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Abstract—The problem of tracking a frequency-hopped signal
without knowledge of its hopping pattern is considered. The
problem is of interest in military communications, where, in
addition to frequency, hop timing can also be randomly shifted
to guard against unauthorized reception and jamming. A concep-
tually simple nonlinear and non-Gaussian stochastic state-space
model is proposed to capture the randomness in carrier frequency
and hop timing. This model is well-suited for the application of
particle filtering tools: it is possible to compute the optimal (weight
variance-minimizing) importance function in closed-form. A con-
venient mixture representation of the latter is employed together
with Rao-Blackwellization to derive a very simple optimal sam-
pling procedure. This is representative of the state-of-art in terms
of systematic design of particle filters. A heuristic design approach
is also developed, using the mode of the spectrogram to localize
hop particles. Performance is assessed in a range of experiments
using both simulated and measured data. Interestingly, the results
indicate that the heuristic design approach can outperform the
systematic one, and both are robust to model assumptions.

Index Terms—Frequency hopping, particle filtering, random
hop timing, synchronization, timing jitter, tracking.

I. INTRODUCTION

T RACKING the time-varying parameters (frequency, com-
plex amplitude) of a complex sinusoid is an important

problem that arises in numerous applications. In many cases the
parameters can be assumed to vary slowly in time; in frequency
hopping (FH) communications, however, the carrier frequency
is intentionally hopped in a (pseudo-) random and discontin-
uous fashion. In military communications, FH is used to guard
against unauthorized reception and jamming, and hop timing
can also be randomized for added protection. In civilian com-
munications (e.g., Bluetooth), FH is used to avoid persistent
interference and enable uncoordinated coexistence with other
systems.
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Several researchers have considered the problem of tracking
a FH signal without knowledge of the hopping pattern [2], [3],
[9], [10], [13]. Nonparametric methods based on the spectro-
gram [2], [13] are simple and useful as exploratory tools, but
suffer from limited resolution due to leakage. It is possible to
employ time-frequency distributions that are better-adapted to
frequency hopping [3], but the results are still not very satis-
factory. Parametric methods for frequency hopping explicitly
model the frequency as piecewise-constant, assume a “budget”
on the number of hops within a given observation interval, and
employ Dynamic Programming (DP) to track the sought fre-
quency and complex amplitude parameters [9], [10]. Other than
an upper bound on the number of hops, the methods in [9], [10]
do not assume anything else about the frequencies or complex
amplitudes, which are treated as deterministic unknowns. The
algorithms in [2], [9], [10], and [13] are also applicable when
hop timing is random.

A different viewpoint is adopted in this paper. A stochastic
nonlinear, non-Gaussian state-space formulation is proposed,
which captures frequency hopping dynamics in a probabilistic
sense. The proposed formulation is naturally well-suited for the
application of particle filtering for state estimation. Compared
to the prior state-of-art in [9] and [10], the new approach has
a number of desirable features. For a fixed average hop rate,
the complexity of the DP algorithms in [9], [10] is roughly
fourth-order polynomial in the number of temporal signal snap-
shots, , and DP requires back-tracking—implying that only
short data records can be processed, and in batch mode. Par-
ticle filtering can be implemented on-line, and its complexity
is linear in . Furthermore, unlike previous methods, the sto-
chastic state-space model can be easily tailored to match a given
scenario (e.g., spread bandwidth and modulation).

In closing this section, we remark that particle filtering so-
lutions for tracking slowly varying parameters of a harmonic
or chirp signal are discussed in [14] and [15]. Interestingly, the
case of slowly varying parameters is much different, and in a
sense more difficult than the one considered here. In particular,
the divergence phenomenon encountered in [14] and [15] is not
present in the case of FH.

II. FH DATA MODEL AND PROBLEM STATEMENT

For simplicity of exposition, the case of two receive antennas
is discussed in the sequel, but the derivations in the Appendix
cover the case of antennas.

Let , denote the state at time , where
denotes instantaneous frequency, and

denote the complex amplitude of the received signal at
the first and second antenna, respectively, and is used to denote
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transposition (to avoid ambiguity with , which is reserved for
the number of temporal snapshots). Let
denote an auxiliary independent and identically distributed
(i.i.d.) sequence of vectors with independent components and the
following marginal statistics: is a binary random variable with

is uniformly distributed over , de-
noted ; and and are , i.e., complex
circular Gaussian of total variance . The state is assumed
to evolve according to the following stochastic model: (see the
equations at the bottom of the page) and the scalar measurements
at time areand the scalar measurements at time are

where denotes i.i.d. measurement noise.
Some comments on our modeling assumptions are useful at

this point.
• Hops are modeled as random, i.i.d., with hop probability

per sample interval. This is different from traditional
models of frequency hopping, which assume that the fre-
quency hops periodically. The random hopping model is
i) well-motivated for military communications, ii) well-
suited for on-line sequential estimation using particle fil-
tering, and iii) the resulting algorithms can also track peri-
odically hopped signals, as we will see in experiments with
measured data.

• When the (discrete-time, baseband-equivalent) frequency
hops, it hops anywhere within with a uniform den-
sity. This is appropriate for FH signals sampled at the
Nyquist rate relative to the hopping bandwidth.

• Modulation-induced variations can be neglected when the
objective is to estimate carrier frequency, but could also
be explicitly modeled using, e.g., a smooth autoregressive
frequency variation model in-between hops, in lieu of the
simplified constant model postulated above.

• We assume i.i.d. Rayleigh fading in space and frequency.
This is realistic for frequency-hopped signals in rich multi-
path environments without a dominant line-of-sight, when
the receive antennas are sufficiently well-separated (a few
wavelengths apart). Aside from plausibility, this assump-
tion is also convenient for tractability considerations.

Given a sequence of observations , our objective is
to estimate the sequence of system states —that is,
the unknown carrier frequencies and complex amplitudes. We
will do this in an indirect way—estimating the posterior density

, from which the state can be estimated using the
conditional mean. This leads us to particle filtering.

The rest of the paper is organized as follows. Section III is
a very brief review of the basic elements of particle filtering.

A custom particle filtering solution for random time-frequency
hopping is derived in Section IV. This includes the computation
of the optimal importance function in closed-form. A key idea
is to employ a convenient mixture representation of the optimal
importance function, which enables use of Rao-Blackwelliza-
tion. This solution is representative of the state-of-art in terms
of systematic design of particle filters. An alternative heuristic
design is developed in Section V. Results of experiments with
simulated and measured FH data are presented in Section VI,
and conclusions are drawn in Section VII.

III. PARTICLE FILTERING (PF)

PF is an important estimation methodology that is applicable
to general stochastic nonlinear and/or non-Gaussian state- space
models. We refer the reader to [1], [4], and [7] for recent tuto-
rial overviews of PF. In PF, a continuous distribution is
approximated by a discrete random measure comprising “parti-
cles”(locations ) and corresponding weights

where denotes the Dirac delta function. If our goal is to es-
timate the system state at time from measurements up to and
including time , the key distribution of interest is the posterior
density . PF starts with a random measure ap-
proximation of the initial state distribution, and uses subsequent
measurements to estimate in a
sequential fashion, i.e., generate a sequence of random measure
approximations

Direct sampling from the desired posterior is not possible in
most cases. For this reason, we resort to importance sampling:
we draw samples from a suitable importance function that has
the same support as the desired posterior, and we weigh the par-
ticles according to the ratio of the two densities at the sample
point. The choice of importance function is key—the more it
resembles the desired density the better, but it should also facil-
itate easy sampling.

A common problem in PF is degeneracy: the weights of all
except a few particles become negligible after several iterations.
This can be detected and corrected using resampling techniques
[1], [4], [7]. The importance function that minimizes the vari-
ance of the weights (a precaution against degeneracy) is
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This is often referred to as the optimal importance function, and
it usually strikes a better estimation performance-complexity
trade-off than other alternatives. Notice that the optimal impor-
tance function takes into account the latest measurement. Both
the prior and the optimal importance function yield consistent
estimates of the desired density as the number of particles goes
to infinity.

There are two obstacles to using the optimal importance func-
tion: it requires integration to compute the normalization factor
(which is usually intractable); and sampling from it can be com-
plicated. Thankfully, it turns out that both obstacles can be over-
come for our particular model, as shown next.

IV. CLOSED-FORM OPTIMAL IMPORTANCE FUNCTION AND

SAMPLING PROCEDURE FOR RANDOM FREQUENCY HOPPING

Denote , where ,
and ; and likewise

. Let , and

Then

This integral can be computed by completing the squares,
yielding the top equation shown at the bottom of the page. The
weight update for the optimal importance function is

followed by normalization to 1. We need a way to sample from
the optimal importance function. As a first step towards this end,
note that can be written as a mixture of two
pdfs

where the constituent pdfs and the posterior hop rate are
shown at the bottom of the page. It follows that with probability

we simply copy the previous particle, else we draw a par-
ticle from . For the latter step, we will con-
struct a technique based on Rao-Blackwellization (see [5], [6],
[11], and references therein). Although this is presented here for
the case of two receive antennas, it is straightforward to gener-
alize to receive antennas. The pdf can be
factored as

Since we already know analytically we can
derive by direct integration

and
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By completing the squares in each of the two integrals above,
we come up with the analytical form of the desired pdf

It is interesting that this density does not depend on the mea-
surement —the information provided by the measurement at
time is totally absorbed in the posterior hop rate .

Next, we derive an analytical formula for
. Using the factorization

above and the result for , we have the first
equation at the bottom of the page. Upon defining

, and after straightfor-
ward manipulations, can be written
as

This form of along with the factor-
ization of enables us to easily sample the
optimal importance density. Sampling can be carried out by first
drawing a frequency sample from and then using it
to draw a sample from , which is a
simple Gaussian density.

Remark: Notice that, due to the use of the equivalent mixture
representation (involving the posterior hop rate) and the fact that
Rao-Blackwellization is only applied to draw hop particles, no
Kalman filtering is needed here, in contrast with [5], [6], [11],
and [15]. This saves a lot of computations.

V. AUXILIARY SPECTROGRAM PARTICLE FILTERING

(ASPECT-PF)

The use of the optimal (weight variance-minimizing) impor-
tance function coupled with Rao-Blackwellization is represen-
tative of the state-of-art in terms of systematic design of particle
filters. Note, however, that the ultimate objective is a favorable
balance of estimation (tracking) accuracy and complexity. Min-
imizing the variance of the weights often strikes a better accu-
racy-complexity trade-off than other particle filtering solutions,
but this is not guaranteed.

The key open problem in particle filtering is the choice of
importance function. Custom solutions may outperform system-
atic ones by insightful design of the importance function. This
is presently more a matter of engineering art, rather than theory.

Consider using a short-window spectrogram estimator of the
instantaneous frequency, and two adjacent dwells. So long as
the spectrogram window is contained within a single dwell, its
mode will be a good estimate of the corresponding carrier fre-
quency. Transient effects come into play as the window crosses
the hop between the two dwells, and then the mode catches
up with the new carrier frequency. The idea is to draw from a
narrow interval about the mode of the spectrogram with proba-
bility , else copy the previous particle. As the window begins
crossing a hop, new particles are drawn around the forthcoming
carrier frequency; yet these particles are inconsistent with the
present measurement. If is used to weigh the parti-
cles, new particles will be down-weighted relative to old parti-
cles. The situation reverses as the window crosses the hop: old
particles are down-weighted relative to new particles.

Let denote the mode of the spectrogram at time , based
on a causal window from to . The proposed function
employed by auxiliary spectrogram PF (ASPECT-PF) is1

with defined as

with small ( in our experiments).
For this choice of importance distribution, the particle weight

update is given by the second equation at the bottom of the page.
If and , then

else the weight update becomes indefinite due to the Dirac
deltas, and we use

1We only consider the single-channel case for brevity.
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Performance can be further improved by using a short
look-ahead (noncausal) window, i.e., computed from to

. This is often tolerable in applications for small .

VI. EXPERIMENTS

In our experiments, we compared the following PF algo-
rithms:

• SIR: the standard Sampling Importance Resampling algo-
rithm using the prior importance function [1].

• OIF-RBPF: using the Optimal Importance Function (OIF)
and Rao-Blackwellization.

• ASPECT-PF-C: the Causal (C) version, with spectrogram
window length or , zero-padding to 256 sam-
ples, and .

• ASPECT-PF-NC: the Non-Causal (NC) version, with
window length or and otherwise the same
choice of parameters.

For the PF algorithms, the initial state was assumed known.
This is reasonable for tracking applications, following initial
acquisition. In all cases, we used resampling at each time
step—in particular, the multinomial resampling [8] imple-
mentation of Arnaud Doucet and Nando de Freitas. We used
root mean square error (RMSE) of frequency estimation as a
performance measure.

We also included a simple spectrogram estimator (SpE)
as a baseline. For each time instant , SpE computes the
periodogram of in the causal case or

in the noncausal case, and then finds its
mode. Zero-padding to 256 samples was used for SpE, as for
ASPECT-PF. Unlike ASPECT-PF, the causal and noncausal
versions of SpE have the same performance—the noncausal
version is equivalent to running the causal version backwards
in time (time-reversal)2.

SpE can be efficiently implemented by peak-picking a
full-overlap factor rectangularly-windowed spectrogram, re-
quires minimal parameter tuning (choice of window length, ,
which was manually optimized in our experiments), and is the
first exploratory method that one would use in practice.

We conducted experiments with simulated and measured
data:

• The simulated data were generated using our model, and
the PF algorithms utilized the correct model parameters.
This is meant to assess the performance potential of the
proposed algorithms under controlled conditions.

• We also conducted experiments using measured data which
deviate significantly from our modeling assumptions.

The specific setups and associated results are presented next.

A. Simulations

For the simulated data, we used , and to
generate data and as model parameters for the PF algorithms
for all cases considered.

1) Single-Channel Case: Fig. 1 shows RMSE results for the
aforementioned single-channel PF algorithms, for and

, as a function of the number of particles. The perfor-
mance of SpE is a constant, given in the caption for clarity. The

2This argument does not apply to tracking filters like ASPECT-PF which have
built-in memory.

Fig. 1. Single-channel RMSE results for � � ���� � � ����, and 800 MC
trials. As a baseline, the spectrogram estimator (SpE) with optimized window
length (8) yields an RMSE of 0.4.

Fig. 2. Single-channel RMSE results for � � ���� � � ����, and 500 MC
trials. The spectrogram estimator (SpE) with optimized window length (8) yields
an RMSE of 0.82.

results are averaged over 800 Monte Carlo (MC) trials. Fig. 2
shows corresponding results for , and 500
MC trials, and otherwise the same setup as in Fig. 1.

The SIR is simple to derive and implement, however Figs. 1
and 2 show that its RMSE performance leaves much to be de-
sired. OIF-RBPF is the best causal filter, but ASPECT-PF-C
is not far from it. The comparison of ASPECT-PF-NC to the
causal filters is of course not on equal footing; still, it is inter-
esting to see the kind of improvement possible when one can
afford a little delay.

In order to get a feel for the tracking capabilities of the dif-
ferent filters, Fig. 3 shows typical tracks for OIF-RBPF, AS-
PECT-PF-C (window length 4), and ASPECT-PF-NC (window
length 8), for , and 1000 particles for each
filter.

Tracking performance also depends on system parameters,
notably the measurement noise variance and the frequency
hopping probability. In order to illustrate this dependence,
Fig. 4 shows RMSE for the various PF algorithms as a func-
tion of measurement noise variance for

, and 500 MC trials. Likewise, Fig. 5 shows
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Fig. 3. Illustration of typical tracking performance for 1000 particles, � �

���� � � ����.

Fig. 4. RMSE comparison of PF algorithms as a function of measurement noise
variance for � � ���� � � ������ � ����, and 500 MC trials.

RMSE as a function of frequency hopping probability, , for
and 500 MC trials. Naturally,

performance degrades with increasing noise variance or fre-
quency hopping probability (in the latter case there are less
samples to estimate the frequency of each dwell). In Fig. 4, ob-
serve that ASPECT-PF-C with an 8-sample window performs
better than ASPECT-PF-C with a 4-sample window when the
measurement noise variance is 0.25 or more, due to better
noise averaging. The situation is reversed for measurement
noise variance under 0.25. In the same figure, the SIR filter
yields poor performance when the measurement noise variance
is low - this can be attributed to a higher sensitivity with
respect to degeneracy, stemming from the use of a relatively
naive (the prior) importance function. In Fig. 5, observe that
ASPECT-PF-NC with an 8-sample window gives lower RMSE
than ASPECT-PF-NC with a 16-sample window as the fre-
quency hopping probability increases. The reason is that very
short dwells become more likely in this case.

Fig. 5. RMSE comparison of PF algorithms as a function of frequency hopping
probability, �, for � � ����� � ����, and 500 MC trials.

Fig. 6. RMSE comparison of single vs. dual channel PF for � � ���� � �

����, and 500 MC trials.

2) Dual-Channel Case: Fig. 6 shows the RMSE performance
improvement afforded by dual-channel OIF-RBPF relative to its
single-channel version as well as the other single-channel filters.
As expected, the dual-channel filter yields significant perfor-
mance improvement relative to its single-channel counterpart;
but single-channel ASPECT-PF-NC is still considerably better.
This means that a second antenna and down-conversion chain
are not justified when one can afford a little delay.

3) Complexity: The complexity of all PF solutions consid-
ered is linear in the number of particles, and quantitatively very
similar-about 30–40 ms per measurement for a plain-vanilla in-
terpreted Matlab implementation on a typical PC with 1000 par-
ticles. The sampling step of all algorithms can be parallelized,
and ASPECT-PF-NC yields very good performance with about
250 particles. This makes it an appealing candidate for practical
implementation.

B. Measured Data

We further tested our algorithms using measured FH data,
made available by Telcordia Technologies through the ARL
Collaborative Technology Alliance (ARL-CTA) for Com-
munications and Networks under Cooperative Agreement
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Fig. 7. Hopping sequence for the measured data (� � ���� temporal
samples).

DADD19-01-2-0011. The measurement campaign was con-
ducted in 2004, and comprised a diverse array of scenarios. The
particular data that we used corresponds to a line-of-sight (LoS)
scenario called T3-LoS. Over-the-air testing was performed
using a software-defined radio and Agilent 4438 synthesizers;
the carrier frequency was 1.875 GHz, with a two-sided band-
width of 1.25 MHz; the signal bandwidth was 1 MHz. The
received signal was sampled at 4 Ms/s with a 12-bit ADC. The
(baseband) hopping bandwidth was from to 0.5 MHz,
divided into 32 equispaced frequency bins, and slow FH with
binary Gaussian Minimum Shift Keying (GMSK) modulation
was used. The maximum modulation-induced frequency devia-
tion was -th of the FH bin width.

The transmitted waveform was known, and included a long
synchronization preamble, which also affords accurate channel
estimation. The received signal was downconverted and over-
sampled at the receiver by a factor of 4. This compresses the
frequency variation to a quarter of the band, and is (grossly) in-
consistent with our model; we therefore subsampled the signal
prior to processing by a factor of 4. The end result is a full-band
SFH GMSK signal with 128 samples per dwell, from which
we extracted a segment comprising 2000 samples. The corre-
sponding hopping sequence is plotted in Fig. 7.

There are many reasons why testing with measured data is im-
portant. The measured data violate several of our assumptions,
which is to be expected in practice:

• Due to the presence of a strong LoS component and only
minor multipath, the signal’s amplitude is approximately
constant across dwells. This violates our i.i.d. Rayleigh
fading assumption from dwell to dwell.

• Within a dwell, the frequency is not constant; it varies
slowly due to GMSK modulation. This induces a time-
varying residual phase noise relative to the true carrier.
This is illustrated in Fig. 8, which shows one dwell of the
unmodulated and the received signal after downconversion
to the hopping bandwidth, synchronization, amplitude, and
phase correction. The net effect is that the compound noise
term is correlated and non-Gaussian. This is illustrated in

Fig. 8. One dwell of the carrier and the received signal after synchroniza-
tion, amplitude and phase correction. Notice the residual phase noise due to
modulation.

Fig. 9. Normal probability plot of real part of residual signal for � � ����

time steps. Notice significant deviation from Normal distribution in the tails,
primarily due to carrier modulation.

Fig. 9, which shows a Normal probability plot of the real
part of the noise signal. Notice the significant deviation
from the Normal distribution in the tails.

• Carrier hopping is not i.i.d. random as postulated in our
model; it is periodic (without intentional jitter—see Fig. 7).

• The parameters of our model have to be
estimated.

For the above reasons, trying our algorithms on the measured
data is a meaningful test of robustness to model mismatch.

The hop period (dwell duration) can be accurately es-
timated from the spectrogram, or using cyclostationarity. We
therefore set . Given , it is possible to
segment the signal in fixed-length dwells using a serial acqui-
sition search, and estimate the remaining parameters from the
segments. We used (to match the signal power), and

.
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Fig. 10. RMSE results for the measured data: � � ����� � � �����. The
spectrogram estimator (SpE) with optimized window length (8) yields an RMSE
of 0.32.

The results of our experiments using measured data are sum-
marized in Fig. 10. Notice that ASPECT-PF-C with a window
length of 4 samples outperforms OIF-RBPF in this model-mis-
matched case. ASPECT-PF-NC delivers excellent performance
with as few as a few hundred particles. To appreciate this,
consider the following back-of-the-envelope calculation. If a
tracking algorithm misses a half-band hop of rads by a single
sample, but otherwise tracks the signal perfectly over a dwell of
128 samples, the associated RMSE will be approximately 0.27.
Most hops are less than half-band, yielding lower RMSE in the
same scenario; but there will also be errors over the duration of
the dwell. This speaks for a key strength of PF solutions versus
window-based methods (such as SpE): the ability to accurately
track hop timing.

VII. CONCLUSION

We have considered the problem of tracking a frequency-
hopped signal of random dwell frequency and hop timing.
Starting from a simple stochastic state-space model, we com-
puted the optimal (weight variance-minimizing) importance
function in closed-form. This form is not directly amenable
to Rao-Blackwellization; however we proposed a mixture
representation that decouples the problem and yields a very
simple sampling procedure (OIF-RBPF). A heuristic design
(ASPECT-PF) was also developed, using the mode of the
spectrogram to localize hop particles. Robustness with respect
to model mismatch has been assessed using measured FH data,

which violate many of our assumptions. The measured data
feature strong LoS (approximately constant signal amplitude),
dwell frequency modulation, periodic hop timing, and corre-
lated non-Gaussian noise—thus significantly departing from
our working assumptions. Still, the proposed filters work well,
with only a few hundred particles.

APPENDIX I

A. Derivation of Closed Form Expression for the Optimal
Importance Density

Assume that antennas and corresponding receive
chains are available, for any . The state at time is

where denotes
instantaneous frequency and are complex
amplitudes. Define the auxiliary i.i.d. sequence of random
vectors , where is a binary
random variable with is ; and

are i.i.d. .
Then (see the equation at the bottom of the page), where

denotes measurement noise that is assumed to be
i.i.d. in space and time .

The weight variance-minimizing importance function is [1],
[4]

The integral
can be computed as follows:
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where and are given at the bottom of the page. The inte-
gral inside the brackets in the equation for can be computed
by completing the squares

where is defined as

and extracts the real (imaginary) part of its argu-
ment. Let ; then

We now readily see that can be written as

This yields

can now be written as
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The weight update is given by

followed by normalization to 1.
As in the case, can be written as a

mixture of two pdfs

where the constituent pdfs and are given at the top of the page.
It follows that with probability we simply copy the pre-
vious particle, else we draw a particle from .
This can be accomplished via Rao-Blackwellization, as done for

in the text.
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