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Fig. 8. Output SINR versus number of snapshots. M/ = 8§, L = 4 at first 800
snapshots, L = 5 after that.

the number of variables in the update equation has been reduced ef-
fectively by half, which leads to a higher convergence rate. Moreover,
since the imposed structure is derived from a beamformer based on
maximizing its output SINR or minimizing its MSE, the proposed al-
gorithms have also achieved a higher steady state output SINR value,
given the same stepsize. Simulation results verified the effectiveness of
the proposed method.
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Multiple-Antenna Multicasting Using Channel
Orthogonalization and Local Refinement

Ahmed Abdelkader, Alex B. Gershman, and
Nicholas D. Sidiropoulos

Abstract—The problem of single-group multiple-antenna multicasting is
considered, where common information should be sent to a large number of
users. The multiple-antenna transmitter is assumed to accurately know the
instantaneous downlink channel state information (CSI) for all users, and
our objective is to design the beamformer complex weights to minimize the
total transmitted power subject to individual user quality-of-service (QoS)
constraints. In this correspondence, a channel orthogonalization and local
refinement based approach is developed to solve this problem in an approx-
imate way. The proposed techniques are shown via computer simulations
and real data processing to offer an attractive performance-to-complexity
tradeoff as compared to the state-of-the-art multiple-antenna multicasting
algorithms.

Index Terms—Evolved multimedia broadcast/multicast service
(E-MBMS), multicasting, orthogonalization, transmit beamforming.

I. INTRODUCTION

In contrast to traditional broadcasting systems where the transmis-
sion power is radiated isotropically or using a fixed beampattern to
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cover a certain service area, some future digital broadcasting/multicas-
ting services (e.g., in the context of E-MBMS! of 3 GPP2/UMTS-LTE3)
will be based on subscription. Therefore, it is reasonable to assume
for such systems that the user channel state information (CSI) is avail-
able at the transmitter [1]. In the latter case, advanced algorithms have
been developed that exploit the CSI knowledge to substantially im-
prove performance over the aforementioned traditional broadcasting
techniques [1]-[6].

In this correspondence, we consider the single-group multicasting
problem where a multiple-antenna transmitter sends common informa-
tion to a large number of single-antenna users. The transmitter is as-
sumed to have knowledge of the instantaneous downlink CSI for each
user. Such a single-group multicasting problem has been originally
considered in [1], where the following formulation has been addressed:
Obtain the transmit beamformer weight vector that minimizes the total
transmitted power subject to individual quality-of-service (QoS) con-
straints, one for each user. It has been proven in [1] that this problem
is nonconvex and generally NP-hard. However, the authors of [1] have
developed an approach to approximately solve this problem using the
semidefinite relaxation (SDR) technique. Unfortunately, because of the
SDR step, the approach of [1] is computationally quite demanding.

Another promising approach that applies to the single-group mul-
ticasting problem has been proposed in [3]. The iterative algorithm
of [3] is very efficient from the computational point of view, yet it
may fail to converge and its performance is very sensitive with respect
to initialization [5], [6]. To improve the performance of the latter ap-
proach, the authors of [5] proposed its enhancement using i) the average
signal-to-noise ratio (SNR) beamformer of Lopez [2] as initialization;
and ii) a step-size damping strategy that was empirically optimized.
In [5], the so-obtained technique is referred to as the dLLI (damped
Lozano with Lopez Initialization) algorithm.

In this correspondence, we develop a new approach to approximately
solve the single-group multiple-antenna multicasting problem using
channel orthogonalization. The key idea of our approach is to orthogo-
nalize selected user downlink channel vectors using QR decomposition
to satisfy their QoS constraints in a simple way. Using channel orthog-
onalization in this context was originally proposed in [4], which also
included a successive orthogonal refinement algorithm that is similar
in spirit to [3]. The best algorithm in [4] is called reduced-complexity
combine-2 (RCC2) with successive orthogonal refinement (Algorithm
2 in [4]). The simulations in [4] suggest that this combination can meet
or even slightly outperform the SDR algorithm in [1] at considerably
reduced complexity. However, the comparison in [4] was made using
only 100 randomization trials for SDR, whereas an order of magni-
tude higher is suggested in [1] for the given problem size. Increasing
the number of randomizations in this small sample-size regime signif-
icantly improves the performance of SDR.

The approach in [4] has merits, but its performance may be lim-
ited by its choice of orthogonalization order and scaling in the suc-
cessive refinement algorithm, as well as by its (RCC2) initialization.
In contrast to [4], the approach we propose in this correspondence ex-
amines various orthogonalization orders in a pseudorandom way# and

IEvolved Multimedia Broadcast/Multicast Service
2Third Generation Partnership Project
3Universal Mobile Telecommunications System—Long Term Evolution

4Ordering has been commonly used in a number of communications applica-
tions, e.g., [7].
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then chooses the best one based on the criterion of minimum trans-
mitted power. This allows exploitation of multiuser selection diversity
(see also [5]) when there are many users with statistically independent
channel vectors to choose from. Moreover, our approach uses an im-
proved (with respect to [4]) nonorthogonal successive local refinement
technique, drawing from the dLLI algorithm of [5].

As it will be seen from our simulation and measured channel data
processing results, in the practically most important case when the
number of users is large, the proposed techniques offer a more attrac-
tive performance-to-complexity tradeoff compared to the methods of
[1]1, [4] and [5]. In particular, our techniques will be shown to perform
better than all these methods, at comparable or even substantially lower
complexity than that of the SDR-based approach of [1].

II. PROBLEM FORMULATION

Consider a multicasting scenario where a transmitter with N an-
tennas sends common data to M single-antenna users. The channels
are assumed frequency-flat. The SNR of the ¢th user is given by v; =
|wilh;|? /o? where the N x 1 vectors w and h; are the transmit beam-
former weight vector and the downlink channel vector of the ¢th user,
respectively, o7 is the variance of the ith user additive white noise, and
(-) denotes the Hermitian transpose.

The beamformer weight vector can be obtained by minimizing the
total transmitted power subject to the user QoS constraints (one con-
straint per user). The latter problem can be expressed as [1]:

n&i]n lwl* st [wihi*>1 forall i=1,....,.M (1)
where h; £ hi/+\/~min,io:? is the ith user’s normalized downlink
channel vector and ~min,; 1S the minimum required SNR for the ¢th
user. The value of in,; is determined by the system QoS require-
ments [1].

In [1], an SDR-based technique has been proposed to approximately
solve (1) at worst-case computational cost O((M + N?)*®). An al-
ternative, computationally simpler approach to solve this problem is
the dLLI algorithm that was formulated in [6] to solve the joint beam-
forming and admission control problem in multicast networks. The
computational complexity of the latter algorithm is O(I M N), where
I is a bound on the number of iterations that depends only on the ini-
tial step-size ¢ (I is kept small due to the use of an aggressive damping
strategy [6]).

III. THE PROPOSED APPROACH

As typically the number of users is larger than the number of transmit
antennas (M > N ), hereafter only this case will be considered. Let us
choose N vectors from the set {fll }}i ; to generate /N orthonormal
vectors q; (¢ = 1,..., N). As these vectors span the whole N -dimen-
sional space, the desired weight vector w can be represented as a linear
combination of them:

N
w=3 caq @
i=1
where ¢ = [c1,..., cN]T is the vector of complex coefficients and
(+)7 is the transpose. From orthonormality, it follows that
2 2
Iwl” = llel]". 3)

The key idea of our approach is to choose each component ¢;q; of w in
(2) to satisfy the QoS constraints corresponding to the chosen subset of
channel vectors. The remaining (3 — NN') QoS constraints can be then
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satisfied by scaling the so-obtained vector w so that the most violated
constraint is satisfied with equality.

A. A Technique Based on QR Decomposition Without Pivoting

Let us consider the N x M matrix G 2 [fll, e, l~1M] whose

columns are the vectors h; (i = 1,..., M). Let the N x N matrix
H be obtained by dropping any (M — N) columns of G and possibly
reordering the remaining N columns. Applying QR decomposition to

H, we obtain

Tir Ti2 TIN
0 T22 ottt T2nN A
H:[qlw"qu] : : .. : :QR (4)
0 - 0 ryn
where r;; > O foralli = 1,..., N,
Equation (2) can be rewritten as
w = Qc. %)

Using (4) and (5), and the property Q7Q =1, we have
w/h = c”Q”fl,; _ c”Q”Qr; —cp )

where I is the identity matrix and without any loss of generality it is
assumed that h; has been chosen as the /th column of H and r; denotes
the /th column of R.. Then, using (3) and (6), and keeping in (1) only
the NV QoS constraints that correspond to the columns of H, the latter
problem can be transformed to

min|jc|]® s.t. || >1 forall i=1,....,N. (7)

Although the problem (7) has the same mathematical form as (1), an
important difference between these two problems is that the vectors r;
inherit the upper-triangular structure of the matrix R.. Also,as N < M,
the number of constraints in (7) is less than in (1). These two facts make
it possible to satisfy the constraints in (7) by computing the coefficients
ci,i = 1,..., N successively. In particular, from the first constraint
|cHr1| > 1, we obtain that |cir11| > 1 and, hence, |c1| = 1/r11
is the minimum needed to satisfy the constraint. Note that the phase
of ¢ can be chosen arbitrarily. Indeed, due to the successive way of
computing the coefficients ¢; (i = 1,..., V), any change of arg{c1 }
will only cause a rotation of the computed weight vector; and, clearly,
such a rotation will not alter the cost function. Therefore, without loss
of generality, we can set arg{c1 } = 0. That is, the first coefficient can
be computed as

Cc1 = ]./7‘11. (8)

From the kth constraint |c"r;.| = 1 forany k = 2,..., N, we have

21 (C)]

where (-)* denotes the complex conjugate. Defining i
Zf.:ll cirip fork = 2,..., N, we can rewrite (9) as

|(IZ’T’kk+/3k| > 1. (10)
Equation (10) illustrates the kth step of our proposed successive algo-
rithm to compute the vector c. In this step, all ¢; fori = 1,...,k —1
have already been computed (that is, the value of 3 is given), and ¢y,
should be obtained from (10) so that the increase of the cost function
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|lc||* caused by c; is minimum. Obviously, this is equivalent to se-
lecting ¢, that satisfies (10) and has the smallest absolute value. The
solution is

" [Be] < 1

0, 1Bkl > 1 (an

=Bkl o—iarg{f}
ck = ’

Equations (8) and (11) describe the proposed technique to successively
compute the coefficients ¢, k = 1,..., N. After computing the whole
coefficient vector ¢ in this way, the associated weight vector can be
found from (2). The remaining (3 — V') QoS constraints to be satisfied
correspond to the dropped (M — N') columns of G.. To satisfy the latter
constraints, we check all of them and then rescale the resulting weight
vector so that the most violated constraint is satisfied with equality.

Since the choice of the columns of H and their particular order in H
can greatly affect the resulting performance of our technique, multiple
candidate values of w are computed. These candidate weight vectors
correspond to different choices of the dropped columns of G and dif-
ferent orders of the remaining columns of H. Then, from these candi-
date weight vectors, the vector with the smallest norm (i.e., with the
lowest total transmitted power) is finally chosen.

The process of finding the best (in terms of performance) ordered
subset of NV vectors out of the set of M channel vectors {h; M. re-
quires checking M!/(M — N)! possibilities. Clearly, for large M and
N this is prohibitive. Therefore, we propose to check J < M!/(M —
N)! random permutations where .J is a design parameter that can be
used to trade off between computational complexity and performance.
As a result, there will be .J candidate weight vectors Weana,i (i =
1,...,J) and the resulting dominant complexity of our algorithm is
given by O(J(N® 4 M N)). Therefore, for a reasonably low choice of
J, the proposed technique represents a computationally attractive al-
ternative to the SDR-based technique of [1].

B. A Technique Based on QR Decomposition With Pivoting

As the computational complexity of the QR decomposition based
technique of Section III-A can be still quite high, let us consider a com-
putationally more efficient ad hoc approach to choose the columns of
H and their order, using the Gram-Schmidt procedure to orthogonalize
the selected channel vectors.

We start by choosing any initial channel vector f; from the set
{fli M. . In what follows, we denote the N vectors chosen from this
set at the /V steps of the Gram—Schmidt procedure as f;,: = 1,..., NV,
sothat H = [fi, ..., fx]. The way to select these vectors will be dis-
cussed in the sequel. The Gram—Schmidt orthogonalization procedure
can be written as

k—1

be=1fi =Y (a'fi) @ ax=bi/llbil

=1

(12)

fork = 2,..., N where qi = fi/||f1]]. In the kth step of this proce-
dure, the intermediate weight vector can be obtained as

k
Wi = g Ciq;

where the principle of computing the éoefﬁcients ¢; is the same as in the
QR decomposition based technique of the previous subsection. The key
of our approach to select the channel vectors f; from {fli M canbe de-
scribed as follows. At the kth step (k > 1) of the above Gram—Schmidt
procedure, the vector for which it is most difficult to satisfy the corre-
sponding QoS constraint is selected. In other words, the vector whose
inner product with w_ has the smallest magnitude is chosen. As the
component that is added to the weight vector in any step is orthogonal
to all the channel vectors selected in the previous steps, it will not affect
any of the previously satisfied constraints.

(13)
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TABLE I
SUMMARY OF THE TECHNIQUE OF SECTION III-A WITH LOCAL REFINEMENT

. Locally refine this weight vector.

. Repeat steps 1 to 5 J times to obtain {W;};_;.

NN R W=

. Obtain the matrix H by randomly selecting and permuting N columns of G.
. Obtain the matrices Q and R using QR decomposition of H.
. Compute the candidate weight vector using (2), (8) and (11).

. Rescale the refined vector so that the most violated from all the M constraints is satisfied with equality.

. Select from {w;};_, the vector with the minimum norm to be the final solution.

TABLE 11
SUMMARY OF THE TECHNIQUE OF SECTION III-B WITH LOCAL REFINEMENT

For:=1,...,M
1. Define G = {h;}}Z, and select f; = h.
G := G ~h;. Re-index all vectors in G.
. Compute q; = f1/||f1]|.
. Compute c; using (8) and obtain w1 = ci1qs.
.Fork=2,...,N
5a. For all current vectors in G, compute o; =

P NERY N

channel vector.

5¢c. G := G ~ hy. Re-index all vectors in G.
5d. Compute cj, using (11) and qx using (12).

. Locally refine this weight vector.

v 0 3 O

9.

Wi hj|, j=1,....,M —k+1.
5b. Select fi, = h; where o is the minimum value from {«;}

. Compute the candidate weight vector w; using (2).

. Rescale the refined vector so that the most violated from all the M constraints is satisfied with equality.
elect from {W;};£, the vector with the minimum norm to be the final solution.

M—-k+1

i=1 and hy is the corresponding

Finally, (2) is used to compute the resulting w. This vector is then
rescaled to satisfy the most violated of the remaining (M — N) con-
straints with equality.

Since the choice of initial channel vector is important, and the
Gram—Schmidt procedure is relatively simple from a complexity
point of view, we propose to repeat the process M times, where each
time a new channel vector is chosen as the initial vector f; for the
Gram—Schmidt procedure. As a result, we end up with 1/ candidate
weight vectors Weanda; (i = 1,...,M) and the one having the
smallest norm is chosen as the final weight vector. The complexity of
this technique is O(M N® + M*N).

C. Local Refinement

To further improve the performance of the techniques developed in
Subsections III-A and III-B, let us develop a local search based refine-
ment step. The idea is to perform an unconstrained local search for any
candidate weight vector Wcand,; used in these techniques.

For all values of 7, the local refinement algorithm takes Weand,i as
an initial value and then searches for another vector w; in its neigh-
borhood that maximizes the worst user SNR. This can be achieved by
finding the local minimum of
[l

f(wi) =

miny, [w/7hy |

The resulting vectors are then treated as the refined candidate weight
vectors. Note that global maximization of the worst user SNR under
a power constraint is also nonconvex, NP-hard, and closely related to
our original problem [1]; but what we advocate here is only local re-
finement, which can be easily accomplished using a variety of standard
methods. We will use the damped version of Lozano’s algorithm [3],
as proposed in [5]. Then, with I denoting a bound on the number of
gradient iterations (as for dLLI, [ is rather small, and only depends on
the initial value of the step-size ), the overall complexities of the tech-
niques of Sections III-A and III-B combined with the local refinement
step are O(J(N? + IMN)) and O(M(N?* + IM N)), respectively.

These two algorithms with local refinement are summarized in
Tables I and II. Note that their robust extensions to the case of imper-
fect CSI can be straightforwardly obtained using the results of [8], by
a proper weight vector rescaling.

IV. SIMULATION AND REAL DATA PROCESSING RESULTS

In all our examples, the acronyms QR-dL and GS-dL stand for the
proposed QR decomposition (without pivoting) based algorithm of
Section III-A and the Gram-Schmidt orthogonalization (QR decom-
position with pivoting) based technique of Section III-B, respectively,
both using damped Lozano’s (dL) local refinement step. The QR-dL
and GS-dL techniques are compared with the dLLI technique of [5],
the RCC2 algorithm with successive orthogonal refinement of [4]
(referred to as RCC2-SOR), the SDR-based approach of [1], and the
same SDR-based technique combined with the dL local refinement.
The latter technique is referred to as SDR-dL. Plain QR without dL,
GS without dL, and RCC2 without SOR are also included in two
examples to illustrate the relative importance of initialization versus
local refinement. The choice of the initial step-size p and the stopping
threshold in the dL technique were empirically optimized to achieve
fast convergence and good performance. To optimize the parameters of
the SDR-based approach, we have followed the guidelines of [1] where
three different randomization procedures have been used in parallel,
with 1000 randomizations for each. The number of iterations in the
successive orthogonal refinement part of the RCC2-SOR technique
was equal to the number of randomizations used in the SDR-based
technique (= 3000). For the QR-dL technique, .J = 200 has been
taken. This value of .J corresponds to nearly equal computational
complexities (measured in terms of MATLAB run times) of the SDR,
SDR-dL and QR-dL methods. Note that the run time of the GS-dL
technique is substantially smaller than that of the QR-dL, SDR and
SDR-dL techniques.

A. Simulations

Throughout our simulations, a Rayleigh fading channel with i.i.d.
circularly symmetric unit-variance channel coefficients is assumed. We
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Fig. 1. Total transmitted power versus number of users; first simulation ex-
ample.

also assume that 07 = ¢ = 1 and Ymin; = 7Ymin for all i =
1,..., M. All our results are averaged over 1000 Monte Carlo runs.

In the first example, we assume that ymin = 5 dB. Fig. 1 displays
the average transmitted power required by the methods tested versus
the number of users M. It can be clearly seen from the figure that
the QR-dL and the GS-dL techniques perform substantially better than
the SDR, SDR-dL, RCC2-SOR, and dLLI techniques. These perfor-
mance improvements become more pronounced when increasing the
value of M. For example, when M = 80 the improvement in terms
of transmitted power is more than 1.2 dB as compared to the SDR-dL
technique, and more than 2.5 dB as compared to the dLLI approach.
To appreciate the difference it is instructive to “reverse the axes”: for
the same transmit power, QR-dL and GS-dL serve 80 users whereas
SDR-dL serves 60, and dLLI and SDR about 45, on average. It can
be observed from Fig. 1 that QR-dL is slightly better in performance
than GS-dL. This is, however, compensated by a lower computational
complexity of GS-dL with respect to QR-dL. Fig. 1 includes results for
plain QR without dL, GS without dL, and RCC2 without SOR to illus-
trate the relative importance of initialization versus local refinement.

The complexity of RCC2-SOR mainly comes from the refinement
step (SOR): the dominant complexity term is M N R, where R is the
number of SOR iterations. The performance of RCC2-SOR quickly
saturates as R increases (after about 2 = 300 in our experiments).
When the parameters are chosen to approximately equalize the com-
plexities of RCC2-SOR and GS-dL, the latter is better in terms of per-
formance—e.g., by 3 dB for M = 80 users in the Rayleigh scenario
of Fig. 1. But RCC2-SOR with moderate R and dLLI are both simpler
than GS-dL for large M.

In our second example, we illustrate the achievable rates of the
different beamformers for fixed transmit power. Fig. 2 shows these
rates versus the number of users M. Also, the multicast capacity
is shown in the figure as an upper bound on the achievable rate.
According to [10] and [1], the achievable rate and multicast capacity
can be computed as B = log,(1 + min;(|h”wqn.|*>/0?)) and
C = logy(1 + mini(hf{Xopthi/Jf)), respectively, where Xops
is the max-min optimal transmit covariance matrix, and both Xop
and wsa, are normalized to satisfy the transmit power constraint
trace{Xopt } = ||wan||* = P (P = 1 for Fig. 2). Note that de-
termining rate and capacity requires solving the power-constrained
max-min problem, instead of (1); but the two are related via a simple
scaling transformation, see [1].

It can be observed from this figure that the proposed QR-dL and
GS-dL techniques have better achievable rates that the other multicas-
ting algorithms tested. As before, QR-dL performs slightly better than
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Fig. 2. Achievable multicast rates versus number of users; second simulation
example.
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Fig. 3. Total transmitted power versus minimum required SNR; third simula-
tion example.

GS-dL. Another interesting observation is that the multicast capacity
can be seen as a relatively loose upper bound on the achievable rate.
This can be explained by the fact that achieving capacity generally
requires a higher rank transmit covariance matrix X,p. In the latter
case, substantially more complicated encoding and decoding schemes
have to be used instead of simple beamforming and single-input single-
output encoding-decoding [1].

In our third example, we take N = 4, M = 80, and the minimum
required SNR is varied. All the other parameters are the same as in
the first example. Fig. 3 shows the transmitted powers versus the min-
imum required SNR. As in the first example, we can observe from this
figure than the proposed GS-dL and QR-dL techniques perform better
in terms of transmitted power than the other techniques tested. Also, as
before, the QR-dL beamformer has a slightly better performance than
the GS-dL one.

B. Measured Indoor Data

To further compare the performance of the proposed and existing
multicasting methods, we used measured channel data collected in the
902-928 MHz ISM band by the iCORE HCDC Lab, University of
Alberta in Edmonton [9]. The raw data and associated documenta-
tion files were downloaded from http://www.ece.ualberta.ca/~mimo/.
Channel selection and preprocessing have been performed as detailed
in [5]. The specific data set that we used here corresponds to the in-
door scenario in [5], and it is available from the authors upon request.
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Fig. 4. Total transmitted power versus number of users; measured channel data.

There are N = 4 transmit antennas, and M = 12 user channels, mea-
sured every 3 seconds for a total of 30 temporal snapshots. In order to
test with a large number of users, we randomly selected and concate-
nated 4 out of 30 snapshots (there are 27405 possible combinations),
and averaged the results over 1000 such draws. Fig. 4 shows the trans-
mitted power versus the number of users M. The required minimum
SNR has been set to 0 dB.

It can be seen that in this figure, the QR-dL and GS-dL techniques
have quite similar performance. Both of them outperform the other
methods tested. These performance improvements become more sig-
nificant with increasing M.

Summarizing, the results of our simulations and measured data pro-
cessing clearly demonstrate an improved performance of the proposed
QR-dL and GS-dL techniques with respect to the state-of-the-art
multicasting methods such as the SDR, dLLI and RCC2-SOR algo-
rithms. These improvements become especially pronounced in the
large number of users case.

V. CONCLUSION

Two methods have been developed to approximately solve the
problem of single-group multiple-antenna multicasting. The proposed
techniques use channel orthogonalization and a subsequent local
refinement algorithm to further improve the beamformer weight
vector. Our methods have been shown via computer simulations
and measured channel data processing to offer an improved perfor-
mance in terms of power and spectral efficiency (and an attractive
performance-to-complexity tradeoff) as compared to the current
state-of-the-art multiple-antenna multicasting techniques.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers whose
critical reading helped to improve the quality of this correspondence.

REFERENCES

[1] N. D. Sidiropoulos, T. N. Davidson, and Z.-Q. Luo, “Transmit beam-
forming for physical-layer multicasting,” IEEE Trans. Signal Process.,
vol. 54, no. 6, pp. 2239-2251, Jun. 2006.

[2] M. J. Lopez, “Multiplexing, scheduling, and multicasting strategies
for antenna arrays in wireless networks,” Ph.D. dissertation, Electrical
Eng. and Comput. Sci. Dept., MIT, Cambridge, MA, 2002.

[3] A. Lozano, “Long-term transmit beamforming for wireless multi-
casting,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.
(ICASSP), Honolulu, HI, Apr. 2007, vol. 3, pp. 417-420.

3927

[4] R. Hunger, D. A. Schmidt, A. S. M. Joham, and W. Utschick, “Design
of single-group multicasting beamformers,” in Proc. ICC, Glasgow,
Scotland, Jun. 2007, pp. 2499-2505.

E. Matskani, N. D. Sidiropoulos, Z.-Q. Luo, and L. Tassiulas, “Efficient
batch and adaptive approximation algorithms for joint multicast beam-
forming and admission control,” IEEE Trans. Signal Process., vol. 57,
no. 12, pp. 4882-4894, Dec. 2009.

E. Matskani and N. D. Sidiropoulos, “On multicast beamforming and
admission control for UMTS-LTE,” in Proc. IEEE Int. Conf. Acoust.,
Speech, Signal Process. (ICASSP), Las Vegas, NV, Apr. 2008, pp.
2361-2364.

R. C. de Lamare and R. Sampaio-Neto, “Minimum mean-squared error
iterative successive parallel arbitrated decision feedback detectors for
DS-CDMA systems,” IEEE Trans. Commun., vol. 56, pp. 778-789,
May 2008.

E. Karipidis, N. D. Sidiropoulos, and Z.-Q. Luo, “Convex transmit
beamforming for downlink multicasting to multiple co-channel
groups,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.
(ICASSP), Toulouse, France, May 2006.

P. Goud Jr., R. Hang, D. Truhachev, and C. Schlegel, “A portable
MIMO testbed and selected channel measurements,” EURASIP J. Appl.
Signal Process., vol. 2006, manuscript ID 51490, 2006, doi:10.1155/
ASP/2006/51490.

N. Jindal and Z.-Q. Luo, “Capacity limits of multiple antenna multi-
cast,” in Proc. ISIT, Seattle, WA, Jul. 2006, pp. 1841-1845.

[5]

[6

=

[7]

[8

—

[9]

[10]

An Impulse Response Function for Evaluation of
UWB SAR Imaging

Viet T. Vu, Thomas K. Sjogren, Mats I. Pettersson, and
Hans Hellsten

Abstract—Based on analysis of a point target imaged by different syn-
thetic aperture radar (SAR) systems, the commonly used impulse response
function in SAR Imaging (IRF-SAR)—a two-dimensional (2-D) sinc
function—is shown to be inappropriate for ultrawideband-ultrawidebeam
(UWB) SAR systems utilizing a large fractional signal bandwidth and a
wide antenna beamwidth. As a consequence, the applications of the 2-D
sinc function such as image quality measurements and spatial resolution
estimations are limited to narrowband-narrowbeam (NB) SAR systems
exploiting a small fractional signal bandwidth and a narrow antenna
beamwidth. In this paper, a more general IRF-SAR, which aims at UWB
SAR systems, is derived with an assumption of flat two-dimensional (2-D)
Fourier transform (FT) of a SAR image and called IRF-USAR. However,
the derived IRF-USAR is also valid for NB SAR systems.

Index Terms—Impulse response function in SAR imaging (IRF-SAR),
impulse response function in UWB SAR imaging (IRF-USAR), synthetic
aperture radar (SAR), Sinc, ultrawideband-ultrawidebeam (UWB).

I. INTRODUCTION

Synthetic aperture radar (SAR) is widely used as ground-imaging
radars. SAR has its own surface illuminating capability that allows it
to work in hazy weather (fog, rain, etc.) and even in the night. During
such unfavorable weather condition, most other remote sensing sys-
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