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Frugal Power Spectrum Sensing 
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 Motivation:  

 Crowdsourced spectrum sensing using smartphones 

 

 

 

 

 

 

 

  

 At the confluence of three areas:  

 Spectral analysis 

 Optimization 

 Distributed detection and estimation 
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…and “map” the spectrum! 



Wireless Sensing Networks 

 

 

 

 

 

 Practical limitations 

 Sensors are battery-operated with limited power, limited 

transmission bandwidth 

 Sending analog-amplitude (finely-quantized) vector 

measurements to the FC is a heavy burden 
 

 Objective 

 Develop bandwidth- and energy-efficient strategies 

 How can the FC detect / estimate / track the signal of interest from 

(very) few received bits? 
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Outline 

 

1. Frugal Sensing: Wideband power spectrum sensing from few 

bits 

 Non-parametric passive sensing 

 Linear programming (LP) formulation 

 Maximum likelihood (ML) formulation 

 Non-parametric active sensing 

 Cutting plane formulation  

 Parametric passive sensing for MA models 

 Non-convex QCQP formulation  

 

2. Frugal Channel Estimation and Tracking for Transmit 

Beamforming (originally planned; decided to skip) 
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Frugal Sensing  

Wideband Power Spectrum Sensing From Few Bits 

  

 



Wideband Spectrum Sensing 

 Cognitive radio: secondary users scan wide frequency band to 

identify spectral opportunities 
 

 Wideband sensing  

 High-resolution, high-speed, ADC 

 Hard to implement, expensive, high power consumption 
 

 Multiband sensing 

 Divide into narrowband channels + channel-by-channel sensing 

 Large number of bandpass filters, ignores correlation across bands 
 

 Compressive sensing [Tian-Giannakis’07, Candes’06, Donoho’06] 

 Sub-Nyquist sampling 

 Requires frequency-domain sparsity 
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Power Spectrum Sensing 

 Only power spectrum (PSD) is needed in many sensing 

applications (e.g. cognitive radio, radio astronomy)   

 No need to reconstruct the spectrum of the original signal 

 Estimated from Fourier transform of truncated autocorrelation       

 finite parameterization 

 Sampling rate requirements significantly decreased without 

requiring frequency-domain sparsity [Ariananda-Leus’11, Lexa-et-al’11]  

 

 Collaborative spectrum sensing 

 Reliable sensing exploiting spatial diversity of sensors 

 Opens the door for crowdsourcing spectrum sensing using 

today’s smart phones and other wireless devices 
 

 Challenge: collaborative wideband power spectrum sensing 

using low-end sensors with limited communication capabilities 

7 



Frugal Sensing 

Primary User   
FC 

Power spectrum estimation from very few bits  
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Sensor Measurement Chain 

X 

~ 

LPF 

Random, length-K 

FIR Filter  

gm(n) 

> < tm 
ADC 

Nyquist Rate 

(1/Ts) 

ym(t) ym(n) 
bm= 1 
 

bm= -1 

zm(n) 

Analog  

Filter 

ym(t) 

Sub-Nyquist Rate 

1/(NTs) 

Complex PN - known at the FC 

Equivalent analog measurement 

 Random wideband filters 

 Provide independent / complementary views of the underlying PS 

 Better than narrowband filters 

 Narrowband measurements affected by failure/fading 

 No sensor coordination: who covers what, add/remove sensors without reprogramming 
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Power Measurements 

 Received signal at sensor m 

 

 

 

 
 Random filter output  

 
 
 

 Filter output with no fading 

L-tap fading channel 

(frequency-selective) 

primary       

WSS signal 
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One-Bit Power Measurement 

Signal autocorrelation Filter deterministic autocorrelation 

Power measurement (no fading)  

1-bit measurement 

Linear in rx 

Estimated power  
Gaussian via CLT 

• Frequency-selective fading 

• Insufficient sample averaging 
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Power Spectrum 



Linear Programming Formulation 

 Assume small {em}:  
 

 Constraints 

 Received bits {bm}:  

                                         and 

    Proposition:   
 

 Cost function 

 Minimize total signal power: 
 

 Linear programming 

Spectral estimation from inequalities instead of equalities 
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O. Mehanna and N. D. Sidiropoulos, “Frugal sensing: wideband power spectrum sensing from few bits,” Trans. Signal Processing, May 2013 



Simulations 

M=100, K=24, tm=t, 30 sensors send bm=1 

 

M=100, K=10, tm=t, 50 sensors send bm=1 

100 bits equivalent to 3 single precision 

IEEE floats (rx(0) and rx(1)) 
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Sparse spectrum Dense spectrum 



Threshold Selection & Filter Length 

Threshold should be tuned such that 

fewer sensors are above threshold if 

the power spectrum is more sparse 

 

• Small K  smeared power spectrum 

estimate 

• Large K  more unknowns vs. 

inequality constraints (more under-

determined) 

• More M  optimal K* increases 

• Binary PN vs. Gaussian 
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K=20, M=60 

25% send bm=1 

Threshold vs. Sparsity Filter length vs. Number of sensors 



Maximum Likelihood Formulation 

 

 Constrained ML + Sparsity-inducing penalty 

 

 Convex 
 
 

Consistent 
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control sparsity 

 Joint PMF 

O. Mehanna and N. D. Sidiropoulos, “Maximum likelihood passive and active sensing of wideband power spectra from few bits,” TSP, in review 

i.i.d Gaussian 



Example: ML vs. LP 

M=150, K=10, tm=t, 50 sensors send bm=1, 

random errors flipped 24 sensor measurement bits (16%) 
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MSE vs. CRB 

Random errors flipped 17% of sensor measurement bits on average 
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Analog vs. 1-Bit Quantization 

Rayleigh fading: random errors flipped 30% of sensor measurement bits on average 
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1-Bit Power Measurement

Analog Measurement + Constrained LS

200 bits 

150x32 bits 
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Active Sensing 
 

(Adaptive Thresholding) 



Threshold Selection 

 Satisfactory estimation quality with fixed tm = t for all sensors 

 

 What if {tm} actively adapted online and communicated to 

sensors through downlink channel? 

 Significant payoff in terms of sensing accuracy  

 At the cost of higher complexity and communication overhead 
  

 Assume accurate power measurements (                                             ) 

 Receiving the M bits: 

 

 Volume of feasible region gives a measure of uncertainty about rx 
 

 Objective: adaptively select {tm} to ensure PM is as small as 

possible 
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Chebyshev Center (CC) 

 

 

 

 

 

 

 The CC of                                                            found by 

solving the LP                                                            

xc 
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Given P0, its CC xc
(0), and              

Adaptive Thresholding Algorithm 

For each time-slot / sensor m=1,…M, do 

1. Set tm = qm
Txc

(m-1), send it to senor m 

2. Upon receiving bm update: 

 

 

 

3. Compute the CC xc
(m) of Pm 

… 

…
 

xc
(M) converges linearly to rx as M     ∞ 

22 
O. Mehanna and N. D. Sidiropoulos, “Adaptive thresholding for distributed power spectrum sensing,” ICASSP 2013 

(1) 
(2) 

(M) 



2-D Example 

q1
Tx-t1= q1

T(x-xc
(0)) 

q3
Tx-t3 

q2
Tx-t2 

q4
Tx-t4 

xc
(0) 

xc
(1) 

xc
(2) 

xc
(3) 

xc
(4) 

Significant portion of the feasible region is cut-off after each iteration 

rx
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Active Sensing Performance 
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Chebyshev Center

Analytic Center

K=10 (19 real autocorrelation variables) 



Active Sensing with Gaussian Errors 

 Bit-flips due to errors prevent convergence of previous scheme  

 Received measurement bit does not imply inequality constraint, 

does not decrease the feasible region 
 

 Instead of CC, use ML estimate 

 

 

 Set   

 CRB minimized with  
 

 Low-complexity (approximate ML) 
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Performance with Errors 

26 

Random errors flipped 68 bits from 300 on average (K=10) 
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Active Sensing
Exact ML

Active Sensing
Apprx. ML, 1 Nwtn stp

Passive Sensing



Parametric Sensing 
 



Parametric Frugal Sensing 

 Assume primary WSS signal admits an MA(q) representation  

 

 

 

 MA Signal Autocorrelation: 

 

 

 

 

 MA power spectrum:                              

 

 Parametric approach yields more parsimonious model for 

power spectrum 
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MA parameters Complex WGN 



QCQP Formulation 

 For small {em}:                                                        

                                                                           

 Assuming a postulated model order p 
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Quadratic in the MA parameters 

Linear in the auto-

correlation 



QCQP Formulation 

 Constraints 

 Assume single threshold:  

 Define sets  

 Received bits {bm}: 

 
 

 Cost function 

 Minimize total signal power:                                                     

 

 Quadratically Constrained Quadratic Programming (QCQP) 

Non-convex problem, known to be NP-Hard  
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Semidefinite Relaxation Approach 

 Equivalent reformulation of       

 

 

 

 

 

 

 Relaxed semidefinite programming (SDP) problem obtained by 

dropping rank constraints  
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Randomization Algorithm 

 If SDP solution is rank 1, then global optimum achieved 

 

 Randomization Approach  

 Scale prinicipal component of SDP solution to be feasible for        

                

 Employ Gaussian Randomization to obtain feasible solution 

 

 If randomization fails to obtain a feasible solution, 

 Scale principal component/use Gaussian Randomization to obtain 

feasible solution for       only 

 Justification:       is the activity detection set, MVDR interpretation   
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Successive Convex Approximation Approach 

 Linearize                          about point     for        to obtain lower 

bound                                       where 

             

 Proposition: Seek to “solve”      by solving the sequence of 

convex problems 

 

 

 

 

 

 If       is feasible and     is a feasible starting point, then, it can 

be shown that the sequence of solutions generated has 

monotonically non-increasing cost, and converges to a KKT 

point. [Beck-Ben Tal-Tetruashvili ’10]  
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SOCP Formulation with slack variables 

 Drawbacks: Obtaining a feasible starting point     non-trivial. 

 Alternative: Choose     to be feasible for       only 

 Issues:       maybe infeasible as a result of computing 

restriction of       about 

 Fixes: 

 Add positive slack variables            to convex constraints  

 Impose a weighted penalty on the sum-of-slacks 

 Scale              until it becomes tangent to the hyper-ellipse 

 

 Overall, we obtain the following problem                                    
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Can be formulated as a 

SOCP problem 



Feasible Point Pursuit Algorithm 

 

 

 

 

 

 Cost function is monotonically non-increasing in   

 

 Additionally,                                                   

 

 Furthermore,             in a finite number of iterations in many 

cases i.e., a feasible point is obtained.  

 

 Stop if feasibility achieved in        iterations. Otherwise re-

initialize from a different starting point. (Maximum of 5) 

 

35 



MA Model Fitting Approach 

 Fit an MA model of desired order to autocorrelation sequence 

estimate [Stoica-Moses’05] 

 Use autocorrelation estimate                        returned by LP 

formulation as starting point 

 

 Seek to solve the problem                                                                                                    

 

 

 

 Can be formulated as a Semidefinite Quadratic Linear 

Programming (SQLP) problem in  

 

 Take DTFT of          to obtain spectral estimate 
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where                                         and    
 



Simulations 

Mean Normalized Spectra Variance 

Real MA(5) model, M=100, K=24, tm=t, 30 sensors send 

bm=1, true model order known, 500 MC trials 

 
SDR fails in 99.8 % of trials. FPP – SCA successful in 100 % of trials (avg. 2.3 

iterations) 



Mean Spectral NMSE 

MA(9) model 

Parametric methods exhibit superior 

performance 
 

M=100, K=34, tm=t, true model order known, 100 MC trials for each of 50 

MA models  

 

FPP – SCA algorithm more successful 

in obtaining feasible solution  



Threshold Selection 

MA(3) model MA(6) model 

MA(9) model MA(12) model 

• M=80, K=30, tm=t, true model order known, 100 MC trials for each of 50 MA models 

• Optimal choice of threshold corresponds to 25-35% of  sensors transmitting bm=1 

 



Broadband Filter Length K 

40 

MA(6) model 

• M=100, tm=t, 20 sensors send bm=1, true model order known 

• K should be set greater than equal to q+1 for correct parametrization of MA model 

• For K = 7, LP formulation followed by MA model fitting yields best results 

• For larger values of K, LP formulation becomes more underdetermined, modelling 

mismatch increases, hence performance degrades. 

• Parametric methods exhibit improved performance for large K 



Postulated Model Order p 

MA(3) model 

M=100, K=24, tm=t, only upper bound on true model order available, 40 

sensors send bm=1, 100 MC trials for each of 50 MA models  

 

FPP – SCA algorithm more robust to 

model order estimation 
 

FPP – SCA algorithm more successful 

in obtaining feasible solution  



Take-home  

 Frugal sensing  

 Applicable for crowdsourcing spectrum sensing using smart phones 

 Adequate wideband power spectrum sensing from few bits 

 Spectral estimation from inequalities instead of equalities 

 LP formulation 

 ML formulation exploits Gaussian errors, robust to bit-flips 

 Active sensing (adaptive thresholding) 

 Fast convergence using adapted threshold information 

 Parametric frugal sensing for MA models 

 Ongoing work: AR, ARMA FS; active MA FS 

 Frugal channel tracking (didn’t have time to cover) 

 Results pave the way for using massive MIMO in FDD mode 
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