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Frugal Power Spectrum Sensing

a Motivation:
» Crowdsourced spectrum sensing using smartphones

Q At the confluence of three areas:
» Spectral analysis
» Optimization
» Distributed detection and estimation




Wireless Sensing Networks

A SO

& Fusion Center @

(FC)

d Practical limitations

» Sensors are battery-operated with limited power, limited
transmission bandwidth

» Sending analog-amplitude (finely-quantized) vector
measurements to the FC is a heavy burden

Q Objective
» Develop bandwidth- and energy-efficient strategies

» How can the FC detect / estimate / track the signal of interest from
(very) few received bits?




Outline

1. Frugal Sensing: Wideband power spectrum sensing from few
bits
» Non-parametric passive sensing
=  Linear programming (LP) formulation
=  Maximum likelihood (ML) formulation
» Non-parametric active sensing
= Cutting plane formulation
» Parametric passive sensing for MA models
=  Non-convex QCQP formulation

2. Frugal Channel Estimation and Tracking for Transmit
Beamforming (originally planned; decided to skip)




Frugal Sensing

Wideband Power Spectrum Sensing From Few Bits
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Wideband Spectrum Sensing

O Cognitive radio: secondary users scan wide frequency band to
identify spectral opportunities

Q Wideband sensing
» High-resolution, high-speed, ADC
» Hard to implement, expensive, high power consumption

O Multiband sensing
» Divide into narrowband channels + channel-by-channel sensing
» Large number of bandpass filters, ignores correlation across bands

O Compressive sensing [Tian-Giannakis’07, Candes’06, Donoho’06]
» Sub-Nyquist sampling
» Requires frequency-domain sparsity




Power Spectrum Sensing

a Only power spectrum (PSD) is needed in many sensing
applications (e.g. cognitive radio, radio astronomy)

» No need to reconstruct the spectrum of the original signal

» Estimated from Fourier transform of truncated autocorrelation
- finite parameterization

» Sampling rate requirements significantly decreased without
requiring frequency-domain sparsity [Ariananda-Leus’11, Lexa-et-al’11]

O Collaborative spectrum sensing
» Reliable sensing exploiting spatial diversity of sensors

» Opens the door for crowdsourcing spectrum sensing using
today’s smart phones and other wireless devices

O Challenge: collaborative wideband power spectrum sensing
using low-end sensors with limited communication capabilities




Frugal Sensing

Primary User

| Power spectrum estimation from very few bits |




Sensor Measurement Chain

Complex PN - known at the FC
gm(n) = {(Uﬁ)(ilij) if 0<n<K-1

0 otherwise

N

Random, length-K
ADC | yn(n)| FIR Filter | zy(n) )

Nyquist Rat
Yoo e 001

_________________________________________________________________________

Analog N /| | ﬂ<

Filter Sub-Nyquist Rate
1/(NT,)

Equivalent analog measurement

O Random wideband filters
» Provide independent / complementary views of the underlying PS

» Better than narrowband filters
= Narrowband measurements affected by failure/fading
= No sensor coordination: who covers what, add/remove sensors without reprogramming
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Power Measurements

O Received signal at sensor m

L—1
Yym(n) =Y hp(O)z(n — ()
EzOf \ primary

L-tap fading channel ~ WSS signal
(frequency-selective)

Od Random filter output

K-1
zm(n) = Z gm(K)ym(n —k) D = Ef|zm(n)|?]
k=0

Q Filter output with no fading
K—-1
Zm(n) = Y gm(K)z(n—k) D ap = E[|Zm(n)]?]
k=0
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One-Bit Power Measurement

Signal autocorrelation Filter determlnlstlc autocorrelation

re(k) == Elxz(n)x*(n — k)] Z gm(n)g,, (n + k)

Power measurement (no fading)
K—1

= 3 R (8) = Qng)— o Linear n

. @ R — Gaussian via CLT
[Estlmated power om, = Ckm+€m%'_> « Frequency-selective fading

« Insufficient sample averaging

1-bit measurement
|:>[

by, = sign(ql rs + ey —t) Power Spectrum }

S, = Fr,

r, = [r.(0), Re{ro(1)}, ..., Re{ro (K — D}, Im{r. (1)}, ... . Im{r. (K — 1)}]*
Am = [¢m(0),2 Re{qn (1)}, ..., 2 Re{qgn, (K — 1)}, 2 Im{g,(1)},..., 2 Im{q,,(K — 1)}]T
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Linear Programming Formulation

Q Assume small {e,.}: b,, = sign(q’ r, + e, —tm) = sign(ql re —t.), Ym
A -~ g v

Q Constraints G o
> Received bits {b,}: b, (qlry —t,,) >0, m=1,...,M
» R, = Toeplitz(r,) = 0 and s, = Fr, >0
Proposition: Fr, > 0= R, = 0

Q Cost function
> Minimize total signal power: Ef|z(n)[*] = r.(0) = —— > 8.(f) = 18/}

d Linear programming

' 0
2 a0

st. Fr, >0, b,(qlr,—t,)>0, m=1,.... M

Spectral estimation from inequalities instead of equalities

M O. Mehanna and N. D. Sidiropoulos, “Frugal sensing: wideband power spectrum sensing from few bits,” Trans. Signal Processing, May 2013 12



Simulations
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Threshold Selection & Filter Length

Threshold vs. Sparsity
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Threshold should be tuned such that
fewer sensors are above threshold if
the power spectrum is more sparse

Filter length vs. Number of sensors
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« Small K > smeared power spectrum

estimate

» Large K - more unknowns vs.

inequality constraints (more under-
determined)

More M - optimal K* increases
Binary PN vs. Gaussian
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Maximum Likelihood Formulation

i.i.d Gaussian ,oTTTTTT T N

; [
b, = si - —t I L —1 E
m Slgn(gmrair—l— 6773 m) * Slgn(qurw m) P M, = {m|b, =1}

N
N~ ———

Qg

" M_ = {m|b,, = -1}
Q Joint PMF S
pblr.] = [ pldhre +em >tn) [[ plahre +em < tn)
7n€M+ meM _
b’”’l qfrnrJZ T trn
- Te(- )
m=1 Tm

Q Constrained ML + Sparsity-inducing penalty

control sparsity

max % log Q (‘bm(qg’b” — tm)) - M/QE(O)

Om

m=1
st. Fr,>0

‘/E_M‘,}_r\l O. Mehanna and N. D. Sidiropoulos, “Maximum likelihood passive and active sensing of wideband power spectra from few bits,” TSP, in review 15



ML vs. LP

Example

:]_,

10, t.=t, 50 sensors send b,

random errors flipped 24 sensor measurement bits (16%)

K=
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MSE vs. CRB

Random errors flipped 17% of sensor measurement bits on average
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Analog vs. 1-Bit Quantization

Rayleigh fading: random errors flipped 30% of sensor measurement bits on average

f f F F F

Fe —6— 1-Bit Power Measurement
—EB&— Analog Measurement + Constrained LS

[ |
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Active Sensing
(Adaptive Thresholding)
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Threshold Selection

O Satisfactory estimation quality with fixed t, =t for all sensors

O What if {t .} actively adapted online and communicated to
sensors through downlink channel?

» Significant payoff in terms of sensing accuracy
» At the cost of higher complexity and communication overhead

0 Assume accurate power measurements (sign(a, —tm) = sign(ay, —tm), ¥m)
» Receiving the M bits:
Par = Po N {x | bin(apx = t) 2 0, m=1,..., M}

» Volume of feasible region gives a measure of uncertainty about I,

QO Objective: adaptively select {t_} to ensure B, is as small as
possible

20



Chebyshev Center (CC)

Q The CCof C := {x | a;-rxgc,,;, i =1

solving the LP

)

..., L} found by

1Imax
R>0,x

S.t. :

R

a,&TX—I—RHaf,;HQ <g¢, 1=1,...

, L

21



Adaptive Thresholding Algorithm

Given P, its CC x,©@, and {qm } -

For each time-slot / sensor m=1,...M, do

1. Sett, =, %™, send it to senor m
2. Upon receiving b, update:

)
- PrnoaN{x|qlx>t,} ifb,=1
m3:<

\Pm_l N{x|qlx <t,} ifb,=—1

3. Compute the CC x ™ of P,

A M
——

& &

(1)
Ay
A

*

10
(S

x.M converges linearly to r, as M — }

M O. Mehanna and N. D. Sidiropoulos, “Adaptive thresholding for distributed power spectrum sensing,” ICASSP 2013
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2-D Example

0, "™X-t;= 0y T(X-% ) Po

0, "X,

--"

Significant portion of the feasible region is cut-off after each iteration

23



Active Sensing Performance

K=10 (19 real autocorrelation variables)
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Active Sensing with Gaussian Errors

Q Bit-flips due to errors prevent convergence of previous scheme

» Received measurement bit does not imply inequality constraint,
does not decrease the feasible region

A Instead of CC, use ML estimate
. —bi(q/ 1, —t;)
(m) — 1
r, arg max ;_1 log ) ( = )

{

> Set tmi1 =ql )"

> CRB minimized with t*, = ql r,

O Low-complexity (approximate ML)
—1
rgcm) _ r:(Cm—l) - (VZFm(r(m—l))) vrm(r(m—l))

X

25



Performance with Errors

Random errors flipped 68 bits from 300 on average (K=10)

[ [ [ [ [

Passive Sensing

;

Active Sensing
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7
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Parametric Sensing

M UNIVERSITY OF MINNESOTA
Driven to Discover



Parametric Frugal Sensing

O Assume primary WSS signal admits an MA(Q) representation

z(n) = h(k)w(n — k)
k=0

N\

MA parameters Complex WGN~ CN (0, 1)
O MA Signal Autocorrelation:

() = d i @R R [kl < q
’ 0 k| > g
(el n k| <q
1o k] > q

O MA power spectrum: S, (e/*) = | 327_ h(n)e™79"|?

O Parametric approach yields more parsimonious model for
power spectrum

28



QCQP Formulation

Q For small {e..}: a.. = E[|Z.%] = E[lgflx|?] =g/’ R, g,, i<—Linear in the auto-

correlation
O Assuming a postulated model order p
min(K—1,p)
g Rogm = (T(O)@)é( + ), (ke + T*(k)@Kk))gm
k=1

min(K—1,p)
- gm®0 gm T(O) + Z ( @k: gm T(k) + gmeKkgm (k))

k=1 hg
Cm 0 Cm k Cm,—k
min(K —1,p)
=cmor(0)+ Y (Conpr(k) + i7" (k)
k=1
min(K—1,p)
—h'! (cm,o@gp“) + Y (ema®Y + cm,k@@;”) h
k=1

: hHth % Quadratic in the MA parameters

29



QCQP Formulation

O Constraints
» Assume single threshold: ¢, = ¢
» Define sets M, :={m:b,, =1}, My :={m : b,, = =1}, | M,|+ |My| =M

» Received bits {b.}; b, =1 — h¥’C,,h >t, Ym e M,
b = —1 = h¥'C,,h < t, Ym € M,

d Cost function
» Minimize total signal power: E[|z(n)]?] = 7,(0) = h’h = ||h||3

0 Quadratically Constrained Quadratic Programming (QCQP)

P) min. IVE
(P) min. b3

st. h¥%C,,h>t meM,
h’C,,h < t, m € M,

Non-convex problem, known to be NP-Hard

M A. Konar, N. D. Sidiropoulos, and O. Mehanna “Parametric Frugal Sensing of Power Spectra for Moving Average Models” TSP (submitted)



Semidefinite Relaxation Approach

a Equivalent reformulation of (P)

min.
He(CIH—l Xp+1

S.t.

Trace(H)

Trace(C,,H) > t, m € M,
Trace(C,,H) < t, m € M,
H > 0,

rank(H) = 1

O Relaxed semidefinite programming (SDP) problem obtained by

dropping rank constraints

min.
Hc(Cprt+1xp+1

S.t.

Trace(H)

Trace(C,,H) > t, m € M,
Trace(C,,H) < t, m € M,
H>0

31



Randomization Algorithm

Q If SDP solution is rank 1, then global optimum achieved

O Randomization Approach
» Scale prinicipal component of SDP solution to be feasible for (P)

» Employ Gaussian Randomization to obtain feasible solution

> If randomization fails to obtain a feasible solution,

= Scale principal component/use Gaussian Randomization to obtain
feasible solution for M, only

= Justification: M, is the activity detection set, MVDR interpretation

32



Successive Convex Approximation Approach

d Linearize f,.(h) = h?’C,,h about point p for M, to obtain lower
bound F,,, (h,p) = Re{a’’h} —b,, Wwhere a,, = 2C,,p, b, = p?C,.p

O Proposition: Seek to “solve” (p) by solving the sequence of
convex problems

. 2
(P) min. [k}

s.t. Fo(h,px) > t,m e M,
hC,,h < t,me M,

Q If (P) is feasible and py is a feasible starting point, then, it can
be shown that the sequence of solutions generated has
monotonically non-increasing cost, and converges to a KKT
point. [Beck-Ben Tal-Tetruashvili *10]




SOCP Formulation with slack variables

O Drawbacks: Obtaining a feasible starting point pp non-trivial.
a Alternative: Choose poto be feasible for M, only

Q Issues: (Pr) maybe infeasible as a result of computing
restriction of M, about pg
a Fixes:
> Add positive slack variables {s;}}2% to convex constraints
» Impose a weighted penalty on the sum-of-slacks
» Scale Fi,.(h,p) until it becomes tangent to the hyper-ellipse
h?C,,h=tY me M,

a Overall, we obtain the following problem

Mb
in. h||2 + A -
Q)  min. [}l + ;S
s.t. F,.(h,a,pr) > t, m € M, $—Can be formulated as a

hiC, h<t+s,,. meM, SOCP problem

s~ 0

34



Feasible Point Pursuit Algorithm

Step 0: Randomly generate a point pg that satisfies
the constraint set M, for (P).

Step k: Solve the problem (). to obtain a solution
hk. Set Pk+1 = hk, k = ]C—|- 1

Until stopping criterion

a Cost function is monotonically non-increasing in &
Q Additionally, [[br+1l5 < [[hg]l3, [Isk+1ll1 < lIsk[lx

Q Furthermore, s, — 0in a finite number of iterations in many
cases l.e., a feasible point is obtained.

O Stop if feasibility achieved in < 30iterations. Otherwise re-
Initialize from a different starting point. (Maximum of 5)

I\
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MA Model Fitting Approach

a Fit an MA model of desired order to autocorrelation sequence
estimate [Stoica-Moses’09]

» Use autocorrelation estimate {7 (k) f;_l( x_nreturned by LP
formulation as starting point

> Seek to solve the problem|min. & [ _[S,(e/%) — S, (e/*)]2dw

. . K—1 _ . P _
where S, (e/*) = Y (ke 79k and S, (e7“) = > ru(k)e vk

» Can be formulated as a Semidefinite Quadratic Linear
Programming (SQLP) problem in v, (k)

» Take DTFT of r, (k) to obtain spectral estimate
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Simulations

Mean Normalized Spectra
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Real MA(5) model, M=100, K=24, t_=t, 30 sensors send
b,,=1, true model order known, 500 MC trials

SDR fails in 99.8 % of trials. FPP — SCA successful in 100 % of trials (avg. 2.3

iterations)
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Mean Spectral NMSE

M=100, K=34, t_=t, true model order known, 100 MC trials for each of 50

Parametric methods exhibit superior

performance

MA models
0 M, 20 30 40 50
SDR Rank-1 solution 1.20% | 0.24% | 0.04% | 0.00%
— — e o Feasible sol. after SDR | 0.98% | 0.58% | 0.20% | 0.08%
Feasible sol. after SDR | 97.82% | 99.18% | 99.76% | 99.92%
w and dropping convex
s constraints
5 10 2
§ Table 1: Results using the SDR approach.
o— o oo M, 20 30 0 50
't":‘ Fit Feasible solution 100% | 100% | 100% | 100%
102 . . . . \ Avg. itrs. for feasibility | 2.47 2.63 2.72 2.88
20 2 N e of senses above threarold *® %0 Re - initializations 0.00% | 0.02% | 0.04% | 0.02%
MA(9) model

Table 2: Results using the iterative SOCP approach.

FPP — SCA algorithm more successful
In obtaining feasible solution




Threshold Selection

0375 04375 05 05625 0625 A A . .37
MM MM

MA(9) model MA(12) model

« M=80, K=30, t,=t, true model order known, 100 MC trials for each of 50 MA models
« Optimal choice of threshold corresponds to 25-35% of sensors transmitting b,=1

BN



Broadband Filter Length K

10°

I
—— SOCP

Spectral NMSE

1072

L 1 1 1 1 1 1 1 1
2 4 6 8 10 12 14 16 18 20 22
Broadband Filter Length K

MA(6) model

M=100, t..=t, 20 sensors send b.,=1, true model order known
K should be set greater than equal to g+1 for correct parametrization of MA model
For K =7, LP formulation followed by MA model fitting yields best results

For larger values of K, LP formulation becomes more underdetermined, modelling
mismatch increases, hence performance degrades.

Parametric methods exhibit improved performance for large K
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Postulated Model Order p

M=100, K=24, t_=t, only upper bound on true model order available, 40
sensors send b,=1, 100 MC trials for each of 50 MA models

Spectral NMSE

—e— SocP

—e—SDR
Fit

—e—LP

—
C)I

—

1 Il 1 1 Il 1 1 Il
3 4 5 6 7 8 9 10 11 12
Estimated Model Order

MA(3) model

FPP — SCA algorithm more robust to
model order estimation

P 3 6 9 12
SDR Rank-1 solution | 6.14% | 0.00% | 0.00% 0.00%
Feasible sol. after | 9.22% | 0.06% | 0.00% 0.00%
SDR
Feasible sol.  after | 84.64% | 99.94% | 99.98% | 100.00%
SDR and dropping
convex constraints
Table 1: Results using the SDR approach.
P 3 6 9 12
Feasible solution 98.14% | 99.78% | 100% | 100%
Avg. itrs. for feasibility 2.46 2.66 3.11 3.49
Re - initializations 3.64% 0.66% | 0.00% | 0.00%

Table 2: Results using the iterative SOCP approach.

FPP — SCA algorithm more successful
In obtaining feasible solution




Take-home

d Frugal sensing
» Applicable for crowdsourcing spectrum sensing using smart phones
» Adequate wideband power spectrum sensing from few bits
= Spectral estimation from inequalities instead of equalities
= LP formulation
= ML formulation exploits Gaussian errors, robust to bit-flips
» Active sensing (adaptive thresholding)
= Fast convergence using adapted threshold information
» Parametric frugal sensing for MA models

O Ongoing work: AR, ARMA FS; active MA FS

a Frugal channel tracking (didn’t have time to cover)
» Results pave the way for using massive MIMO in FDD mode
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