery and Data Mining (ACM KDD) 2014 conference5.

In addition to Papalexakis et al.5 in this manuscript, we

provide further cross-disciplinary connections of our work to

other fields (and more specifically to recurrent neural net-

works), provide intuitive explanations behind the key con-

cepts introduced in the original article, as well as emphasize

the practical applications of our work.

2. Problem Definition

As mentioned earlier, our goal is to infer the brain connec-

tivity, given measurements of brain activity on multiple yes/

no tasks of multiple subjects. We define as yes/no task

the experiment in which the subject is given a yes/no question

(such as ‘‘Is it edible?’’ and ‘‘is it alive?’’), and a typed English

word (such as apple or chair), and has to decide the answer.

Throughout the entire process, we attach m sensors that re-

cord brain activity of a human subject. Here we are using

magnetoencephalography (MEG) data, although our GeBM

model could be applied to other types of measurement

(fMRI, etc). In section 5 we provide a more formal definition

of the measurement technique.

Thus, in a given experiment, at every time-tick t we have m

measurements, which we arrange in an m · 1 vector y(t).

Additionally, we represent the

stimulus (e.g., apple) and the task

(e.g., Is it edible?) in a time-de-

pendent vector s(t), by using

feature representation of the

stimuli; a detailed description of

how the stimulus vector is

formed can be found in section 5.

For the rest of the article, we shall

use interchangeably the terms

sensor, voxel, and neuron-region.

First and foremost, we are interested in understanding how

the brain works, given a single subject. Informally, we have

the following:

Informal Problem 1. Given: The input stimulus; and a

sequence of m · T brain activity measurements for the m voxels,

for all timeticks t ¼ 1 � � �T

Estimate: The functional connectivity of the brain, that is, the

strength and direction of interaction, between pairs of the m

voxels, such that

1. we understand how the brain-regions collaborate, and

2. we can effectively simulate brain activity.

After solving the above problem, we are also interested in

doing cross-subject analysis to find commonalities (and de-

viations) in a group of several human subjects.

For the particular experimental setting, prior work6 has only

considered transformations from the space of noun features

to the voxel space and vice versa, as well as word-concept

specific prediction based on estimating the covariance be-

tween the voxels.7

Next we formalize the problems, we show some straightfor-

ward (but preliminary) solutions, and finally we give the

proposed model GeBM, and the estimation algorithm.

3. Problem Formulation
and Proposed Method

There are two over-arching assumptions in our design:

� Linearity: Linear models, however simplifying, are a

good ‘‘first order approximation’’ of the functional

connectivity we seek to capture.

‘‘FIRST AND FOREMOST,
WE ARE INTERESTED IN
UNDERSTANDING HOW

THE BRAIN WORKS, GIVEN
A SINGLE SUBJECT.’’

GOOD-ENOUGH BRAIN MODEL
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� Stationarity: The connectivity of the brain does not

change, at least for the time-scales of our experiments.

The above assumptions might sound very simplifying; how-

ever, this work is a first step in this direction, and our linear,

time-invariant model proves to be ‘‘good-enough’’ for the

task at hand. Nonlinear/sigmoid models are a natural direc-

tion for future work, and so is the study of neuroplasticity,

where the connectivity changes.

We must note that however simple GeBM is, there are simpler

approaches that seem more natural at first, which do not per-

form well. Such an approach, which we call Model0, is pre-

sented in the next subsection, before the introduction of GeBM.

3.1. First (unsuccessful) approach: Model0

Since our informal problem definition does not strictly define

the brain regions whose connectivity we are seeking to identify,

a natural first step is to assume that each MEG voxel (e.g.,

region measured by an MEG sensor) is such a brain region.

Given the linearity and static-connectivity assumptions

above, we may postulate that the m · 1 brain activity vector

y(t + 1) depends linearly on the activities of the previous time-

tick y(t), and, of course, the input stimulus, that is, the s · 1

vector s(t).

Formally, in the absence of input stimulus, we expect that

y(t þ 1)¼Ay(t)

where A is the m · m connectivity matrix of the m brain

regions. Including the (linear) influence of the input stimulus

s(t), we reach the Model0:

y(t þ 1)¼A[m · m] · y(t)þB[m · s] · s(t) (1)

The B[m · s] matrix shows how the s input signals affect the m

brain regions.

Papelexakis et al.5 we shows how we can solve for this model

using least squares (LS) and canonical correlation analysis

(CCA)8 However intuitive, the formulation of Model0 turns

out to be rather ineffective in capturing the temporal dy-

namics of the recorded brain activity. As an example of its

failure to model brain activity successfully, Figure 2 shows the

real brain activity and predicted activity for a particular voxel.

The solutions fail to match the trends and oscillations.

The conclusion of this subsection is that we need a more

sophisticated yet parsimonious model, which leads us to

GeBM, as described next.

3.2. Proposed approach: GEBM
Before we introduce our proposed model, we should intro-

duce our notation, which is succinctly shown in Table 1.

Formulating the problem as Model0 does not meet the re-

quirements for our desired solution. However, we have not

exhausted the space of possible formulations that live within

our set of simplifying assumptions. In this section, we de-

scribe GeBM, our proposed approach that, under the as-

sumptions that we have already made in section 2, is able to

meet our requirements remarkably well.

In order to come up with a more accurate model, it is useful

to look more carefully at the actual system that we are at-

tempting to model. In particular, the brain activity vector y

that we observe is simply the collection of values recorded by

the m sensors, placed on a person’s scalp. In Model0, we

attempt to model the dynamics of the sensor measurements

directly. However, by doing so, we are directing our attention

to an observable proxy of the process that we are trying to

estimate (i.e., the functional connectivity). Instead, it is more

beneficial to model the direct outcome of that process. Ide-

ally, we would like to capture the dynamics of the internal

state of the person’s brain, which, in turn, causes the effect

that we are measuring with our MEG sensors.

Real and predicted MEG brain activity
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FIG. 2. Model0 fails: True brain activity (dotted blue) and the
model estimate (pink and black, resp., for the least squares and
for the CCA variation).

Table 1. Table of Symbols

Symbol Definition

n number of hidden neuron-regions
m number of MEG sensors/voxels we observe (306)
s number of input signals (40 questions)
T time-ticks of each experiment (340 ticks, of 5 msec each)

x(t) vector of neuron activities at time t
y(t) vector of voxel activities at time t
s(t) vector of input-sensor activities at time t

A[n · n] connectivity matrix between neurons (or neuron regions)
C[m · n] summarization matrix (neurons to voxels)
B[n · s] perception matrix (sensors to neurons)
Av connectivity matrix between voxels

Real real part of a complex number
Imag imaginary part of a complex number
A{ Moore-Penrose pseudoinverse of A

MEG, magentoencephalography.

Papalexakis et al.
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Let us assume that there are n hidden (hyper-)regions of the

brain, which interact with each other, causing the activity that

we observe in y. We denote the vector of the hidden brain

activity as x of size n · 1. Then, by using the same idea as in

Model0, we may formulate the temporal evolution of the

hidden brain activity as:

x(t þ 1)¼A[n · n] · x(t)þB[n · s] · s(t)

A subtle issue that we have yet to address is the fact that x is

not observed, and we have no means of measuring it. We

propose to resolve this issue by modeling the measurement

procedure itself, that is, model the transformation of a hidden

brain activity vector to its observed counterpart. We assume

that this transformation is linear, thus we are able to write

y(t)¼C[m · n]x(t)

Putting everything together, we end up with the following set

of equations, which constitute our proposed model GeBM:

x(t þ 1)¼A[n · n] · x(t)þB[n · s] · s(t) (2)

y(t)¼C[m · n] · x(t) (3)

The key concepts behind GeBM are:

� (Latent) Connectivity matrix: We assume that there

are n regions, each containing

1 or more neurons, and they

are connected with an n · n

adjacency matrix A[n · n]. We

only observe m voxels, each

containing multiple regions,

and we record the activity (eg.,

magnetic activity) in each of

them; this is the total activity

in the constituent regions.
� Measurement matrix: Matrix

C[m · n] is an m · n matrix, with ci,j = 1 if voxel i con-

tains region j.
� Perception matrix: Matrix B[n · s] shows the influence

of each sensor to each neuron region. The input is

denoted as s, with s input signals.
� Sparsity: We require that our model’s matrices are

sparse; only few sensors measure a specific brain re-

gion. Additionally, the interactions between regions

should not form a complete graph, and finally, the

perception matrix should map only few activated

sensors to neuron regions at any given time.

An interesting aspect of our proposed model GeBM is that if

we ignore the notion of the summarization, that is, matrix

C = I, then our model is reduced to the simple model

Model0. In other words, GeBM contains Model0 as a special

case. This observation demonstrates the importance of hid-

den states in GeBM.

A pictorial representation of GeBM is shown in Figure 3.

Starting from left to right, we have the triangle-shaped nodes;

these nodes represent the sensors of the human subject, which

capture the stimulus s(t). For instance, these sensors could

correspond at a high level to different visual sensors that map

the stimulus to the internal, hidden neuron regions; the

mapping between the human sen-

sor nodes to the latent brain regions

is encoded in matrix B. The hidden

neuron regions are denoted by

black circles, and the connections

between them comprise matrix A,

which is effectively the functional

connectivity of these latent regions.

Finally, the latent region activity

x(t) is measured by the MEG sen-

sors, which are denoted by black

squares in Figure. 3; this measurement procedure is encoded

in matrix C.

3.3. Algorithm
Our solution is inspired by control theory, and more spe-

cifically by a subfield of control theory, called system identi-

fication. We refer the interested reader to the appendix of our

KDD article,5 and references therein, for an overview of

traditional system identification. However, the matrices we

obtain through this process are usually dense, counter to

GeBM’s specifications. We, thus, need to refine the solution

until we obtain the desired level of sparsity. In the next few

lines, we show why this sparsification has to be done care-

fully, and we present our approach.

Crucial to GeBM’s behavior is the spectrum of its matrices; in

other words, any operation that we apply to any of GeBM’s

matrices needs to preserve the eigenvalue profile (for matrix

‘‘WE REQUIRE THAT OUR
MODEL’S MATRICES ARE

SPARSE; ONLY FEW
SENSORS MEASURE A

SPECIFIC BRAIN REGION.’’

FIG. 3. Sketch of GeBM

GOOD-ENOUGH BRAIN MODEL
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A) or the singular values (for matrices B and C). Alterations

thereof may lead GeBM to instabilities. From a control the-

oretic and stability perspective, we are mostly interested in

the eigenvalues of A, since they drive the behavior of the

system. Thus, in our experiments, we heavily rely on assessing

how well we estimate these eigenvalues.

As a reminder to the reader, here we provide a short expla-

nation why eigenvalues are crucial. Say we focus on one of the

eigenvalues k of our matrix A. If k is real and positive, then

the response of the system (associated with k) will increase

exponentially. Conversely, if k is real and negative, the re-

spective response will decay exponentially. Finally, if k is

complex, then the response of the system will be some type of

oscillation, whose frequency and trend (decaying, increasing,

or constant) depends on the actual values of the real and the

imaginary parts. The response of the system is, thus, a mix-

ture of the responses that pertain to each eigenvalue. Say that

by transforming our system’s matrices, we force a complex

eigenvalue to become real; this will alter the response of the

system severely, since a component that was oscillating will

now be either decaying or increasing exponentially, after the

transformation.

In Sparse-SysId, we propose a fast greedy sparsification

scheme. Iteratively, for all three matrices, we delete small

values while maintaining the spectrum within � from the

one obtained through system identification. Additionally,

for A, we also do not allow eigenvalues to switch from

complex to real and vice versa. This scheme works very

well in practice, providing very sparse matrices, while re-

specting their spectrum. Doing so is important, because

eigenvalues determine the dynamical behavior of our

model. In Algorithm 1, we provide an outline of the

algorithm.

Algorithm 1: Sparse-SysId: Sparse System Identification of GeBM

Input: Training data in the form fy(t), s(t)gT
t ¼ 1, number of hidden

states n.
Output: GeBM matrices A (hidden connectivity matrix),

B (perception matrix), C (measurement matrix),
and Av (voxel-to-voxel matrix).

1: {A(0),B(0),C(0)} = SysId (fy(t), s(t)gT
t ¼ 1, n)

2: A = EigenSparsify(A(0))
3: B = SingularSparsify(B(0))
4: C = SingularSparsify(C(0))
5: Av = CAC{

3.4. Obtaining the voxel-to-voxel connectivity
So far, GeBM, as we have described it, is able to give us the

hidden functional connectivity and the measurement matrix,

but does not directly offer the voxel-to-voxel connectivity,

unlike Model0, which models it explicitly. However, this is

by no means a weakness of GeBM, since there is a simple

way to obtain the voxel-to-voxel connectivity (henceforth

referred to as Av) from GeBM’s matrices. We highlight the

importance of Av, since this matrix essentially maps abstract

latent brain areas to physical brain regions.

Algorithm 2: EigenSparsify: Eigenvalue Preserving Sparsification
of System Matrix A.

Input: Square matrix A(0).
Output: Sparsified matrix A.

1: k(0) = Eigenvalues(A(0))
2: Initialize d(0)

R ¼ 0, d(0)
I ¼ 0. Vector d(i)

R holds the element-wise
difference of the real part of the eigenvalues of A(i). Similarly
for d(i)

I and the imaginary part.
3: Set vector c as a boolean vector that indicates whether the j-th

eigenvalue in k(0) is complex or not. One way to do it is
to evaluate element-wise the following boolean expression:
c = (Imag (k(0))s0).

4: Initialize i = 0
5: while d(i)

R � � and d(i)
I � � and (Imag (k(i))s0) = = c do

6: Initialize A(i) = A(i - 1)

7: fv�i , v�j g¼ arg minvi , vj
jA(i� 1)(vi , vj)j

s.t. A(i - 1) (vi, vj)s0.
8: Set A(i)(v�i , v�j )¼ 0
9: k(i) = Eigenvalues(A(i))

10: d(i)
R = jReal(k(i)) - Real(k(i - 1))j

11: d(i)
I = jImag(k(i)) - Imag(k(i - 1))j

12: end while
13: A = A(i - 1)

Lemma 1. Assuming that C is full column rank, the voxel-to-

voxel functional connectivity matrix Av can be defined and is

equal to Av = CAC{

Proof. The observed voxel vector can be written as

y(t þ 1)¼Cx(t þ 1)¼CAx(t)þCBs(t)

Matrix C is tall (i.e., m > n) and full column rank, thus we can

write: y(t) = Cx(t)5x(t) = C{y(t). Consequently, y(t + 1) =
CAC{y(t) + CBs(t). Therefore, it follows that CAC{ is the

voxel-to-voxel matrix Av. -

Algorithm 3: SingularSparsify: Singular Value Preserving
Sparsification

Input: Matrix M(0).
Output: Sparsified matrix M

1: k(0) = SingularValues(A(0))
2: Initialize d(0)

R ¼ 0 which holds the element-wise difference of the
singular values of A(i).

3: Initialize i = 0
4: while d(i)

R � � do
5: Initialize M(i) = M(i - 1)

6: fv�i , v�j g¼ arg minvi , vj
jM(i� 1)(vi , vj)j

s.t. M(i - 1)(v i,vj)s0.
7: Set M(i)(v�i , v�j )¼ 0
8: k(i) = SingularValues(M(i))
9: d(i)

R ¼ jk(i)� k(i� 1)j
10: end while
11: M = M(i - 1)

One of the key concepts behind GeBM is sparsity, which, in

the context of the voxel-to-voxel functional connectivity, can

be interpreted in the same way as in the case of the latent

Papalexakis et al.
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functional connectivity matrix A. However, even though

matrices A and C are sparse, the product CAC{ is not nec-

essarily sparse, since C{ is more dense than C and therefore

the product is dense. In order to obtain a more interpretable,

sparse voxel-to-voxel connectivity matrix, we apply the same

sparsification technique that we use for the GeBM matrices

A,B, and C; since we are not inter-

ested in using matrix Av in a control

system context, but rather as a means

of interpreting the derived functional

connectivity, we may use Algorithm

3, which retains the singular values of

the matrix.

There is another important dis-

tinction of GeBM’s Av from a great

amount of prior art, which focuses

on functional connectivity estimation, where the notion of

the functional connectivity is associated with computing a

covariance or correlation matrix from the sensor measure-

ments (e.g., Ref.)8 By doing so, the derived connectivity

matrix is symmetric, which dictates that the relation between

the regions covered by sensors A and B is exactly reciprocal.

Our proposed connectivity matrix, on the other hand, as it is

evident by the formula Av = CAC{, is not necessarily sym-

metric, and it allows for skewed communication patterns

between brain regions. As we point out in our discoveries

(section 4), there is potential value in not imposing symmetry

constraints.

3.5. Connection to recurrent neural networks
In this subsection, we point out an interesting connection to

our proposed model GeBM, and a flavor of artificial neural

networks, called recurrent neural networks (RNNs). Our

proposed model GeBM consists of a layer of sensor neurons

that transfer the stimulus to the internal, latent neural re-

gions. At the end, there is a measurement that transforms the

hidden brain activity into the observed signal. In the most

popular variant of artificial neural networks (ANNs), the

feed-forward neural networks (FFNN) we encounter are a

superficially similar structure, where we have an input layer, a

hidden layer, and an output layer.

GeBM on the other hand, as also depicted in Figure 3 besides

this three-layer layout, allows for connections between the

hidden neural regions (depicted by black dots in Fig. 3), vi-

olating the structure of an FFNN. However, there is a dif-

ferent category of ANNs, the so-called RNNs,10 which are, in

principle, structured exactly like Figure 3; connections be-

tween neurons of the hidden layer are allowed, leading to a

more expressive model.

We are particularly interested in a specific variant of RNNs,

called echo state networks (ESNs).11,12 In ESNs, we have the

mapping of an input signal into a set of neurons that com-

prise the dynamical reservoir. There can exist connections

between any of these neurons, or reservoir states. The output

of the reservoir, at the last step, is transformed into the

output signal, which is also referred to as teacher signal. The

parallelism between ESNs and GeBM is as follows: If we

consider the reservoir states to correspond to the latent neu-

ron regions of GeBM, then the two models look conceptually

very similar, in this high level of

abstraction.

To further corroborate the con-

nection of our proposed model

GeBM to ESNs, usually the con-

nections between reservoir states

are desired to be sparse, which is

reminiscent of GeBM’s specifica-

tion for A to be sparse. In order to

formalize the connection between

GeBM and ESNs, here we provide the system equations that

govern the behavior of an ESN11

x(t þ 1)¼ f (Wx(t)þWinu(t þ 1)þWfby(t))

y(t)¼ g(Wout [ x(t)u(t) ])

where f and g are typically sigmoid functions. Vector x(t) is

the so-called reservoir state, W is the connectivity between

the reservoir states, Win is the input transformation matrix,

Wfb is a feedback matrix, and Wout transforms the hidden

reservoir states to the observed output signal of vector y(t).

If we set f and g to be identity, set Wfb = 0, and set the part of

Wout that multiplied u(t) to zero as well, then the above ESN

equations correspond to GeBM. By pointing out this con-

nection between GeBM and ESNs, we believe that both ends

can benefit:

� In this work we introduce a novel sparse system

identification algorithm that, as we show in the lines

above, is able to solve a particular case of an ESN

model very efficiently, thus contributing, indirectly,

toward algorithms for training ESNs.
� ESNs usually don’t assume linear functions in the sys-

tem; GeBM does so in the good-enough spirit, however,

our intention is to extend GeBM so that it can handle

nonlinear functions and capture all the dynamics that

our linear assumptions currently fail to do. To that end,

we can benefit from ESN research (e.g., Jaeger et al.13).

4. Experimental Setup

The code for Sparse-SysId has been written in Matlab. For the

system identification part, initially we experimented with

Matlab’s System Identification Toolbox and the algorithms in

Ljung (1999).14 These algorithms worked well for smaller to

medium scales, but were unable to perform on our full dataset.

Thus, in our final implementation, we use the algorithms of

‘‘AS WE POINT OUT IN OUR
DISCOVERIES, THERE IS

POTENTIAL VALUE IN NOT
IMPOSING SYMMETRY

CONSTRAINTS.’’
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Verhaeger (1994).15 (Our code is publicly available online.)

The interested reader can also find experimental evaluation of

our proposed algorithm in section 4 of our KDD article. 5

We are using real brain activity data, measured using MEG.

MEG measures the magnetic field caused by many thousands

of neurons firing together and has good time resolution

(1000 Hz) but poor spatial resolution. fMRI (functional

magnetic resonance imaging) measures the change in blood

oxygenation that results from changes in neural activity, and

has good spatial resolution but poor time resolution (0.5–

1 Hz). Since we are interested in the temporal dynamics of the

brain, we choose to operate on MEG data.

All experiments were conducted at the University of Pitts-

burgh Medical Center (UPMC) Brain Mapping Center. The

MEG machine consists of m = 306 sensors, placed uniformly

across the subject’s scalp. The temporal granularity of the

measurements is 5 ms, resulting in T = 340 time points; after

experimenting with different aggregations in the temporal

dimension, we decided to use 50 ms of time resolution, be-

cause this yielded the most interpretable results.

For the experiments, nine right-handed* human subjects were

shown a set of 60 concrete English nouns (apple, knife, etc.),

and for each noun 20 simple yes/no questions (Is it edible?

Can you buy it?, etc). The subjects were asked to press the

right button if their answer to each question was ‘‘yes’’ or the

left button if the answer was ‘‘no.’’ After the subject pressed

the button, the stimulus (i.e., the noun) would disappear

from the screen. We also record the exact time that the

subject pressed the button, relative to the appearance of the

stimulus on the screen. A more detailed description of the

data can be found in Sudre et al. (2012).6

In order to bring the above data to the format that our model

expects, we make the following design choices: In lack of

sensors that measure the response of the eyes to the shown

stimuli, we represent each stimulus by a set of semantic

features for that specific noun. This set of features is a su-

perset of the 20 questions that we have already mentioned;

the value for each feature comes from the answers given by

Amazon Mechanical Turk workers. Thus, from time-tick 1

(when the stimulus starts showing), until the button is

pressed, all the features that are active for the particular

stimulus are set to 1 on our stimulus vector s, and all the rest

of the features are equal to 0; when the button is pressed, all

features are zeroed out. On top of the stimulus features, we

also have to incorporate the task information in s (i.e., the

particular question shown on the screen). In order to do that,

we add 20 more rows to the stimulus vector s, each one

corresponding to every question/task. At each given experi-

ment, only one of those rows is set to 1 for all time ticks, and

all other rows are set to 0. Thus, the number of input sensors

in our formulation is s = 40 (i.e., 20 neurons for the noun/

stimulus and 20 neurons for the task).

As a last step, we have to incorporate the button pressing

information to our model. To that end, we add two more

voxels to our observed vector y, corresponding to left and

right button pressing; initially, those values are set to 0 and as

soon as the button is pressed, they are set to 1.

Finally, we choose n = 15 for all the results we show in this

section. The results are not very sensitive with respect to small

changes in n, thus we chose a relatively small n that yielded

interpretable results. In our KDD article,5 we provide insights

on how to choose n.

5. Discoveries & Discussion

This section is focused on showing different aspects of GeBM

at work. In particular, we present the following discoveries:

D1: We provide insights on the obtained functional

connectivity from a neuroscientific point of view.

D2: Given multiple human subjects, we discover regu-

larities and outliers, with respect to functional con-

nectivity.

D3: We demonstrate GeBM’s ability to simulate brain ac-

tivity.

D4: We show how GeBM is able to capture two basic

psychological phenomena.

5.1. D1: Functional connectivity graphs
The primary focus of this work is to estimate the functional

connectivity of the human brain, that is, the interaction

pattern of groups of neurons. In the next few lines, we present

our findings in a concise way and provide neuroscientific

insights regarding the interaction patterns that GeBM was

able to infer.

In order to present our findings, we post-process the results

obtained through GeBM in the following way. We first obtain

the MEG-level functional connectivity matrix Av = CAC{ and

sparsify it, as described in the previous section. As we noted

earlier, this matrix is not symmetric, which implies that we

may observe skewed information flow patterns between dif-

ferent brain regions. In order to have an estimate of the de-

gree that our matrix is not symmetric, we did the following:

We measure the norm ratio

r ¼ kupper(Av)� lower(Av)TkF

kAvkF

*We place emphasis on the right-handedness of the human subjects because differences in handedness are known cause for inconsistencies in experimental results. To that end, we

made sure that all our subjects were right-handed.
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where upper () takes the upper triangular part of a matrix,

and lower () takes the lower triangular part. If Av is perfectly

symmetric, then s = 0, since the upper and lower triangular

parts would be equal. However, in our case, s = 0.6, indicating

that there is a considerable amount of skew in the commu-

nication between MEG sensors.

The data we collect come from 306 sensors, placed on the

human scalp in a uniform fashion, and the connectivity be-

tween those sensors is encoded in matrix Av. Each of those

306 sensors is measuring activity from one of the four main

regions of the brain, that is,

� Frontal lobe, associated with attention, short memory,

and planning.
� Parietal lobe, associated with movement.
� Occipital lobe, associated with vision.
� Temporal lobe, associated with sensory input pro-

cessing, language comprehension, and visual memory

retention.

Even though our sensors offer within-region resolution, for

exposition purposes, we chose to aggregate our findings per

region; by doing so, we are still able to provide useful neu-

roscientific insights.

Figure 4 shows the functional connectivity graph obtained

using GeBM. The weights indicate the strength of the inter-

action, measured by the number of distinct connections we

identified. These results are consistent with current research

regarding the nature of language processing in the brain. For

example, Hickock and Poeppel16 have proposed a model of

language comprehension that includes a ‘‘dorsal’’ and ‘‘ven-

tral’’ pathway. The ventral pathway takes the input stimuli

(spoken language in the case of Hickock and Poeppel; images

and words in ours) and sends the information to the tem-

poral lobe for semantic processing. Because the occipital

cortex is responsible for the low-level processing of visual

stimuli (including words) it is reasonable to see a strong set of

connections between the occipital and temporal lobes. The

dorsal pathway sends processed sensory input through the

parietal and frontal lobes where they are processed for

planning and action purposes. The task performed during the

collection of our MEG data required that subjects consider

the meaning of the word in the context of a semantic ques-

tion. This task would require the recruitment of the dorsal

pathway (occipital–parietal and parietal–frontal connec-

tions). In addition, frontal involvement is indicated when the

task performed by the subject requires the selection of se-

mantic information,17 as in our question-answering para-

digm. It is interesting that the number of connections from

parietal to occipital cortex is larger than from occipital to

parietal, considering the flow of information is likely occipital

to parietal. This could, however, be indicative of what is

termed ‘‘top down’’ processing, wherein higher level cognitive

processes can work to focus upstream sensory processes.

Perhaps the semantic task causes the subjects to focus in

anticipation of the upcoming word while keeping the se-

mantic question in mind. It is important to note here that we

were able to notice this ‘‘top down’’ processing pattern,

thanks to the fact that GeBM does not impose symmetry

constraints in the connectivity matrix.

5.2. D2: Cross-subject analysis
In our experiments, we had nine participants, all of whom

have undergone the same procedure, being presented with the

same stimuli, and asked to carry out the same tasks. Avail-

ability of such a rich, multisubject dataset inevitably begs the

following question: are there any differences across people’s

functional connectivity? Or is everyone, more or less, wired

equally, at least with respect to the stimuli and tasks at hand?

By using GeBM, we are able (to the extent that our model is

able to explain) to answer the above question. We trained

GeBM for each of the nine human subjects, using the entire

data from all stimuli and tasks, and obtained matrices A,B,

and C for each person. For the purposes of answering the

FIG. 4. The functional connectivity derived from GeBM. The weights on the edges indicate the number of inferred connections. Our results
are consistent with research that investigates natural language processing in the brain.
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above question, it suffices to look at matrix A (which is the

hidden functional connectivity), since it dictates the temporal

dynamics of the brain activity. At this point, we have to note

that the exact location of each sensor can differ between

human subjects, however, we assume that this difference is

negligible, given the current voxel granularity dictated by the

number of sensors.

In this multisubject study, we have two very important

findings:

� Regularities: For eight out of nine human subjects, we

identified almost identical GeBM instances, both with

respect to RMSE and to spectrum. In other words, for

eight out of nine subjects in our study, the inferred

functional connectivity behaves almost identically.

This fact most likely implies that for the particular set

of stimuli and assorted tasks, the human brain behaves

similarly across people.
� Anomaly: One of our human subjects (no. 3) deviates

from the aforementioned regular behavior.

In Figure 5a and b we show the real and imaginary parts of

the eigenvalues of A. We can see that for eight human sub-

jects, the eigenvalues are almost identical. This finding agrees

with neuroscientific results on different experimental set-

tings,18 further demonstrating GeBM’s ability to provide

useful insights on multisubject experiments. For subject no. 3

there is a deviation on the real part of the first eigenvalue, as

well as a slightly deviating pattern on the imaginary parts of

its eigenvalues. Figures 5c and d compare matrix A for sub-

jects 1 and 3. There is a unique fact pertaining to subject no.

3’s connectivity matrix: there is a negative value on the di-

agonal [blue square at the (8, 8) entry], in other words, a

negative self-loop in the connectivity graph, which causes the

differences in the behavior of subject no. 3’s system.

According to neuroscientific studies (e.g., He et al.19), the first

‘‘culprit’’ for causing such a discrepancy in the estimated

model would be the handedness of subject no. 3. However, as

we highlighted in the beginning of the section, all nine human

subjects were right-handed, and thus, difference in handed-

ness cannot be a plausible explanation for this anomaly.

We subsequently turned our attention to the conditions

under which the experiment was conducted, and according to

the person responsible for the data collection of subject no. 3:

‘‘There was a big demonstration outside the UPMC building

during the scan, and I remember the subject complaining during

one of the breaks that he could hear the crowd shouting through

the walls.’’

This is a plausible explanation for the deviation of GeBM for

subject no. 3.

5.3. D3: Brain activity simulation
An additional way to gain confidence in our model is to

assess its ability to simulate/predict brain activity, given the

inferred functional connectivity. In order to do so, we trained

GeBM using data from all but one of the words, and then we

simulated brain activity time-series for the left-out word. In

lieu of competing methods, we compare our proposed

method GeBM against our initial approach (whose unsuit-

ability we have argued for in section 3, but we use here in

order to further solidify our case). As an initial state for

GeBM, we use C{y(0), and for Model0, we simply use y(0).

The final time-series we show, both for the real data and the

estimated ones, are normalized to unit norm and plotted in

absolute values. For exposition purposes, we sorted the voxels

according to the [2 norm of their time series vector, and we

are displaying the high-ranking ones (however, the same

pattern holds for all voxels).

In Figure 6 we illustrate the simulated brain activity of GeBM

(solid red), compared against the ones of Model0 (using LS,

dash-dot magenta, and CCA, dashed black), as well as the

original brain activity time series (dashed blue) for the four

FIG. 5. Multisubject analysis: Panels (a) and (b) show the real and imaginary parts of the eigenvalues of matrix A for each subject. For all
subjects but one (subject no. 3) the eigenvalues are almost identical, implying that the GeBM that captures their brain activity behaves more
or less in the same way. Subject no. 3 on the other hand is an outlier; indeed, during the experiment, the subject complained that he was able
to hear a demonstration happening outside of the laboratory, rendering the experimental task assigned to the subject more difficult than it
was supposed to be. Panels (c) and (d) show matrices A for subjects no. 1 and no. 3. Subject no. 3’s matrix seems sparser and most
importantly, we can see that there is a negative entry on the diagonal, a fact unique to subject no. 3.
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highest ranking voxels. Clearly, the activity generated using

GeBM is far more realistic than the results of Model0.

5.4. D4: Explanation of psychological
phenomena
As we briefly mentioned in the introduction, we would like our

proposed method to be able to capture some of the psycho-

logical phenomena that the human brain exhibits. We by no

means claim that GeBM is able to capture convoluted still

little-understood physiological phenomena, however, in this

section we demonstrate GeBM’s ability to simulate two very

basic phenomena, habituation and priming. Unlike the previ-

ous discoveries, the following experiments are on synthetic

data, and their purpose is to showcase GeBM’s additional

strengths.

Habituation. In our simplified version of habituation, we

observe the demand behavior: Given a repeated stimulus, the

neurons initially get activated, but their activation levels de-

cline (t = 60 in Fig. 7) if the stimulus persists for a long time

(t = 80 in Fig. 7). In Figure. 7, we show that GeBM is able to

capture such behavior. In particular, we show the desired

input and output for a few (observed) voxels, and we show,

given the functional connectivity obtained according to

GeBM, the simulated output, which exhibits the same desired

behavior. In order to simplify the training data generation, we

produce an instantaneous ‘‘switch-off’’ of the activity in the

desired output, which is a crude approximation of a gradual

attenuation, which is expected. Remarkably, though, GeBM

(using Algorithm 1) is able to produce a very realistic,

gradually attenuating activity curve.

Priming. In our simplified model on priming, first we give

the stimulus apple, which sets off neurons that are associated

with the fruit ‘‘apple,’’ as well as neurons that are associated

with Apple, Inc. Subsequently, we are showing a stimulus

such as an iPod; this predisposes the regions of the brain that

are associated with Apple, Inc., to display some small level of

activation, whereas suppressing the regions of the brain that

are associated with apple (the fruit). Later on, the stimulus

apple is repeated, which, given the aforementioned predisposi-

tion, activates the voxels associated with Apple (company) and

suppresses the ones associated with the homonymous fruit.

Figure 8 displays a pictorial description of the above example

of priming; given desired input/output training pairs, we

derive a model that obeys GeBM using our proposed Algo-

rithm 1, such that we match the priming behavior.

FIG. 7. GeBM captures Habituation: Given repeated exposure to a stimulus, the brain activity starts to fade.
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FIG. 6. Effective brain activity simulation: Comparison of the real brain activity and the simulated ones using GeBM and Model0 for the first
four high ranking voxels (in the [2 norm sense).
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6. Related Work

Brain functional connectivity: Estimating the brain’s func-

tional connectivity is an active field of study of computational

neuroscience. Examples of works

can be found in Refs.7,20,21. There

have been a few works in the data

mining community as well: In Sun

et al. (2009)9, the authors derive

the brain region connections for

Alzheimer’s patients, and recently22

that leverages tensor decomposi-

tion in order to discover the un-

derlying network of the human

brain. Most related to the present

work is the work of Valdes-Sosa

et al.23, wherein the authors propose an autoregressive model

(similar to Model0) and solve it using regularized regression.

However, to the best of our knowledge, this work is the first

to apply system identification concepts to this problem.

Psychological phenomena: A concise overview of literature

pertaining to habitutation can be found in Thompson and

Spencer (1966).24 A more recent study on habitutation can

be found in Rankin et al. (2009).25 The definition of

priming, as we describe it in the lines above, concurs with

the definition found in Friederici (1999). Additionally, in

Pickering and Branigan (1998), the authors conduct a

study on the effects of priming when the human subjects

were asked to write sentences. The above concepts of

priming and habituation have also been studied in the

context of spreading activation,28,29 which is a model of the

cognitive process of memory.

Control theory & system identification: System identifica-

tion is a field of control theory. In the appendix of our KDD

paper5 we provide more theoretical details on subspace

system identification, however, Ljung (1999) and Verhaegen

and Verdult (2007)14,30 are the most

prominent sources for system iden-

tification algorithms.

Network discovery from time series:

Our work touches upon discovering

underlying network structures from

time series data; an exemplary work

related to the present article is Ver-

scheure (2006),1 in which the authors

derive a who-calls-whom network from

VoIP packet transmission time series.

7. Conclusions

In this work, we make the following contributions:

� Analytical model & algorithm: We propose GeBM, a

novel model of the human brain functional connec-

tivity. We also introduce Sparse-SysId, a novel sparse

system identification algorithm that estimates GeBM.
� Effectiveness: GeBM simulates psychological phe-

nomena (such as habituation and priming), as well as

provides valuable neuroscientific insights.
� Validation: We validate our approach on real data,

where our model produces brain activity patterns,

remarkably similar to the true ones.
� Multisubject analysis: We analyze measurements from

nine human subjects, identifying a consistent connectivity

FIG. 8. GeBm captures Priming: When first shown the stimulus apple, both neurons associated with the fruit apple and Apple, Inc. are
activated. When showing the stimulus iPod and then apple, iPod predisposes the neurons associated with Apple, Inc., to get activated more
quickly, while suppressing the ones associated with the fruit.
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among eight of them; we successfully identify an outlier,

whose experimental procedure was compromised.
� Cross-disciplinary connections: We highlight con-

nections between disparate areas: (1) neuroscience, (2)

control theory & system identification, and (3) psy-

chology, and we provide insights on the relation of

GeBM to recurrent neural networks.

The problem of identifying the functional connectivity of

the human brain is very important in the field of neurosci-

ence, as it contributes to our knowledge about how the hu-

man brain operates and processes information. However,

solving this problem can have applications that go far beyond

neuroscience:

� Improving artificial intelligence & machine learning:

Having a better understanding of how the human

brain processes information is of paramount impor-

tance in the design of intelligent algorithms; in par-

ticular, such understanding can be greatly beneficial,

especially to fields that are inspired by the way that the

human brain operates, with a prime example of deep

learning,31 which is gaining increasing attention.
� Detecting & ameliorating learning disorders: On a

different spin, understanding the functional connec-

tivity of the brain can be used in order to detect

learning disorders in children, at a very early stage, in a

noninvasive way. If we have a model for the functional

connectivity, as well as an understanding of how dif-

ferent learning disorders may perturb that model, we

might be able to, first, detect the disorder, and sub-

sequently, by targeting the child’s education and clo-

sely monitoring changes in the connectivity, we may

be able to ameliorate the effects of certain disorders.
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