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Abstract—Building on the concept of retransmission diversity, received packets are discarded without recovering any data.
a class of collision resolution protocols [(B)NDMA] has been intro-  New transmissions of the same packets must follow, possibly
duced recently for wireless packet multiple access. These protocolsinqcing secondary collisions, so that more slots are used than
provide the means for improved performance compared with )
random access and splitting-based collision resolution protocols transmitted packets._Therefore, throughput decreases and delay
at a moderate receiver complexity cost. However, stability of these C&n become excessive.
protocols has not been established, and the available steady-state In wireline networks, it is possible to overcome this short-
analysis is restricted to symmetric (common-rate) systems. In coming of random access techniques through the use of carrier

this paper, the stability region of (B)NDMA is formally analyzed. = g0 g0y and collision detection, as in wireline Ethernet local
The tools used in the analysis range from a preliminarydominant

systemapproach to the Foster—Lyapunov recurrence criterion and /€2 networks. In carrier sense multiple access with collision
the (o, p) deterministic fluid arrivals approach. It is rigorously ~ detection (CSMA/CD), terminals sense the common bus for a
established that maximum stable throughput is close to 1. This carrier before transmitting and then listen for collisions during
is followed by a simpler and more general steady-state analysis, ransmission. If a collision is detected, the transmission is
bypassing the earlier generating function approach, using instead immediately aborted. If propagation delay is small relative to
only balance equations. This approach allows dealing with asym- . ) . . .
metry (multirate systems), yielding expressions for throughput packet duration, CSMA/CD alleviates the impact of collisions.

and delay per queue. Finally, we generalize BNDMA and the This differentiates CSMA/CD from ALOHA-type access,

associated analysis to multicode systems. which assumes that feedback is made available after packet
Index Terms—Random access, signal processing aspects of netfransmission is complete. An alternative way of achieving
work protocols: stability. higher throughput is by means obllision multiplicity feed-

back wherein the number of collided packets is made available
to the transmitting terminals at the end of the packet trans-
mission. This can be exploited to optimize the retransmission
NCREASED interest in wireless data and multimedigrobability, but delay performance remains poor at higher loads
services motivates research in improved random accegsause collisions are still wasteful.
protocols. These protocols are suitable for multiplexing bursty |n wireless networks, it is possible to improve performance in
sources encountered in data transfer [5], [10]. At light traffigyo ways. One is to employ a certain fixed amount of spreading,
conditions, they provide average delay that is significantlyhich enables multipacket reception, but this comes at the price
smaller than that of fixed allocation schemes like time, erJf bandwidth expansion_ Another stems from the fact that col-
quency, or code-division multiple access (CDMA). Howevefided packets are often received with disparate powers; if one
they have relatively low maximum throughput and suffer frorgf them has much higher power than the rest, then it can be
excessive delay under even moderate traffic. correctly decoded. This is the so-calledpture effect. Note,

The throughput/delay penalty of random access protocolsigwever, that one may not rely on capture alone because it is
due to collisions of data packets. When a collision occurs, theandom event.

A novel approach to the collision resolution (CR) problem
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range of loads. Maximum throughput is not 1, due to the useAfter T" transmissions (initial collision arifl — 1 retransmis-
of orthogonal terminal ID sequences embedded in the pack@ins), the discrete-time baseband-equivalent data model is
header. The details will be clarified shortly, but we remark
that it is also possible to solve the set of linear equations
blindly, provided one more retransmission is requested, and
a certain type of packet phase modulation is employed at . .
the transmitters [17]. The protocol in [17] was dubbed blind’ denotes packet lengtti is the number of collided packets,
NDMA (BNDMA). BNDMA retains throughput and delay X is the received data matrid is the mixing matrix,S is the
characteristics similar to NDMA. signal matrix whose rows are collided packets, &ids the

In the context of the random access schemes reviewed ab(Wﬁi,te Gaussian noise matrix. For NDMA, it is assumed that the
(B)NDMA can be viewed as an alternative means of boostirfgiannel between every user and the BS is frequency-flat and
throughput close to one: Instead of requiring fast or elabordi®ck-fading: constant over each slot but different from slot to
feedback, bandwidth overexpansion or relying on the randaiot [15]. For BNDMA, the channel is assumed constant over
capture effect, it works by exploiting the receiver complexity dieach CR epoch. Frequency selectivity can be easily accommo-
mension. Itimproves throughput by paying the price of a modetated in both protocols with the inclusion of some slot guard
ately complex receiver [roughl@( K?) for a K -fold collision].  time; no other modifications are needed.
Additional benefits include a low delay characteristic and appli- In NDMA, the mixing matrixA is estimated using the known
cability in a wireless environment, wherein CSMA/CD is not anser IDs, and thenS is recovered. In BNDMA, the mixing

XT><N:AT><KSK><N+WT><N- (1)

option due to shadowing. matrix has Vandermonde structure. This is obtained by the fol-
lowing retransmission scheme.
A. NDMA and BNDMA Protocols « Before the first retransmission, each user randomly draws a

Consider a discrete-time, slotted system with one base statiordigital carrier for the packet; (for theith user).

(BS) andJ users, synchronized to slot timing. Each user stores In therth retransmission, theh user’s carrier is multiplied
incoming packets in an infinite-capacity buffer. The average rate by r, and the whole packet is multiplied ly™:.

of the jth buffer arrival process i§;, and arrivals are indepen- Random selection of digital carriers ensures that the Vander-
dent across users. At the beginning of each slot, a user transmitsde mixing matrix has full rank with probability 1. This al-
one packet, provided that it is allowed to transmit and its buffeows use of an ESPRIT-like method for blind packet recovery
iS nonempty. [17].

Listen-while-you-talk is not feasible in the wireless environ- For a K-fold collision, NDMA requiresK — 1 retransmis-
ment. Therefore, the BS detects collisions and provides fe&fiens [15], whereas BNDMA requirds retransmissions [17].
back to the users. Itis important to spell out feedback assunNmwte that NDMA and BNDMAdeterministicallyachieve lower
tions. As is customary in slotted random access (e.g., slotieg delay than any tree-splitting/first-come first-serve (FCFS)
ALOHA or tree splitting), we assume 0/1/e feedback that {srotocol for slotted ALOHA [5], including the dynamic tree al-
made available to the users at the beginning of each slot. leﬂqthm [6], which requires online rate estimation and adapta_
timing constraint can be met by time-division duplex (TDD) ofign.
time-division multiplexing two protocols. In the noiseless case, we are interested in establishing stability of NDMA and
e feedback is in fact not necessary for (B)NDMA; we assungnpmaA for a finite user population and buffered packets. Sta-
a noiseless systento focus on network effects. In our contextyjity analysis is complicated because the queues are coupled,
0 clears all terminals for transmission, whereas 1 enables th ding a nonseparable multidimensional Markov chain. This
that transmitted in the previous slot and disables all others. Neficy ity also arises in the stability analysis of buffered slotted
that each terminal knows whether it has transmitted or notin the 4y [2], [12]-[14], [16], wherein a single necessary and

previous slot. sionof cet by theh < 4 Sufficient stability condition is missing fos > 3. However,
In NDMA, transmission of a packet by thjen user is detecte initial progress can be made by employing tdeminant

at the BS by using a filter matched to the user’s orthogonal | Xstemapproach, which was originally developed for slotted

which is embedded in the packet header. Therefore, COHiSiRLOHA [12]-[14], [16]. This is pursued in Section II. Then
multiplicity is estlmat_eq as the_ t‘?“’?" ”_“mb‘?r of detected S8 sections Il and IV, tight sufficient conditions for stability of
[15]. In BNDMA, collision multiplicity is estimated at the BS

using rank detection [17] NDMA and BNDMA, respectively, are established.

9 e After establishing stability, in Section V we turn to steady-
Once the BS detects a collision, it sets feedbackto 1. Al us%rtséte analysis. This lays the foundation for estimating average
who transmitted in the previous slot will retransmit the sam | ysIs. yb is int f 'gl ¢ 9 f
packet, whereas all others will wait. Based on the collision m clay, on a per-queue basis, in terms ot average arriva rates o
tiplicity estimation, the BS decides how many retransmissio U,SErSH insiaht qained f bil q q
of the collided packets are necessary for CR. The slots used fofIth the insight gained from stability and steady-state an-

the first transmission and subsequent retransmissions compA¥&€S of BNDMA, a generalized BNDMA scheme with im-
a CRepoch proved performance is proposed and analyzed in Section VI.

Section VII presents a unified delay analysis of the XNDMA
1in practice, this can be approximated using suitable forward error contrqutOCOIS' All analyt'(_: result_s are compared with simulations,
coding. which are described in Section VIII.



DIMIC et al: WIRELESS NETWORKS WITH RETRANSMISSION DIVERSITY ACCESS MECHANISMS 2021

[I. PRELIMINARY STABILITY ANALYSIS VIA DOMINANT hence service) time for all queues without affecting arrivals,
SYSTEM APPROACH a queue in the dominant system always has at least as many
Let s(t) := [si(t), ..., s,(t)]" be the vector of queue buffered packets as it would have in the original systema

lengths. Assuming Poisson arrivals, and given that the dﬁal|za_t|c.)tr.1—|by-tretallzl<::1t'|on bzsltfr?\:;?ed both bggl?hfroorln the i
epoch is deterministically bounded (by J + 1 for NDMA same initial state. 1S sal at the queues in the dominan

and BNDMA, respectively), it suffices to study the embedde stem dominate the queues in the original system. Similar to

Markov chain with transition times set at the beginnings g g_sloltted tALOHA tcabsle [_le],(;)y Vlimljfe of Pr%posititzn 1_,the
epochs. Les(k) := [s1(k), ..., s;(k)]” denote the vector of ON'9'Nal System 1S stable It and only Iy r{s;(k) =

queue lengths at the beginning of tti epoch. To see that thiso} > 0,V j. Note that this is equivalent to existence of a positive
is indeed a Markov chain, note that [15], [17] probability mass function, and therefore, it is also equivalent to

definition of stability (3). Let the superscript (D) denote the

sk +1) = sj(k) =1+ mn;(k), s;(k)>0 @) original (dominant) system. If the dominant system is stable,
7 o n;(k), si(k) =0 thenlimy_, Pr{st(k) =0} > 0,V}j. Since
forj =1,2, ..., J,wheren;(k) is the number of new arrivals lim Pr{s{(k) =0} > lim Pr{s?(k) =0}
into queuej during thekth epochn; (k) is a random variable, - o koo
with mean it follows that the original system is also stable.
Assume that the arrival process is Poisson, and consider any
7 7 particular queue in the dominant system. This queue is equiv-
NDMA: | ), Z 1{s;(k) > 0} +6 Zsi(k) alent to a slotted M/D/1 queue with service tirdeslots, for
prl P NDMA, or J +1 slots, for BNDMA. Note that the queues in the

dominant system are decoupled. Loynes theorem states that if
the arrival process and service process of a queue are stationary,
and the average arrival rate is less than the average service rate,
then the queue is stable; if the average arrival rate is greater than
the average service rate, the queue is unstable; if they are equal,
the queue can be either stable or substable [11]. Stationarity of
arrivals is given, whereas service is deterministic in the domi-
nant system, hence trivially stationary (note that this is not ob-
kli—I};o Pr{s;(k) < z} = F(z) and a:hj%o F(z)=1 (3) vious in the original system). Therefore, a sufficient condition
for stability is

J
BNDMA: A [Z {si(k) >0} +1

i=1

Here,é(x) is the Kronecker delta function, and} is the indi-
cator function. We adopt the following definition of stability:
Definition 1 (e.g., [12]): Queuej of the system istableif

If lim lim inf Pr{s;(k) <z} =1 4) 1
ke _ NDMA: \; < —
the queue isubstable A stable queue is also substable. If a forj=1,2 ..., J. )

queue is not substable, it is unstable. The system is stable if all
the queues are stable. If at least one queue is unstable, the system  BNDMA: A; < ———.
is unstable.

In (3), inf stands for the greatest lower bound.

Proposition 1: The vector process(k) is a homogeneous,
irreducible, and aperiodic Markov chain with countable number A relaxed condition on the arrival rates that guarantees sta-
of states. bility of an NDMA system can be obtained by using the Foster-

The proof is straightforward (see [9]). Lyapunov approach [3].

The definition of stability in (3) is equivalent to positive recur- Note that for the transmission &f collided packetsK slots
rence of the associated embedded Markov chain. In other worele needed. After these packets are transmitted, another con-
the system is stable if and only if there is a positive probabilifntion resolution period can start. Therefore, the system should
mass function of(k) whenk tends to infinity. Substability as be stable if on average less than one new packet arrives in the
defined in (4) is equivalent to positive recurrence of the ensystem during one slot. This intuition is confirmed in the fol-
bedded Markov chain at the boundary of stability—when the alewing Theorem.
erage arrival rate is equal to the average service rate. Then, difTheorem 1: The NDMA system with Poisson arrivals is
ferent initial conditionss(0) may yield different positive prob- stable it
ability mass functions of(k) whenk tends to infinity. Hence, J
it is the worst case that decides whether the queue is substable Z A< 1. (6)
or unstable. One can find more detailed explanations in [11]. =1

Ill. STABILITY OF NDMA VIA FOSTER-LYAPUNOV APPROACH

A. Preliminary Conditions for Stability Proof: It has been shown thai(k) is an irreducible
Markov chain. We will show thas(k) is ergodic under the
@nge condition, by using Foster’s criterion for ergodicity of a
arkov chain (e.qg., [3], reproduced here for convenience):

Consider a dominant system in which every one of the
queues always transmits one packet at the beginning of a
epoch, even if it has none in its queue, in which case, it trans-
mits a dummy packet. Since this action increases the CR (anéf 3=/ | A; > 1, then the system is clearly unstable.
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Suppose that the chain is irreducible, and f&ft be a finite wherel(k) is thekth epoch length in slots, and it is equal to the
subset of the state spaSeThen, the chain is positive recurrentnumber of transmitted packezsj‘;:l 1{s;(k)}. Hence
if for someV: S — R and some > 0, we haveinf, V(q) >

> and E[V(s(k + 1)) — V(s(k)) | s( Z N—1
Y pqwV(w) <oco,  VqeSy
weS Let Sy = {0}. Then,Vs(k) ¢ So, we have thai(k) > 1.
Z PauwV (w) <V(q) —¢, Vq¢ S Therefore¥s(k) ¢ Sy, if (6) holds, then there exists where
wes 0<e<1-— Z'j:l Aj, such that
wherepg,, is the probability of transition from staigto statew. EV(s(k+1))—V(s(k)) | s(k)] < —e. (10)

If a chain is irreducible and aperiodic positive recurrent, thelnf I hatall gi fthe F . (8 d
it is ergodic (e.g., [3]), which implies (3). tfollows that all conditions of the Foster’s criterion (7), (8), an

Note thaty”, g pawV (w) = B[V (s(k+1)) | s(k) = g]. In (H10) are (ssaysfle;jr. '_I'herfefore, ;vle conclude t@i) is ergodic.
addition,y" s pawV (w)—V (q) = E[V (s(k+1))—V (s(k)) | ence, (6) is sufficient for stability. ]
s(k) = q]. The right-hand side of the last equation resembles
the notion ofdrift of a one-dimensional discrete Markov chain.
Then, roughly speaking, one may think of Foster’s criterion as
a generalization of drift analysis: If for all large enough states In order to strengthen the BNDMA stability result obtained
(states out of a finite subsé&l) drift is negative (c.f. the last via the dominant system approach, we first attempted to show
condition), then the size of queues decrease so that the chaithég BNDMA satisfies the conditions of the monotone separable
stable. framework of Baccelli and Foss [4] (see also [1]). In [4], the au-

Consider the functioft (s) = Z;’:l sj, which is defined on thors provide a rigorous framework for application of the “sat-
the state spacg = Zi of the Markov chain, wherg, denotes uration rule.” While we were successful in demonstrating that

IV. StaBILITY OF BNDMA VIA (o, p)
DETERMINISTIC FLUID APPROACH

the non-negative integers. For alE S, we have BNDMA conforms to this framework, calculating a key con-
stant(v(0)) in [4, Th. 1] turned out to be a formidable task,
V(s(k)) >0 (7)  due to the dependence of the queues. For this reason, we adopt

an alternate route, first suggested by Cruz [7], in which packet

arrivals are assumed to satisfy certain deterministic constraints

E[V(s(k+1)) | s(k)] along each sample path. This approach conforms to a leaky
- bucket rate control mechanism, and the ensuing analysis cap-

4 tures the essence of the protocol without distractions due to in-
=k Z sj(k+1))s(k) tricate asymptotic probabilistic behavior.
L = Specifically, at this point, we depart from the Poisson arrivals
J assumption and revert to the following alternativehe number
=F Z (sj(k) — 1{s;(k) > 0} + n;(k)) | s(k) of packet arrivals to thgth queue over the time interv, t),
/=1 denoted byn;(s, t), satisfies
J
= V(s(k) = B |3 1s,(k) > 0} | s(h) (e 1S Al ) .
j=1 Note that it is customary to usg instead of); for the slope
J in this context [7]; however, since this slope serves as an upper
E Z (k) |s(k)| < oo (8) bpunq on the Ior}g—ter.m average rate, we prefer toystor
=) simplicity and uniformity with the rest of the papér< ¢; <

oo is a measure of burstiness [7]. Since we are dealing with a
because the third term is always finite due to Poisson arrivgigtted system, time is measured in slots, and the variables
n;(k) and bounded epoch length. Heil, } is the indicator are integer. The initial state of thi¢h queue, which is denoted

function. by s;(0), is assumed to be a finite non-negative integer but is
Consider the last condition. We have otherwise arbitrary.

In our present deterministic fluid context, stability means
BV (s(k + 1)) = V(s(k)) | s(k)] that every queue in the system remains bounded. Thus, we aim
7 to show that under a suitable condition on thgs, the state

=B |3 (si(k+1) = 5;(k)) | s(k) . -
=1 IF can be shoyvn that Theorem 1 holds under more general cond|t|ons', ie.,
stationary ergodic arrivals. The idea is that the sum of the queue lengths in the
NDMA system can be shown to be bounded above/lplus the length of a
E[n](k) — 1{3j(k) > ()} | s(k)] single server queue with sum input. From Loynes’ Theorem (e.g., [11]), the
single server queue is stable under (6). This argument is more general, but the
Foster—Lyapunov approach sheds more light into the system dynamics because
it is tied to the familiar concept of drift.

Z 1 {SJ > 0} | 5( )) 9 4This is done only for the purposes of a tractable stability analysis; throughout
j=1 the rest of the paper, the usual Poisson arrivals assumption is in effect.
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(backlog) of every queue in the system will remain bounded faever empties. It therefore transmits continuously in every slot.
all time, irrespective of initial conditions. As it turns out, it isUnder this scenario and using (14), the longest possible activity
easier to prove that every queue in the system will empty outlirst of thejth queue is obtained for the following distribution
finite time infinitely often, irrespective of initial conditions andof epochs.

the state of other queues in the system. This, in turn, implies « 4, = ¢"* epochs of length/ + 1 when all queues
that every queue remains bounded. transmit.
We have the following result. s vy = g — g2 epochs of length/ when all queues
Theorem 2: The B-NDMA system is stable if except the first queue transmit (the first queue is idle be-
J ; cause it is empty).
Z Aj + max(A;) < L. (12) o v3 = ¢ — ¢i** epochs of lengtly — 1 when all queues
j=1 =t exceptthe f|rst and second queue transmit, and so on, until

Proof: The proof is by induction, and the proof of each ~ ©nly the jth and higher ordered queues remain transmit-
step is by contradiction. Without loss of generality, we assume  ting.

that s vj = ¢ — ¢ epochs of length/ + 2 — j.
This ylelds the following upper bound on the length of time
AL < A < <A (13) over which queug can remain continuously active
In addition, if s;(0) + a; > s;(0) + o; fori < j, then we may J
increase the burstiness allowangeo o} such thak; (0)+o; < tia< ) (J+2-Du

57(0) + o;. This assures that =1

By substituting they;s, we obtain
55 (0) + Ajt+ 05 < 8,51(0) + Njsat + 050 (14) Y g then

for all 7 andt > 0.
* Show that queue 1 remains bounded for

j—1

jra <) [s1(0) + o] + (T +2 = j)s4(0) + 0]
=1

t

all time. ;
Jj—1
Consider the first queue, and assume thandver emp- + ZL/\ZTJ +(J+2—5)|NT]. (15)
ties Then, it remains continuously backlogged, and since =

the BNDMA “server” is work-conserving, the first queue .
transmits at all times. Over the time interjal T'), queue 1 From (12) and (13), it follows that
accumulates at mogt™®* := s1(0) + |[\MT| + o1 packets,

where || denotes the largest integer not greater tharif Aj J T2 l Z )\1]
it transmits continuously, then it can be active over at most

(J+1)g>> = (J+1)[ AT+ (J+1)[s1(0) + 1] contiguous which yields

slots, Where(J + 1) is the longest possible CR epoch length.

From (12) and (13), it follpws that; < 1/(J + 1). Noting T = l Z N| T 8T, §; > 0.
that |\ T] < MT, we write | MT| = (1/J + )T — 6T J+ 2-

61 > 0. This yields that queue 1 can be active in at most

t1.a = T+ (J + 1)[s1(0) + o1 — 6,7 slots. Noting that the Therefore, (15) becomes
transmission time of packets is quantized in epochs of length j—1

J + 1 slots, f7 > (J + 1)[(51(0) + 01)/61(J + 1)], where  tj.a < D _[s1(0) + ou] + (J + 2 = 5)[5;(0) + o]

[z] denotes the smallest integer greater than or equal, to =1
thent, , < 7. Sincet, , < T for finite T, it contradicts the + [ = (J+2-45)8]T
assumption that queue 1 never empties. =T+ (J +2—35)6;

of initial conditions and the state of other queues in the system. )+ o]+ (J +2—5)[55(0) + 0y]
We may now repeat this exact argument to claim that queue 1
will empty out infinitely often as time tends to infinity, irre-
spective of initial conditions and the state of other queues in the
system. Thus, queue 1 remains bounded for all time. It follows that if

* Induction hypothesis: Queues 1tg — 1 remain i1
bounded f(_)r all time. _ _ S [5100) + 1] + (J + 2 — )[5;(0) + 7]

* Induction step: Show that, under the induction hy- 7> | =L
pothesis, queug also remains bounded for all time. - (J+2—j)b;

Let us again begin by showing that queuiill empty out
once in finite time. Letg"** = s;(0) + [\T| + o, denote
the maximum number of packets transmitted by dfrequeue
over timeT', wherei = 1, ..., 5. Assume that thgth queue

-T

It follows that queue 1 will empty in finite time, irrespective
{ (J+2—35);

whereT is chosen to consist of an integer number of epochs of
lengths/+2—3, ..., J+2,according taysfori =1, ..., j,
thent; , < T, which contradicts the assumption that qugue
5Recall that no packet is lost in transmission. never empties. Hence, quepgvill empty once in finite time.
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So far, we have not used the induction hypothesis; it cometiereas for NDMA
into play at this point. In order to repeat the above argument to J
show that queug will empty in infinite time infinitely often l=1x1{s(k) =0} + Z 1{s;(k) > 0}
we need to have that the backlog of all lower ordered queues is j=1

bounded at the beginning of subsequent queeeacuation in- |, 1.4 again implies by linearity of expectation
tervals (c.f. the last inequality). This is assured by the induction

hypothesis, and thus, the proof is complete. [ ] J
vp P P Ell] = Pr{s(k) = 0} + S (1 = P..;) = Pr{s(k) = 0} + .
j=1

V. STEADY-STATE ANALYSIS
We have already noted that the queues are coupled so that

S 7 be th bability th - Markov chain is nonseparable multidimensional. Therefore, it
G E 16 27."'.’ )f e the pr(r)] a 'r:ty t atdQUGUﬁ IS er_npt);] is difficult to find the exact expression fdtr{s(k) = 0}. To
at the beginning of an epoch in the steady state. It is shoyiyy o the analysis tractable, we will assume that the queues are
in [15] and [17] that by knowingP,. (in a symmetric system, independent, so that{s(k) = 0} = []_, P. ;. This is jus-
P. ; = P., ¥ j),one can find an approximate distribution of CR: ’ , =t o

€] e V) — ) Rifiable for low traffic loads when there is small probability of
epoch lengths. Then, by finding the first and second momeni§iention among users and epochs are short. However, at high
of CR epoch lengths, one can approximate delay. Therefore, {hgqs this assumption can lead to inaccurate estimatgs gf
steady-state analysis provided relations betweand the av- Hence, we will use simulations to verify our analysis. ’
erage arrival rate\ so that delay could be expressed in terms By using the independence assumption, we havethatfor

Assuming stability, letP, ; := lim,_ Pr{s;(k) = 0},

of A. . . _ j=1,2,...,J satisfy
Analogously, our goal is to find a relation betwegn ; and
the vector of average arrival rate)s,, ..., A;). This will serve 5
us in finding delay for each user, as elaborated upon in Sec- A P 1— e
tion VII. ! 1;[1 i)t ; )

We now revert to Poisson arrivals in order to focus on steady- | NDMA:
state behavior. Note that in the steady-state, a queue must have
the same average number of incoming and outgoing packets
during the average epoch length, which is dendigid.6 Note

(19)

that(1 — P. ;) is the average number of transmitted packets by P.i=1- Aj
queuej during E'[l]. Therefore, the balance equations are BNDMA: ’ 1— i A
NE[l=1-P.j, forj=1,2,....,J  (16) i=1
and, therefore, also Remark 1: Note that the independence assumption is only in-
J J voked to derive (19) [NDMA]; for BNDMA, the independence
NE[] = Z (1-P. ;). (17) assumption is not necessary, and hence, (19) [BNDMa&}#&:t
j=1 j=1 The unigueness of solution of the above systems of equations

1js established in the following proposition.

o— J _ . i 1
Letp:= 3.5, (1— P ;), whichis the average total number o Proposition 2: P. ; has a unique solution in (0, 1y,j, if

transmitted packets during[l]. Since each active user transmits
exactly one packep is also the average number of active users

during E[l]. From the protocols [15] and [17], it follows that in ) J
the kth epoch NDMA: Z A <1
=1
, if O users transmit
NDMA: (k) = { ) _ 7
# active users(k), otherwise BNDMA: Z)‘i + ngix()\,') <1
BNDMA: (k) =# active users(k) + 1. (18) P =1
Note that for BNDMA; The proof is given in the Appendix, which also shows that (19)
. ) [NDMA] boils down to polynomial rooting in (0, 1).
= Z; si(k) > 0} +1 This generalizes the steady-state analysis in [15] and [17] to
J:

which implies by linearity of expectation

Elll =" El{s;(k) >0} +1

J
J
ZZ(l—P&])—I—l:p—{—l
j=1

8This is a slight abuse of notation, whel#] stands forE[I(k)]. This con-
vention is used throughout the rest of the paper.

the asymmetric (multirate) case in a much simpler way. The
formulas in (19) allow direct calculation ¢f and E[I], from
which throughput can be calculated. In addition, given the above
formula for P, ;, delay can be accurately approximated (see
Section VII).

Note that the conditions of Proposition 2 arecessaryor
stability in the usual Markovian sense. For NDMA, it is obvious
that the system is unstablejfj;’=1 Ai > 1. For BNDMA, if
the condition of Proposition 2 is not satisfied, then, at least for
the queue with the highest arrival rate (19), [BNDMA] does not
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yield a positive solution foP. ;. This contradicts stability in the metering, arrivals tesubgqueuesire not independent Poisson,
Markovian sense and shows that, at least for Poisson arrivaldich significantly complicates the analysis. Therefore, we
the total load that is less thafy(J + 1) packets per slot may approximate metering with random packet assignment, which
not be sufficient for stability, even thoughfa-fold collision is  preserves Poisson distribution and independence of arrivals to

resolved inK + 1 slots in BNDMA. subqueues. Since each subqueue can transmit no more than one
packet during an epoch, a G-BNDMA system withqueues
VI. GENERALIZED BNDMA with arrival rates); (j = 1, 2, ..., J) is approximated by a

BNDMA system with 37, m, terminals with arrival rates
:/m; for all m; subqueues of thgth queue of the original
-BNDMA system.

At a given total offered traffic load"?_, );, in a BNDMA
system, a queue with higher arrival rate would have small

stability margin (lowerP. ;) than a queue with lower arrival Let P, , denote the probability that a subqueue of giie

rate (c.f. (19) [BNDMA]). Such a high-rate queue will have . : . .
more backlogged packets, higher queing delay, and theref{ﬁwlrjgue of the system with random packet assignment is empty in

. . € steady state. The balance equation (16) becomes
higher total average delay, than a low-rate queue (analysis fo \
lows in Section VII). To improve the stability margin and de- ZLE=1-P. forj=1,2,...,.J (22)
crease delay, we have proposed thatjtiequeue in BNDMA m;

be allowed to transmit up te:; > 1 packets simultaneously ¢, thatZi] LA /mj)E[l] = Z‘I L m;(1— P, ;). By fol-
at the beginning of a CR epoch, provided it is nonempty [8|]0ng the same steps as in Section V. we obtain

Note that this allowdimited contention between packets from

the same queue. P.j=1- LT] ji=12...,J  (23)
To preserve the CR method used in BNDMA (in particular, to 1- S\
ensure that the mixing matridr «  is Vandermonde and has i=1

full rank w.p. 1), independent phase modulation is employed fgllearly, by increasingn;, the stability margin is improved.
different packets of the same queue that are transmitted during
the same epoch (in addition to independent phase modulation VIl. DELAY

across users). ) ) B B B
The embedded Markov chain state-transition equation [WigNDDeI:Z‘X n at SymmetrliC)(1| = I = A= t)\zi NﬁSMAl()?r )
the same notation as in (2)] becomes IA system can be closely approximated [15], [17] by
modeling each queue as an M/G/1 queue with server vacation.

si(k+1) = sj(k) —mj +n;(k), s;(k) 2 m; This M/G/1 queue’s service time is equal to the average
! n;(k), 0 < sj(k) <m; length of an epoch in which a particular queue transmits a
forj=1,2,...,.J. (20) packet—relevant epoch#{l,], and vacation time is equal to

the average length of an epoch in which a particular queue is

Note that given a state, the number of packets transmitted durlaﬂa—irrelevant epoch-E[l;]. We reproduce the delay formula
the following epoch, and, consequently, the epoch length, ¥ convenience

deterministic. Therefores(k), which is given in (20), is a ho-
mogeneous, irreducible, aperiodic Markov chain with a count- D= E[l,]+
able state-space (analogously to Proposition 1). 2

AE[R7] B[]
(1= AE[L]) * 2E[L]
The first and second moments of relevant and irrelevant epoch
A. Stability of Generalized BNDMA length are functions oF, [15], [17] obtained from the proba-

Note that a generalized BNDMA (G-BNDMA) system as debility mass functions of,. and/;
scribed above can be viewed as splitting flieuser’s queue in

m; subqueues, where metering is used for the assignment|of P(l, = b) = <J - 1)(1 _ p)t-1pJ-b
incoming packets to each subqueue. Moreover, each subqueue " b—1 © °
transmits exactly one packet when it is nonempty and allowed 1<b<J
to transmit. Under the same fluid traffic model as in the proofNDMA: o
of the stability Theorem 2, metering induces “decimated” con- P(l; =b) = (J - 1> (1—P.)p/-bo-1
straints on the subqueues, i.e., subqueakqueuej receives b
at most(\;/m;)T + constant packets over a time interval of +P/s(b—-1), 1<b<J-1
lengthT. Then, Theorem 2 immediately yields the following
stability result for G-BNDMA: P, =b) = <J - 1) (1 — P.)b=2pJ=b+1,
Corollary 1. The G-BNDMA system is stable if b—2 ’
7 \ e . o1 BNDMA: 2sbsJ+1
; J+I}1—a€({mj}< ' ) P(li=1b) = (i:;)(l—ﬂ)b_lpfi,]_b’
. 1<b<J

B. Steady-State Analysis of G-BNDMA

We again revert to Poisson arrivals to the queues in ordgote thatthe above distributions assumeindependence of queues.
to discuss the steady-state behavior of G-BNDMA. Due fbhis has already been assumed and discussed in Section V.
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From the point of view of a particular user, every CR epoch iAgain, assume independence of queues. Let.)(k) :=
an asymmetric NDMA or BNDMA system is either relevant ol {s(; .)(k) > 0}, and define
irrelevant, just like a CR epoch in a symmetric system. There- .
fore, delay in an asymmetric NDMA or BNDMA system is also I(k) = [Ia, (k). - I<1*T"“)(k)’ T2, 1)(k)
approximated by modeling each queue as an M/G/1 queue with o I mJ)(k)]
server vacations, where service time is equal to the averagerely .. .
evant epoch length, and vacation time is equal to the average”(J , 2")

( 3\

irrelevant epoch length. J m;

To find approximate delay expressions for an asymmetric .— { 1|+ = Z Z I 2y, andIje .oy =1
G-BNDMA system, we use the random packet assignment ap- i=1 =1
proximation as in the steady-state analysis (see Section VI-B). \ (4, 2)#(G", =) )
Hence, we analyze delay of a BNDMA system WED}]:;l m; Si +(5%, 2%)
terminals with rates\;/m; (j = 1, 2, ..., J) for all m; sub- ( 3
gueues of thgth queue of the original system. Each subqueue J mj
can transmit at most one packet during an epoch. Note that by =< |t = Z Z I, 2y, andI(j- .y =0
using this approximation, the average delay is the same for all | J=1 (N);le*? )

subgueues of the same gqueue because they have thesame (/26)

(see Section VI-B). Therefore, we need only find approximate

delay expressions for each queue. Hence, we develop a unifiétere(j*, z*) denotes the index of the subqueue of interest.
approach to approximating delay of any asymmetric NDMA drlence,S, ; andsS; , are the sets of all permutationsio#ctive
BNDMA or G-BNDMA system, where different queues maysubqueues during a relevant or an irrelevant epoch, respectively.
have differentP, ;s and, hence, different relevant and irrelevanithis and (25) gives the following distribution of relevant and

epoch length distributions and delay. irrelevant epoch length
Let s*(k) = [8(171)(k), . s<17m1)(k), 8(271)(k)./ oo P, ;= b)
$(2,ms)(k), - -1 81, m,)(k)]" be the state of the approximate ’ 7 m,
G-BNDMA model, wheres; .y(k) denotes the state of the  _ Z H H (1- pe_j)1<j_:>P:fI<j.:>
zth subqueue of theth queue at the beginning of thigh €8, (%) =*) =1 el ’ i
epoch. Let,. ; andl; ; denote the relevant and irrelevant epoch ‘ (@, 2)#G",2")
length of any subqueue of thgh queue. Note that by setting P (li,; = b)
m; = 1forallj =1,...,J, s*(k) accommodates NDMA J ™ .y
and BNDMA as well. = Z H H (1-P. j)eo P, 702,
Thus, delay is estimated by using the following approxima- I€S; +(j*,z*)j=1 = =z=1
tion: (4, 2)#3G", 2")
Aj 2 2 (27)
D; =E[l, ;] + m_jE[l’“»J' ElI7 5 Note that providing a BNDMA system with the simultaneous
! A (1 - {,\l—JE[lr j]) 2E[l; 4] multiple packet transmission from each queue not only im-

proves the stability margin, but it can also decrease delay. This
is corroborated by simulations. In particular, in a symmetric

The first and second moments bf; and!;,; depend on the SyStem, the following holds.

steady-state behavior of all the queues and, hence, are fundZroPosition 3: Consider the approximate delay expression
tions of (P, 1, Ps. 2, ..., P.. ;). The probability mass functions for the G-BNDMA system in (24), assuming independence

P(l, ; = b) andP(l; ; = b) sum up the probabilities of all the of queues, random packet assignment, and M/G/1 queue with
realizations in which all the subqueues, except for the subqueiféVer vacation approximation. In the noiseless cas; if-
of interest transmit packets, given the epoch lengttBased on A+ ¥J @ndm; = m, ¥ j, then the average deldy decreases as

NDMA and BNDMA protocols/ andb are related as follows: " Increases, for all values of offered traffic load.
The proof is given in the Appendix. Note, however, that there

are practical limitations om.

j=1,2 ..., (24)

relevantepoch: t=b6—-1
NDMA : irrelevant epoch: ib =1, thent =0 VIIl. SIMULATION RESULTS
andt =1 We performed Monte Carlo (MC) simulations of the NDMA,
elset = b ' BNDMA and G-BNDMA systems. The values of probabilities
o that the jth queue is emptyP, ; and the delay of thgth
BNDMA: -relevant epoch: #=b-2 queue packetd); obtained by simulation (in the noiseless
irrelevant epoch: ¢ = — 1 case) are compared with the analytic results. The delay of each

(25) System is compared with the delay of slotted ALOHA with

first-come-first-serve (FCFS) splitting protocol for collision
7In NDMA, if epoch s irrelevant and = 1, the only realization in which =
0 packets are transmitted (all-zero state) is counted together with realizations ifRecall that in the G-BNDMA case. . ; denotes the probability that a sub-
whicht = 1 packet is transmitted. queue of thg'th queue is empty.
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Fig. 2. NDMA: Delay versus total load. Fig. 4. BNDMA: Delay versus total load.

resolution, which was obtained by simulation. The simulatgghip, depend on offered load and must be dependent [15]. Cor-
(G/B)NDMA systems have/ = 3 queues with arrival rates rect estimation of’, ;s at low to medium traffic loads and de-
(A1, Az, Az) = (A1, 21, 3A1). PJe,j and D; are plotted pendency of epoch lengths yield actual delay that is lower than
against total offered traffic load_;_, A;. Note that in the estimated. At high traffic loads, low-rate users’ delay remains
noiseless case, throughput is equal to offered load for all fogtaller than estimated due to dependendy gfandi; ; in the
protocols considered (NDMA, BNDMA, G-BNDMA, FCFS Mm/G/1 model. However, high-rate users’ delay is significantly
splitting), provided a system is stable. higher than estimated. To explain this, note that actual values of
Figs. 1 and 2 depicP. ; versusy_7_, \; and D, versus p, ;s are smaller than estimated so that actual valugif,]
Z;’:l A;, respectively, for NDMA. Fig. 2 also shows a comparand E[l; ;] are larger than estimated. In addition, due to de-
ison of NDMA versus FCFS (dash—dotted line). The full linependency of queues, epoch lengths do not have binomial distri-
denote MC simulation results, and the dashed lines depict ahation. Simulations show that actual distribution yields higher
lytic results. We see that at low to medium traffic loads,;s values of E[I? ;] and E[i ,], given P. ;. Thus, for high-rate
are accurately estimated, which corroborates our assumptiters, high actual values of the second moments significantly
that queues are practically independent. However, at mediuninorease total delay and make it higher than estimated. Inter-
high traffic loads, queues are coupled so that the adluab are  estingly, for medium-rate users, overestimation of delay due to
lower than estimated. At low to medium traffic loads, simulatioM/G/1 approximation and underestimation of delay due to un-
results for delay are close to analytic results and even slightlgrestimation of the first and second moments of epoch lengths
better. Note that analytic results for NDMA delay are based @ancel each other, yielding accurate delay estimation.
the M/G/1 queue with server vacation approximation, which is Figs. 3 and 4 show results for BNDMA with the same nota-
valid if service time (relevant epoch length,;) and vacation tion as for NDMA. Note that for BNDMA, the steady-state anal-
time (irrelevant epoch lengtly; ;) are independent. However,ysis in Section V is exact, i.e., it takes queue dependence into
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Fig-5. Gen. BNDMA:P; versus total load. Fig. 6. Gen. BNDMA: Delay versus total load.

account. Hence, analyti€. ; results are accurate, even at higlye g\pMmA, which allows multiple packet transmission from

loads. De_lay is lower than estimated, except fo_r the highest rgle, <o me gueue, is proposed. It is proven that the latter protocol

gser at ;llgh of(fje‘re.d_ Ioad. L/ovx;er actual_ delgy IS dﬁeﬁo_dﬁjp%és increased maximum stable throughput, which can be made
ence of,. ; andi;, ; in the M/G/1 approximation, which yields close to 1. The tools used in the stability analysis range from a

a pessimistic estimate of delay, given correct estimaté’ g&. reliminary dominant svstem aoproach to the Foster—Lvapuno
In addition, note that at high traffic loads, epoch length distribd < mnary ' : Y bproac : yapunov
tion is not binomial. The actual distribution yields highervalue%me.”.On and Cruz'qo, p) deterministic fluid approach. The
of E[IZ ;] and E[I? ;], given P, ;. This increases actual delay>tability, steady-state, and delay analyses are extended to asym-
and even compehsates for délay overestimation due to M/é?ftr,'c (multirate) systgms: Simulations show that the analysis
approximation. provides good approximation of the delay performance for the
For generalized BNDMA, we used the following values fopvhole class of protocols.
multipacket transmissionsy = (mq, mo, m3) = (1, 3, 3).
Note that theoretic results for boi. ; and D; are based on
independent queues and random packet assignment (RPA) aroof (Proposition 2): For NDMA, first note that we con-
proximations, whereas delay analysis also includes the M/Gfitler only the case whek; > 0, Vj. Otherwise, (19) can be
with server vacation approximation. The results are presentedd@tuced to a system witd — Ny equations inJ — Ny un-
Figs. 5 and 6. Clearly, multipacket transmissions improve pémowns, whereV, is the number of queues with; = 0. Let
formance compared to BNDMA. The discussion on B-NDMA = 1 — Y27 ;.
applies here as well. Note that the estimated delay for users By multiplying thenth equation by\;/\,, and subtracting
and 3 is the same because they have the gams. However, it from the jth equationy j, j # n, the following equivalent
actual delay of user 3 is lower. This is due to RPA approxim&ystem is obtained:

tion, which yields pessimistic delay estimation for users with

APPENDIX

multipacket transmission. In addition, note that user 2 has the J
lowest\; /m; ratio and, hence, highe&t ; and lowest delay. An H Pe,i) +7Pen—1r=0
=1
Aj A
IX. CONCLUSIONS r [(Pm_ _ iPe’"> _ ( _ i)} -0

A unified stability and steady-state analysis of a class of colli-
sion resolution protocols with retransmission diversity has been
provided. This bridges a gap in earlier analyses. For NDMA,
a unique sufficient and necessary condition for stability is ob-
tained, assuming Poisson arrival$t proves that NDMA has If Zle A; < 1,thenr > 0, so that all equations except thth
maximum throughput that approaches 1. For BNDMA, a su¢an be divided by-. Without loss of generality, suppose that
ficient stability condition is obtained for deterministic fluid ar=» = 1. Leta; = X;/A, forj =1, ..., J. Further, assume that
rivals, whereas the same condition is necessary when Poissons the highest arrival rate\] = max;(};), one can always
arrivals are assumed. Based on these results, a generalizaiddmerate queues in such a way]. Therefore

forj=1,...,J, andj # n.

9The behavior of the system at the stability region boundary was not consid- )
ered. 0<a; <1, Y.
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SubstituteP, ; = f;(P. 1, a;), forj =2, ..., J into H;]:;l solution boils down to polynomial rooting (E:;.IZO c;iz?7tin
P, ;: o, 1).

J J J For BNDMA, from (19) [BNDMA] and P, ; > 0, Vj (sta-
H P.;=P., H (@iPo1 + (1 - a;)) = Z biPe{Jlrkz b!hty is a}ssumed), |tf;)llows tha;_, \i+A; <1, V4, which
= = = gives) i, A\; + max;_; (\;) < 1. ]

where Proof (Proposition 3): Under the conditions of Proposition
J 3, the average number of transmitted packets during an average
by = (H ai) length epoch is
i=2 AJ
=mJ(l-P.)= ——. 28
) . p=ml( )= T (28)
by = Z (1-a;) H a; Note thatp is not a function ofn. From the definition of relevant
i1=2 i=2 and irrelevant epoch lengths, we find
i#iy
1 1
; ; El)=2+(1-—)p, Ell=1+(1-—)p
m.J mJ
by=Y I—ai)(l—ap)| J[ @
i1=2 i2>iy i=2 E[l*]=4+5 1—L o+ 1—L 1—i p?
! iiy, iin T mJ mJ mJ

E[l?]:1+3<1_%>p+(1_%><1_%> 2

J k
‘ . ig>i ie>ip_1 Let J > 2 (multiuser system) angh > 1. We will show that
(0/0m)D,,, < 0,V AJ > 0.

J
H a: It can be shown that
i= 2 F l
i;éih...?i;éik iD:_ A [ ]( [ ] m )
am 2m3 ( _ )
2 1— L
P m.J
J + B(p)| (30)
by =[] (1 = a). 2m*J3 (1 - k) E[l]?
i=2 where
Therefore, the equivalent system of equations becomes B(p) = a(mJ)p? + b(mJ)p + c(mJ)
z]:c:PJ_iZO a(mJ) = (mJ)? = 2m.J + 2
el b(mJ) =2mJ(mJ —2), c(mJ) =2(mJ)?. (31)
Pej=ajPey—(1—-aj), forj=2...J From (28), it follows that) < p < mJ & 0 < A <
wheree; = Aibiyq, fori=0,1, ..., J=2,c5-1 = Mby+r, A)max = mJ/(mJ + 1). Since the aim is to prove that
andc; = —r. Hencegy > 0,¢; > 0,fori=1,2, ..., J—2, (9/0m)Dy, < 0, VAJ < (AJ)max, it suffices to show that
cj_1 > 0,andcs < 0. It follows that Ell,] = (p/mJ) > 0, (1 = (1/mJ)) > 0 andB(p) > 0 for
7 0<p<md.
lim Z ciPeJIi =cy <0 1) mJ > 2= (1-(1/mJ)) >
P10 — ” 2) E|l. ]>2andp<mJ:>E[ ] (p/mJ) > 0.
; Iy 3) a(mJ) = (mJ —1)2+1> 0VYmJ = B(p) is always
S i o 1
I ZPJ i_ Z ’ ~ convex—U. The discriminantd®(p) is Dp = —4(m.J)*.
! Z Cile,1 ; i ; ittt Hence,B(p) has no real roots, so th&(p) > 0,V p.
J—2 It follows that (0/0m)D(AJ) < 0,YA € (0, m/(mJ +
= ¢ +by>0. 1)) u
i=0
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