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Abstract—Fair queueing (FQ) algorithms, which have been pro-
posed for quality of service (QoS) wireline/wireless networking,
rely on the fundamental idea that the service rate allocated to
each user is proportional to a positive weight. Targeting wireless
data networks with a multicode CDMA-based physical layer,
we develop FQ with time-varying weight assignment in order to
minimize the queueing delays of mobile users. Applying dynamic
programming, we design a computationally efficient algorithm
which produces the optimal service rates while obeying 1) con-
straints imposed by the underlying physical layer and 2) QoS
requirements. Furthermore, we study how information about the
underlying channel quality can be incorporated into the scheduler
to improve network performance. Simulations illustrate the merits
of our designs.

Index Terms—Code-division multiple access (CDMA), dynamic
programming, fair queueing, quality of service, scheduling.

I. INTRODUCTION

I N INTEGRATED services networks, the provision of
quality of service (QoS) guarantees to individual sessions

depends critically upon the scheduling algorithm employed
at the network switches. In wireless networks, the scheduler
(which resides at the base station in a centralized imple-
mentation) allocates bandwidth by, e.g., assigning slots (in
time-division multiple access—TDMA—environments) or
codes (in code-division multiple access—CDMA—environ-
ments). Though in second-generation wireless networks, the
scheduler needs to allocate bandwidth only for voice and
low-rate data traffic, it is expected that in third-generation
broad-band wireless networks, a plethora of applications with
diverse QoS requirements will need to be supported.

In both wireline and wireless networks, the generalized
processor sharing (GPS) [1] discipline and the numerous fair
queueing (FQ) algorithms are widely considered as the primary
scheduler candidates, as GPS has been shown to provide both
minimum service rate guarantees and isolation from ill-be-
haved traffic sources. Not only have GPS-based algorithms
been implemented in actual gigabit switches in wired networks,
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but also they have been studied in the context of the emerging
broad-band wireless networks (see, e.g., [2], [3], and references
therein). The fundamental notion in GPS-based algorithms is
that the amount of service session receives from the switch
(in terms of transmitted packets) is proportional to a positive
weight . As a result, GPS (and its numerous FQ variants) is
capable of delivering bandwidth guarantees; the latter translate
to delay guarantees as long as there is an upper bound on
the amount of incoming traffic (this bound could be either
deterministic or stochastic).

One of the major shortcomings of GPS is that the service
guarantees provided to session are controlled by just one
parameter, the weight . Hence, the delay-bandwidth cou-
pling, which refers to the mutual dependence between delay and
throughput guarantees (i.e., in order to guarantee small delays,
a large portion of the bandwidth should be reserved). To appre-
ciate why the delay-bandwidth coupling is a shortcoming, one
needs to take into consideration that future networks will sup-
port multirate multimedia services with widely diverse delay
and bandwidth specifications. For example, video and audio
have delay requirements of the same order, but video has an
order of magnitude greater bandwidth requirement than audio.
Therefore, delay-bandwidth coupling could lead to bandwidth
underutilization.

In this paper, we look at the problem of minimizing queueing
delays in wireless networks which employ FQ (as the band-
width allocation policy), and multicode CDMA (as the phys-
ical layer transmission/reception technique). We base our ap-
proach on a time-varying weight assignment, which dispenses
with the delay-bandwidth coupling, while still obeying QoS re-
quirements (in terms of minimum guaranteed bandwidth to indi-
vidual sessions). Using dynamic programming (DP), we design
a computationally efficient algorithm, which produces the op-
timal weights ’s, that minimize a cost function representing
the queueing delays of the mobile users. Unlike existing work,
our algorithm takes into explicit account the discrete nature of
the service rates (as they are provided by the underlying phys-
ical layer), and, as a matter of fact, capitalizes on this discrete
nature to reduce computational complexity.

Furthermore, we investigate how information about channel
quality can be incorporated into the scheduler. Intuitively, a user
with a “good” channel, i.e., with sufficiently high signal-to-
noise-ratio (SNR), should be allocated a fair number of CDMA
codes to maximize throughput (while channel conditions re-
main favorable). On the other hand, whenever the channel is
“bad,” the user should be discouraged from transmitting data
packets. Existing work has mainly addressed the extreme case
where only one user is allowed to transmit (see, e.g., [4]–[7] and
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references therein). Our approach is more general, because we
incorporate channel quality as a weighting factor in a properly
defined cost function. Our framework allows the simultaneous
transmission by more than one users (as long as they have suf-
ficiently “good” channels), and has the potential to lead to im-
proved QoS per user.

The rest of this paper is structured as follows. Section II
states the problem and describes our modeling assumptions.
Section III presents our algorithm and explains why our
bandwidth allocation policy is optimal (given our operating
assumptions). Section IV focuses on how channel quality can
be incorporated into the bandwidth allocation process. In both
sections, the merits of our approach are illustrated through
simulations. Conclusions are drawn in Section V.

II. MODEL DESCRIPTION AND PROBLEM STATEMENT

We focus on a single cell in a wireless multicode CDMA
network, where mobile users receive service from the basesta-
tion. The basestation allocates bandwidth to mobile users using
a fair queueing algorithm, decides on the corresponding CDMA
codes, and communicates bandwidth/code assignments to mo-
bile users using a demand-assignment medium access control
(MAC) protocol. Next, we provide a brief description of the
scheduler, MAC, and the underlying multicode CDMA, and
then we state the problem we endeavor to solve.

A. Fair Queueing Scheduler

The bandwidth allocation policy is based on the GPS sched-
uling algorithm [1] also known as weighted fair queueing [8].
From a network-wide point of view, GPS efficiently utilizes
the available resources as it facilitates statistical multiplexing.
From a user perspective, GPS guarantees to the sessions that
1) network resources are allocated irrespective of the behavior
of the other sessions (which refers to the isolation property
of the scheduler) and 2) whenever network resources become
available (e.g., in underloaded scenarios), the extra resources
are distributed to active sessions (the fairness property of the
scheduler).

According to [1], a GPS server operates at a fixed rate and
is work conserving, i.e., the server is not idle if there are back-
logged packets to be transmitted. The scheduler usually resides
at the output links of a network switch [9]. Each session is
characterized by a positive constant , and the amount of ser-
vice session receives in the interval is pro-
portional to , provided that the session is continuously back-
logged. Formally, under GPS, if session is continuously back-
logged in , then it holds that

for all sessions that have also received some service in this
time interval. It follows that in the worst case, the minimum
guaranteed rate given to session is ,
where is the maximum number of sessions that could be ac-
tive in the system. Therefore, a lower bound for the amount
of service that session is guaranteed is:

. If session is ( , )-leaky bucket con-
strained,1 and the minimum guaranteed rate is such that

, then the maximum delay is (note that this
bound could be loose [1]).

Effectively, GPS offers perfect isolation, because every ses-
sion is guaranteed its portion of the bandwidth irrespective of
the behavior of the other sessions. From this point of view,
GPS is reminiscent of fixed-assignment TDMA or frequency-
division multiple access (FDMA) physical layer multiplexing
techniques. What is radically different about GPS is its perfect
fairness property.2Whenever a session generates traffic at a
rate less than , then the “extra” bandwidth is allocated to
other sessions proportionally to their respective weights. Let us
clarify the operation of GPS in a wireless network using the fol-
lowing simple example: suppose that in a pico-cell three mobile
users are assigned to the base station. One (high-rate) user has a
weight of , and the two (low-rate) users have a weight of

. When all users are active, the high-rate user will take
50% of the bandwidth, and each of the low-rate users 25%. If
one of the low-rate users becomes silent, then the extra 25% of
the bandwidth will be allocated to the other users: the high-rate
will have now 66%, and the low-rate 34%. Note that the extra
bandwidth can be used in multiple ways, for example, to in-
crease the information rate, or to decrease the transmitted power
through the use of a more powerful channel code.

GPS belongs to the family of rate-based schedulers [12],
which attempt to provide bandwidth guarantees to sessions
(note that bandwidth guarantees yield delay guarantees if
description of the incoming traffic is available). When the ses-
sions have a nominal, long-term average rate (the sustainable
cell rate or SCR in ATM terminology), then the allocation of

’s appears to be straightforward. The situation becomes more
complicated if we consider that network traffic could be bursty
or self-similar. Though there has been work on the weight
assignment problem (see, e.g., [13]), it is still considered quite
challenging (see, e.g., [14]). One of the contributions of this
work is that our algorithm yields the optimal set of weights
which minimizes a cost function representing the queueing
delays of mobile users. Before we give a mathematical descrip-
tion of this cost function in Section II-C, let us cast an eye to
how bandwidth is actually allocated at the physical layer.

B. Bandwidth Allocation Under Multicode CDMA

At the physical layer, we assume a multicode CDMA trans-
mission/reception scheme. There are available codes3 (these
codes could be, e.g., Pseudo-Noise or Walsh–Hadamard), which
can be allocated to mobile users. Each user is allocated
codes, and splits the information stream into substreams
which are transmitted simultaneously using each of the
codes: it readily follows that if user has data symbols

1For any interval (�; t], the traffic that is generated is upper bounded by � +
� (t � �) [10].

2Formally, if two sessions m, �, are continuously backlogged in (�; t], then
GPS postulates that (R (�; t)=R (�; t)) = (� =� ). Since GPS can only
be approximated in practice by an FQ algorithm, the accuracy of the approxi-
mation may be judged by the difference j(R (�; t)=R (�; t)) = (� =� )j.
Discussion and references related to fairness may be found in, e.g., [11].

3Note that the capacityC is “soft” as it depends on channel conditions, power
control, etc.
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to transmit, then yields a measure of the time it takes
to transmit them. Herein we assume that channel conditions,
power control, and the detection mechanism at the basestation
allow the successful use of all codes: , where is an
SNR threshold for a prescribed bit-error-rate (BER) probability,
and is the th code of the th user. Though, in general,
CDMA is an interference-limited environment, crosstalk can
be kept at modest levels in narrow-band, quasi-synchronous
systems with the aid of power control and forward error cor-
rection. Hence, it can be assumed that all codes are available
(both in the uplink, and the downlink scenario). Furthermore,
in wide-band CDMA, there exist judiciously designed CDMA
codes (see [15], [16], and references therein) which guarantee
elimination of crosstalk irrespective of the possibly unknown
frequency selectivity (under mild assumptions on delay spread
and time synchronization among users). Chip interleaving, for
example, is a particularly simple way to turn interchip interfer-
ence (ICI), which destroys the orthogonality among the codes,
into intersymbol interference (ISI), which can be taken care
of by equalization, thus maintaining exact code orthogonality,
through simple periodic chip interleaving.

Based on the dynamic range of SNR values we can dif-
ferentiate between two cases.

Case I: Power control and power budget of each mobile
user are such that all SNR values are approximately equal.
This could be accomplished with very fast power control, accu-
rate SNR estimation, and an algorithm such as in [17]. In this
case, all users experience “good” channels.

Case II: Power control is not fast enough to track channel
fluctuations, and, consequently, the SNR values ’s have dis-
parate values per user (i.e., can be disparate as function
of , but not as a function of for a given ). Such a sce-
nario could arise in cases where: 1) the power control can track
the slow-time fading, but not the fast time-scale fading or 2) a
mobile user experiences a deep fade, and the power budget is
not enough to compensate for it. Recall that the signal power

which impinges on the receive antenna of a mobile user is
given at any time as the product of two independent stochastic
processes, i.e., , where is the slow-fading process
due to path loss and shadowing effects, and is the fast vari-
ation due to scattering [18]).

Both cases can be handled by our DP-based algorithm. The
key of this uniform treatment lies in the proper definition of the
cost function, and the weights associated with the QoS provided
to each user. For Case I, the weights provide different QoS pri-
orities. For Case II, in Section IV we will see how the weights
(which depend on the different SNR values) provide a form
of multiuser diversity, and can actually be used to improve the
overall network performance.

Before we present this cost function, two comments are due.
Comment I: Unlike wired networks, the implementation

of GPS in multicode CDMA networks appears to be straight-
forward.4 Given the assumption on the successful use of all

4In wired networks, GPS assumes a fluid model of traffic. Hence, in practice
GPS needs to be approximated by a packet fair queueing (PFQ) algorithm [1].
Starting with weighted fair queueing (WFQ) [8], there has been a lot of work
on approximating GPS (see, e.g., [3] and references therein).

codes, essentially denotes the bandwidth which is allo-
cated to user , and GPS is implemented by setting

(1)

where is the set of active users (note that with sufficiently
large and frequent code reassignments, the approximation error
in implementing GPS using (1) can be made small). Our DP al-
gorithm produces the optimal code allocation , which
implicitly yields the optimal weight allocation .

Comment II: The network and the physical layer can be
tied together using a two-phase demand-assignment MAC pro-
tocol. During the first phase, each user notifies the base sta-
tion about its intention to transmit (and the queue length for
reasons we will explain later); the base station calculates the

’s, and notifies each user about the corresponding code as-
signment. During the second phase, users rely on these codes
to transmit (at possibly different rates). Note that: 1) the dura-
tion of the reservation phase can be reduced if users piggy-back
their queue-lengths in prespecified intervals) and 2) the overall
scheme becomes much simpler in the downlink case, as the
basestation is aware of the queue lengths of all data streams.
Demand-assignment MAC protocols constitute a well-studied
field, and we will not further elaborate on them (see, e.g., [19]
for details).

C. Problem Statement

Our objective is to come up with the solution
of the problem

(2)

(3)

In other words, we want to calculate the number of codes
that are to be allocated to each user so that a cost function
representing the queueing delays is minimized.5 In particular,

is the average “evacuation delay”
[20] if no more packet arrivals occur. When all users experience
good channels, the constants , , allow us to
introduce different priorities in the system: low (high) priority
users should be assigned constants with .
Moreover, as we discuss in Section IV, they can be used to
incorporate information about channel quality (in this case,
users with good channels are assigned smaller weights).

The constants are integers indicating lower
and upper bounds respectively on the number of codes that
are to be allocated to session . Note that
enable us to impose QoS constraints on the set of feasible
solutions: on the one hand, yields a minimum throughput
guarantee, and, on the other hand, assures that a greedy
(or malicious) source will not be allocated a large portion of

5In general, the constraint should be � � C; however, we assume
that the constraints fU g are such that all codes can be allocated. Hence,
the equality in the constraint � = C . We thank the anonymous re-
viewers for pointing this out.
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the bandwidth. Furthermore, may be used to
control the tradeoff between latency and average throughput, as
discussed in Section III-E. Also note that for certain choices of

, the problem may be infeasible or trivial. This
can be easily detected in a preprocessing step. For brevity, we
assume meaningful choices of , throughout,
leading to problems that admit multiple feasible solutions, for
which we seek the optimum in the sense of minimizing the cost
in (2).

Before we proceed with the presentation of our DP-based
solution, a technical remark is due at this point. Suppose that
after a time instant, no more packets are allowed to be inserted
to the queues. If codes are not reassigned during the “evacua-
tion” interval, the average evacuation delay is approximately
equal to . However, as transmissions are
allowed to overlap, the maximum delay in the system is upper
bounded by . In fact, the delay can
be made much smaller than , because
when the queue of the th user drains out, the th user’s codes
can be allocated to the other active users. Hence, the cost
function serves as a pessimistic estimate of the
delay, but it leads to a tractable algorithmic development, as we
describe next.

III. DYNAMIC-PROGRAMMING-BASED SOLUTION

A. Preliminary

In general, DP [21] can be used to search for the -tuple
of finite-alphabet “state” variables that minimizes

, where is given and is
some arbitrary “one-step transition” cost. The can be the
usual arithmetic sum, or, e.g., the : hence DP can be
used to minimize ; this follows from
the principle of optimality (a.k.a. principle of contradiction) of
DP [21]. DP (with the Viterbi algorithm as a well-known incar-
nation) avoids exhaustive search and makes it possible to find
an optimum solution in time linear in : assuming that calcu-
lating is , and the size of the finite alphabet is

, the complexity of DP is or less, depending on the
specific cost structure. To see why DP applies to the problem at
hand, define

and note that , hence

By optimality, the best terminal state is , and speci-
fying whenever . The in-
equality constraints in (3) can be enforced in a similar fashion by
restricting the state fan-out. Finally, for all allowable state transi-
tions we set .

B. An Algorithm

For the moment, let us ignore the constants .
Consider Fig. 1, which depicts nodes at stage and their respec-

Fig. 1. Nodes (states) at stage i and predecessors at stage (i� 1).

tive potential predecessors at stage . There are stages,
and each stage has nodes. At stage , the node tags correspond
to all possible values of , and similarly for stage

. Hence, the node tags are 1, 2, , . The cost associated
with the transition from node with tag at stage to
node with tag at stage is .

At stage , the bottom node has just one predecessor which
is one node apart (remember that each user is to be allocated
at least one code). The next node going upwards has just two
predecessors, the furthest of which is two nodes apart. If we
take into account, then some transition steps are
eliminated. In particular: 1) node at stage is not allowed
to lead to nodes of stage and 2) node at
stage has up to predecessors, the furthest of which is
apart.

Each node at stage is visited in turn, and a decision is made
as to which of the associated potential predecessors is best for
the node at hand. To do this, we need to calculate the transition
cost, add the respective results to the corresponding cumulative
costs of the potential predecessor nodes, pick the one that gives
minimum error, update the cumulative cost of the node at hand,
set up a pointer to its best predecessor, then move on to the next
node, the next stage, and so on.

With no constraints (i.e., , , ), the
computational complexity of the aforementioned algorithm is

. With nontrivial QoS constraints, the execution time
of the algorithm is decreased as transitions in the trellis diagram
are expurgated. In any case, the computational burden falls
within the capabilities of modern DSP processors. For example,
consider a system with codes, and users,
where the code reallocation is performed every 16.7 ms (this
could correspond, for example, in ten slots in the HDR/CDMA
system; each slot in HDR/CDMA is 1.67 ms long). Then, our
DP algorithm would require in the order of 31 MIPS (note
that modern programmable DSP processors deliver more than
100 MIPS).

C. An Algorithm

An alternative DP solution is based on the intuition that
more codes should be allocated to users with high ’s.
Such an algorithm would proceed as follows. First, the
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’s are sorted in descending order with computational
cost . To simplify notation, we will assume that

, and we observe
that the code allocation procedure should result in ’s that
have descending order: (this is because we
want to minimize ). Instead of evaluating
directly the values of , one could evaluate the
breakpoints where the ’s are decreased. For example, suppose
that , , and the code allocation is ,

. The breakpoint is 3, because at the third node we move
from the allocation “two codes per user” to the allocation “one
code per user”. Overall, this approach pays off when is rela-
tively large with respect to , and , , for all

. Then, the cost of the overall algorithm is (which
subsumes the cost of the sorting algorithm).

Formally, following the material in [22], we can do DP over
breakpoint variables . We start by writing the cost as

where is the point that the DP trellis switches from allocation
to allocation -1, is the point where the DP trellis switches

from allocation -1 to allocation -2, and so on. Breakpoints
assume the “parking” value of if some switches are not
needed (i.e., is large enough). Each breakpoint variable takes
values in . Hence, we have states per stage and

stages; for each stage we need to look back at
states in the previous stage. This leads to complexity
because the computation of all can be done in a pre-
processing step that costs : if we fix and any two
breakpoints values, , , then all in-between ’s are equal
and determined by . As a result, comes out of the partial
sum, and their contribution to the cost can be de-
termined from the partial sums of the queue lengths; the latter
can all be predetermined in . Therefore, all ’s
(for all ’s and all , ’s) can be determined in ,
and the overall complexity is .

We underline that our algorithm takes into account the band-
width allocation at the physical layer and produces a code allo-
cation which can be implemented exactly. In fact, our solution
capitalizes on the finite number of available codes in order to
decrease complexity. Furthermore, our approach provides both
“soft” and “hard” guarantees. “Hard” guarantees correspond to
the lower bound throughput (which can be translated to delay
guarantees if there is information on how traffic is generated by
the sessions). “Soft” guarantees are provided in the sense that
we go after minimizing a metric representative of the average
evacuation delay in the system. Moreover, it should be men-
tioned that our scheme does not require statistical/deterministic
description of the incoming traffic (this could be attractive espe-
cially in emerging third-generation networks where it is difficult
to predict what will be the data requirements of mobile users).

D. Related Work

With respect to related work, there is indeed an extensive
body of work on QoS scheduling in wireline networks (see,
e.g., [23] and references therein), and especially FQ algorithms.

Closed-form real-valued solutions for (2), (3) in the special case
where , , have been derived in [24]. How-
ever, real ’s do not translate to multicode CDMA networks
without approximation errors. Furthermore, [24] does not pro-
vide any hard QoS guarantees; hence, without a traffic policing
mechanism, greedy sessions could monopolize all the band-
width, and constant-bit-rate (CBR) sessions could be starved.
Having in mind than in our scheduling framework, with proper
setting of the weights and the constants only
one session may transmit at a time, it is important to note that
it has been advocated that only one user should be allowed
to transmit at a time [4], [6]. In fact, [6], [7] and references
therein present different criteria to select the single user who
is allowed to transmit: all these methods are proved to stabi-
lize the system whenever a stable policy exists and, hence, these
resource allocation methods are throughput-optimal. Our ap-
proach is different, as we allow many users to transmit simul-
taneously. Noting that it is possible to provide minimum rate
guarantees, our scheduling algorithm can also result in queueing
delays with smaller variance, compared to algorithms that allow
only one user to transmit at a time. Essentially, the smaller vari-
ance of packet delays is a manifestation of the tradeoff between
statistical multiplexing and partially fixed resource allocation
methods (note that delay variance can be important in multi-
media applications, because the delay variance—jitter is related
to buffer requirements and selection of playback points). More
details can be found in Section IV.

It is of interest to note that [25] is indeed formulated as a si-
multaneous multiple flow scheduling problem, but, as it turns
out, throughput optimality can be attained by serving a single
(properly selected) user per slot. Therefore, simultaneous mul-
tiflow scheduling is not necessary from a throughput viewpoint;
yet, as we show in this paper, it is important for delay considera-
tions. Also, the emphasis of [23], [25] is on stabilizability, while
ours is on delay. We do not have any claims on maximizing
stable throughput, but this is not the only consideration. Fur-
thermore, in [23] and [25], a finite-state Markov channel is as-
sumed, and certain technical conditions are placed on the arrival
processes. We need neither of these. In short, the goal and flavor
of our work and that of [23] and [25] are very different. Further-
more, in [23] the resulting optimal policies are more complex to
implement than ours.

E. Latency Versus Average Throughput Tradeoff

As we saw in the previous section, the bounds
serve two purposes: 1) they yield minimum throughput guar-
antees and 2) they guard the bandwidth allocation mechanism
against malicious (greedy) data sources. It is interesting that
these constants prove to be useful even under different op-
erating assumptions. Up to this point, we have assumed a
frequent code-reassignment procedure (which is based on a
demand-assignment MAC protocol). It is well-known that
demand-assignment MAC protocols offer bandwidth alloca-
tion flexibility at the expense of increased MAC overhead
(mainly during the reservation phase). Suppose now that
MAC overhead considerations do not allow frequent code
reassignments, resulting in relatively long time intervals be-
fore new code allocations take effect. In such a scenario, the



STAMOULIS et al.: TIME-VARYING FAIR QUEUEING SCHEDULING 517

constants help to address the latency versus
average throughput tradeoff, which was discussed in [26] for
the high-data-rate CDMA/HDR system under a seemingly
different context. Next, we revisit some of the results of [26],
and see how they apply to our setup.

With ( a positive constant) denoting the trans-
mission rate of user , and the proportion of the th-user
packets, the average throughput becomes

As in [26], for user the latency of the data packets is inversely
proportional to . On the other hand, if the same latency is to
be provided to all users, then the average throughput is given
from [26, Eq. (2)]

Playing with the parameters and , it is possible to come
up with cases where is significantly smaller than . For
example, [26] reports that in the extreme case of a system with
two users with and , we can calcu-
late . Hence, the tradeoff between aggregate av-
erage throughput and latency. Note that the average throughput
is a system-level parameter, whereas latency is related to the
QoS that each user experiences.

The bounds help to address the aforemen-
tioned tradeoff. In the extreme case of , ,
the scheduler will come up with a bandwidth allocation scheme
where low-rate users experience high latencies. On the other
hand, at the other extreme case where ,
bandwidth allocation degenerates to all users having equal rates,
and thus having equal latencies. Proper selection of the bounds

appears to be an interesting problem. The se-
lection depends, among other factors, on the pricing policy em-
ployed in the network (i.e., how revenue depends on satisfying
individual/QoS requirements or the total amount of data traffic
in the network).

F. Simulation Results

Let us present two examples of how our algorithm works
when all users experience good channels. The first example
shows how queueing delays can be significantly reduced. The
second example shows that the code allocation process implic-
itly provides a mechanism to track the data transmission rates
of mobile users.

Reducing Queueing Delays: We simulate a pico-cell where
three mobile users communicate with the base station. We as-
sume that and that the traffic generated by each of
the mobile users is Poisson with corresponding normalized rates

, , and . In
our first experiment, the initial weight assignment is ,

, and (under which, if all three users
have data to transmit, users 1, 2, and 3 are assigned 16, 12, and
4 codes, respectively). The arrival rates are expressed in frames
per transmission round, and we assume that frames

Fig. 2. Fixed �’s.

per transmission round can be transmitted (in Section IV-C we
provide explicit numerical values). We simulate the system for
1000 transmission rounds, and Figs. 2–4 depict the number of
queued packets and the number of allocated codes per user for
a range of the transmission rounds. Fig. 2 corresponds to fixed

’s, whereas Figs. 3 and 4 illustrate how the queues sizes drop
with our time-varying weights algorithm, when the DP algo-
rithm for scheduling is run at each transmission round. In par-
ticular, Fig. 3 depicts the scenario under which , ,
whereas Fig. 4 depicts the case where , (when

). Comparing Fig. 3 to Fig. 4, it can be seen how peaks
in the queue lengths are significantly reduced—this is because
long queues are weighted more. Table I depicts the mean delays
per packet (in transmission rounds) under the three schemes,
where it is easily seen how the total average mean delay is re-
duced by our time-varying weights algorithm.

We have also considered a system with codes and 16
users: eight high-rate users transmit Poisson traffic with

, and eight low-rate users transmit Poisson traffic
with . We simulate this system under FQ
with fixed code allocation (whenever their respective queues
are not empty, the high-rate users receive at least four codes,
whereas the low-rate users receive at least one code). With fixed
code assignment, the average queueing delays for the high-rate
and the low-rate users are 0.934 and 1.09 slots, respectively. As
in the previous example, our code allocation algorithm results
in smaller packet delays: with time-varying weight assignment,
the mean delays drop respectively to 0.343 and 0.006 slots when

, and to 0.064 and 0.002 slots when (the
codes are reallocated every transmission round). Note that with
16 users, queue length and code allocation plots become diffi-
cult to read. For this reason, we only report mean delay values.

Tracking of Input Rates: The time-varying weight assign-
ment algorithm implicitly provides us with the opportunity of
tracking the transmission rate of the sources. Fig. 5 illustrates
such an example. We assume that mobile user generates
traffic which is the sum of a CBR source with rate and
a Poisson source with rate (the ’s are set as in the
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Fig. 3. Time varying �’s.

Fig. 4. Time varying �’s, weighted queues.

previous example). In other words, if we denote by
the amount of traffic that user generates, then

We use the ’s of the previous example, but we assume that
initially the base station does not know the ’s. The base station
starts with the arbitrary code assignment of 10, 10, and 12 codes
to the three users, respectively, and updates the ’s every ten
transmission rounds. It can be seen from Fig. 5 than eventually
users 1, 2, and 3 are assigned, respectively, (on the average) 16,
12, and 4 codes. This code assignment coincides with the long-
term average transmission rate of the mobile users. Therefore, it
can be seen that our time-varying weight assignment procedure
can adapt to incoming traffic load.

IV. RIDE THE WAVE

So far, we have seen how the bandwidth allocation proce-
dure adapts to incoming traffic load. In this section, we discuss

TABLE I
MEAN DELAY PER PACKET (IN TRANSMISSION ROUNDS)

Fig. 5. Tracking input rates.

how the bandwidth allocation process may adapt to the under-
lying channel quality. The mechanism is rather intuitive: from a
cell-wide throughput viewpoint, more codes should be assigned
to users with “good” channels, and the bandwidth scheduler
should try to “ride the wave.” As the channel quality periodi-
cally varies, (ideally) at every time instant the system should al-
locate more bandwidth to users with good channels. Before we
present the modified DP cost function and pertinent simulation
results, we provide a brief overview of the multiuser diversity,
which is inherent in a cellular environment (see [4] and refer-
ences therein).

A. Multiuser Diversity

Throughout this section, we focus on the case where the
power control is capable of compensating only the slow-fading
component , but it is not fast enough to track the fast-fading
component . Though at first sight, the presence of appears
to be an impediment to network performance, works such as
[4] (and references therein) advocate that a system architect
may build upon the SNR discrepancy and actually improve
network performance. Herein, we are interested in the fact that
as the number of users in the system increases, so does the
probability that some of them will experience good channels.
For convenience, we drop the time index from , and we
look at a single cell with users. We denote by the
fading of the th user. For Rayleigh fading, the complemen-
tary cumulative distribution function (CCDF) has the familiar
form , .
It is straightforward to see that the probability
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Fig. 6. Multiuser diversity: as the number of usersM increases, so does the
probability that at least some of them will have good channels.

that for at least two users, their respective fast-fading com-
ponents are higher than the level is given by

. We plot
in Fig. 6 the CCDF for one user, and the value of for
various values of (with ). It is seen that as the number

of users increases, so does the probability that at least two of
them experience a channel with fast-fading component higher
than a prescribed threshold. Note that the result is trivially
extended to an arbitrary number , i.e., as increases,
the probability that at least users experience good channels
increases as well (if is kept fixed).

However, a memoryless bandwidth scheduler (which makes
decisions only by considering the instantaneous fading) could
penalize stationary users who have poor channel quality. Hence,
a fair bandwidth allocation process should not be memoryless;
instead, it should account for the average number of codes
that had been allocated to users in the recent past (see also the
proportional fair scheduling approach of [4]). Summarizing,
a time-varying wireless environment presents the opportunity
to improve network performance by “riding the wave” at the
potential expense of unfairness in the bandwidth allocation
process. To address these issues, we modify the weights in
the DP cost function in Section IV-B. Before we present them,
the following technical remark needs to be raised.

Throughout this section, we make the assumption that power
control cannot always be perfect, thereby introducing a discrep-
ancy of the channel quality for the various users in the network.
This is not to say that our previous assumption on perfect power
control is not reasonable. With fixed modulation, the combi-
nation of channel coding (which comes at the expense of data
transmission rate) and spreading can mitigate the deleterious ef-
fects of the fast-fading component. With sufficient interleaving
and powerful channel coding the transmission framework be-
comes very robust, even in harsh-fading conditions. However,
the recent trend in wireless architectures is to improve perfor-
mance by capitalizing on accurate SNR estimation, adaptive

modulation, and adaptive channel coding (e.g., consider the var-
ious transmission modes in EDGE or the IEEE 802.11a stan-
dard). Although this operational scenario is more sensitive to es-
timation errors, it can potentially lead to improved performance.
This well-known fact is further corroborated by our simulation
results in Section IV-C.

B. Modified Weights

Recall from Section II-C that the cost function to be mini-
mized is . We set the weights as the
product of three factors

(4)

where

1) is the priority assigned to user ;
2) is the average amount of data traffic of user up

to time ;
3) denotes the expected normalized

throughput for each code assigned to user . With SG
the spreading gain, is the
signal-to-noise ratio for user (in the absence of inter-
ferers). It follows from the Shannon capacity formula that

represents a measure of achiev-
able normalized throughput per CDMA spreading code.
In practice, we need to take into account that the number
of information symbols that can be received correctly is
less than the theoretical capacity—hence the factor ,
which is known as the SNR gap [28].

Note that with , the weights take the form
, which is reminiscent of the

metric used by the scheduler in [4] and [29] that imposes a
TDMA-like access mechanism, where only one user is allowed
to transmit at a time. Herein lies an important difference with
our approach. Our framework is more general, and allows the
simultaneous transmission by many users. Indeed, from an
information theory point of view, the TDMA-like mechanism
maximizes the long-term average throughput [4], but it ig-
nores short-term throughput and latency requirements. This is
because [4] and [29] allow only one user to transmit, thereby
shutting off users with relatively “bad” channels. However,
short-term throughput and latency requirements are impor-
tant for time-critical data applications (such as multimedia
streaming). We underline that these requirements can be pro-
vided by our framework with proper selection of the priority
weights and the constants . Additionally, in
cases where the scheduler cannot reassign bandwidth very fre-
quently (for reasons discussed in Section III-E), the capability
of simultaneous transmissions becomes beneficial.

C. Simulation Results

To illustrate how network performance is improved by in-
corporating channel information into our DP-based scheduling
framework, we need to describe our assumptions about the
underlying CDMA physical layer, and fill in some impor-
tant details about the radio interface. We consider a CDMA
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Fig. 7. Fast-fading component of mobile users during frame transmission.

system that operates at the carrier frequency of 1 GHz with
spreading bandwidth 1.2288 MHz. The spreading factor is
16; hence, 76 800 symbols/s can be transmitted using each of
the 16 available CDMA codes. With normalized noise power

(which follows from our operating assumptions on
power control), the normalized throughput per CDMA code
is with the expectation
taken over . With , and having Rayleigh en-
velope, the normalized throughput is numerically evaluated
to be information bits per transmission. If
we treat each CDMA code as a separate channel, then our
CDMA system appears to have the capability of transmitting

Mb/s of data traffic.
Similar to the first example of Section III-F, we simulate a

system with three users. The users generate Poisson data traffic
with average rates , , and packets
per second, respectively. Each packet is 512 bytes, which makes
the total average traffic load

Mb/s. Suppose that the frame length is 512 (coded) sym-
bols, which are transmitted in ms. If the
mobile users are slowly moving at the speed of 5 mph, then
the Doppler is evaluated to be 7.45 Hz and the channel coher-
ence time 0.134 s. Hence, it is expected that after the transmis-
sion of s ms frames, the channels will have
changed significantly. Fig. 7 depicts sample paths of the sto-
chastic processes , , and that correspond
to the three users in our CDMA pico-cell (the plot was generated
by applying the Jakes model). The fluctuations of the received
signal power are clearly illustrated, and so are the opportunities
for “riding the wave.” Since the underlying channels are inde-
pendent, the power valleys do not coincide in time, thus making
it possible to allocate more codes to the user with the strongest
channel. Additionally, higher SNR values allow faster transmis-
sion rates.

We feed the sample paths of Fig. 7 into our scheduling
algorithm, which makes code assignment decisions on a per
frame basis using the weights of (4). We assume perfect
SNR estimation, and that there is fine granularity of avail-

Fig. 8. Three users with fixed �’s.

Fig. 9. Three users with time varying �’s.

TABLE II
MEAN DELAY PER PACKET (IN TRANSMISSION ROUNDS)

able transmission modes, which allows each frame to carry
information symbols. Figs. 8

and 9 depict the number of queued packets and the number of
allocated codes per user for a range of transmission rounds.
Fig. 8 corresponds to the case where ’s are fixed, but the
transmissions rates (per CDMA code) vary depending on the
perfectly known instantaneous SNR. On the other hand, Fig. 9
corresponds to the case where transmission rates also vary
as a function of the SNR, and the ’s are given by the DP
algorithm (which takes into account the received powers). The
effectiveness of the DP algorithm can be seen from Table II,



STAMOULIS et al.: TIME-VARYING FAIR QUEUEING SCHEDULING 521

which contains average values for the mean delay for a total
of 1000 transmission rounds, and shows that the combination
of various transmission modes6 and judicious code allocation
boosts network performance by decreasing significantly the
queueing delays. Furthermore, the effect of incorporating the
underlying channel quality in the DP algorithm becomes ob-
vious if we compare the allocated number of codes in Figs. 3
and Fig. 9. In Fig. 9 the number of codes allocated to each user
varies significantly more than that depicted in Fig. 3. This wide
variation is a direct result of the definition of weights in (4) and
the fast-varying channel quality—with the modified weights,
the DP algorithm forces the bandwidth allocation procedure to
track the received power fluctuations and thereby to “ride the
wave.”

Next, we compare our framework to two schedulers that at
time slot allocate all CDMA codes to a single user . The
first scheduler uses the criterion

(5)

with the average rate allocated to user up to time .
The second scheduler uses the criterion

(6)

The first allocation policy follows the doctrine of [4] and [29],
whereas the second scheduler is discussed in [6] (and references
therein).7 It is important to recall that these schedulers were
designed under different design criteria. Ours minimizes the
average evacuation delay while providing minimum throughput
guarantees, whereas the scheduler as in [4] and [29] maximizes
the long-term aggregate network data throughput. On the other
hand, the scheduler in [6] is also proved to be throughput
optimal but, compared to the HDR scheduler, also reduces
queueing delays.

From a certain viewpoint, it is not fair to compare these sched-
ulers, because they have been designed with an eye to different
criteria. However, since in this work we are primarily interested
in minimizing delay, it is of high interest to present the delay-
performance of a throughput-maximizing scheduler. This is de-
picted in Figs. 10 and 11 and quantified in the two right-most
columns of Table II. Similar to Figs. 8 and 9, Figs. 10 and 11 de-
pict the queue lengths per user (note that the number of allocated

6However, it is important to note that the aforementioned assumptions on
achievable data rate are optimistic since they depend on perfect SNR estimation,
and ignore rate quantization (because in real systems the offered transmission
rates comprise a rather small discrete set, depending on modulation formats and
channel coding rates). We have made these operating assumptions in order to
bring to surface the potential gains that our DP-based framework yields. Cer-
tainly, SNR estimation errors and the discrete nature of available transmission
modes will have a negative effect on the improvements of a time-varying band-
width allocation policy. Quantifying these negatives effects is a subject that war-
rants thorough investigation, which is beyond the scope of this paper.

7Note that we have set the constants 
 = � = 1. These constants are
defined in [6] to weigh differently the various achievable rates, and the queueing
delays. We have chosen to set 
 = 1 in order to treat achievable rates in a
uniform way, and� = 1, following the rule of thumb� = � log(� )=T ,
where � is the probability that user m will experience delay larger than T
slots. For further details, see [6] and references therein.

Fig. 10. HDR-like scheduler.

Fig. 11. Throughput-optimal exponential rule.

codes can be either 16 or zero) under the scheme of [4], [29], and
[6], respectively. If we compare Fig. 9 to Fig. 10, we can see how
the queue lengths have increased by almost an order of magni-
tude. Also, if we take a closer look at Table II, we can see how
that average delays have been increased significantly under the
scheduling policy like in [4] and [29]. We underline that this is
not an unexpected result, because the scheduling policy like in
[4] and [29] ignores data packet delays. On the other hand, if we
compare Fig. 11 to Fig. 10, we observe that indeed the criterion
(6) significantly reduces the queue lengths and also reduces the
average mean delay (as evinced by the last column of Table II).
However, it is seen that criterion (6) results in longer queues,
and higher mean delay than that of our scheme. Finally, Table III
depicts the packet delay variance (jitter) of the aforementioned
algorithms, where it is seen that our resource allocation method
results in smaller values.

Overall, this simulation example illustrates the merits of our
approach in cases where delay guarantees and smaller delay
variance are important (such as in streaming applications that
deliver multimedia content to mobile users).
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TABLE III
DELAY VARIANCE PER PACKET (IN TRANSMISSION ROUNDS)

V. CONCLUSION

We have presented a dynamic programming algorithm which
solves the problem of bandwidth allocation in fair queueing
wireless networks with an underlying multicode CDMA phys-
ical layer. Our approach is based on a time-varying weight
assignment, which minimizes the queueing delays of mobile
users, while providing both “soft” and “hard” QoS guarantees.
Our computationally efficient algorithm produces the exact
discrete solution, obeys constraints imposed by the underlying
physical layer, and, in fact, capitalizes on the discrete nature of
the available service rates to reduce complexity. Furthermore, in
cases where information about the underlying channel quality
is available, our algorithm exploits the inherent multiuser diver-
sity by “riding the wave”: the DP-based bandwidth allocation
mechanism assigns more CDMA codes to users with “good”
channels without, however, shutting off users with relatively
“bad” channels. In both cases, we presented simulation results
that illustrated the potential of our approach. Future research in-
cludes an analytical study of the properties of our time-varying
scheduler, and extension of the code allocation mechanism to
multicell environments, where interference from neighboring
cells needs to be taken into account.
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