5450

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 63, NO. 20, OCTOBER 15, 2015

Parallel Algorithms for Constrained Tensor

Factorization via Alternating Direction
Method of Multipliers

Athanasios P. Liavas, Member, IEEE, and Nicholas D. Sidiropoulos, Fellow, IEEE

Abstract—Tensor factorization has proven useful in a wide
range of applications, from sensor array processing to com-
munications, speech and audio signal processing, and machine
learning. With few recent exceptions, all tensor factorization
algorithms were originally developed for centralized, in-memory
computation on a single machine; and the few that break away
from this mold do not easily incorporate practically important
constraints, such as non-negativity. A new constrained tensor
factorization framework is proposed in this paper, building upon
the Alternating Direction Method of Multipliers (ADMoM). It is
shown that this simplifies computations, bypassing the need to
solve constrained optimization problems in each iteration; and
it naturally leads to distributed algorithms suitable for parallel
implementation. This opens the door for many emerging big
data-enabled applications. The methodology is exemplified using
non-negativity as a baseline constraint, but the proposed frame-
work can incorporate many other types of constraints. Numerical
experiments are encouraging, indicating that ADMoM-based
non-negative tensor factorization (NTF) has high potential as an
alternative to state-of-the-art approaches.

Index Terms—Tensor decomposition, PARAFAC model, parallel
algorithms.

I. INTRODUCTION

ENSOR factorization! has proven useful in a wide range
of signal processing applications, such as direction of ar-
rival estimation [2], communication signal intelligence [3], and
speech and audio signal separation [4], [5], as well as cross-dis-
ciplinary areas, such as community detection in social networks

Manuscript received August 30, 2014; revised January 21, 2015, May 05,
2015, and June 17, 2015; accepted June 23, 2015. Date of publication July 08,
2015; date of current version September 10, 2015. The associate editor coordi-
nating the review of this manuscript and approving it for publication was Prof.
Martin Haardt. The work of N. D. Sidiropoulos was supported in part by NSF
I1IS-1247632. Part of this work has been accepted for presentation at IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing (ICASSP)
2015 [1].

A.P. Liavas is with the Department of Electronic and Computer Engineering,
Technical University of Crete, Chania 73100, Greece (e-mail: liavas@telecom.
tuc.gr).

N. D. Sidiropoulos is with the Department of Electrical and Computer
Engineering, University of Minnesota, Minneapolis, MN 55455 USA (e-mail:
nikos@ece.umn.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSP.2015.2454476

!In the literature, the terms factorization and decomposition are often used
interchangeably, even though the latter alludes to exact decomposition, whereas
the former may include a residual term.

[6], and chemical signal analysis [7]. More recently, there has
been significant activity in applying tensor factorization theory
and methods to problems in machine learning research—see [8].

There are two basic tensor factorization models: parallel
factor analysis (PARAFAC) [9], [10] also known as canonical
decomposition (CANDECOMP) [11], or CP (and CPD) for
CANDECOMP-PARAFAC (Decomposition), or canonical
polyadic decomposition (CPD, again); and the Tucker3 model
[12]. Both are sum-of-outer-products models which historically
served as cornerstones for further developments, e.g., block
term decomposition [13], and upon which the vast majority
of tensor applications have been built. In this paper, we will
primarily focus on the CP model.

Whereas for low-enough? rank CP is already unique ‘on its
own,’ any side information can (and should) be used to enhance
identifiability and estimation performance in practice. Towards
this end, we may exploit known properties of the sought latent
factors, such as non-negativity, sparsity, monotonicity, or uni-
modality [14]. Whereas many of these properties can be han-
dled with existing tensor factorization software, they generally
complicate and slow down model fitting.

Unconstrained tensor factorization is already a hard
non-convex (multi-linear) problem; even rank-one least-squares
tensor approximation is NP-hard [15]. Many tensor factor-
ization algorithms rely on alternating optimization, usually
alternating least-squares (ALS), and imposing e.g., non-neg-
ativity and/or sparsity entails replacing linear least-squares
conditional updates of the factor matrices with non-negative
and/or sparse least-squares updates. In addition to ALS, many
derivative-based methods have been developed that update all
model parameters at once, see [16] and references therein, and
[17], [18] for recent work in this direction.

With few recent exceptions, all tensor factorization algo-
rithms were originally developed for centralized, in-memory
computation on a single machine. This model of computation is
inadequate for emerging big data-enabled applications, where
the tensors to be analyzed cannot be loaded on a single machine,
the data is more likely to reside in cloud storage, and cloud
computing, or some other kind of high performance parallel
architecture, must be used for the actual computation.

A carefully optimized Hadoop/MapReduce [19], [20] imple-
mentation of the basic ALS CP-decomposition algorithm was

2E.g., relative to the sum of Kruskal-ranks of the latent factor matrices. Looser
bounds can be guaranteed almost-surely.

1053-587X © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

LIAVAS AND SIDIROPOULOS: PARALLEL ALGORITHMS FOR CONSTRAINED TENSOR FACTORIZATION VIA ADMoM

developed in [21], which reported 100-fold scaling improve-
ments relative to the prior art. The gist of [21] is to avoid the
explicit computation of ‘blown-up’ intermediate matrix prod-
ucts in the ALS algorithm, particularly for sparse tensors, and
parallelization is achieved by splitting the computation of outer
products. On the other hand, [21] is not designed for high per-
formance computing (e.g., mesh) architectures, and it does not
incorporate constraints on the factor matrices.

A random sampling approach was later proposed in [6], mo-
tivated by recent progress in randomized algorithms for matrix
algebra. The idea of [6] is to create and analyze multiple ran-
domly sub-sampled parts of the tensor, then combine the results
using a common piece of data to anchor the constituent decom-
positions. The downside of [6] is that it only works for sparse
tensors, and it offers no identifiability guarantees—although it
usually works well for sparse tensors.

A different approach based on generalized random sampling
was recently proposed in [22], [23]. The idea is to create mul-
tiple randomly compressed mixtures (instead of sub-sampled
parts) of the original tensor, analyze them all in parallel, and
then combine the results. The main advantages of [22], [23] over
[6] are that 1) identifiability can be guaranteed, ii) no sparsity is
needed, and iii) there are theoretical scalability guarantees.

Distributed CP decomposition based on the ALS algorithm
has been considered in [24], and more recently in [25], which
exploit the inherent parallelism in the matrix version of the
linear least-squares subproblems to split the computation in
different ways, assuming an essentially ‘flat’ architecture for
the computing nodes. Regular (e.g., mesh) architectures and
constraints on the latent factors are not considered in [24], [25].

In this paper, we develop algorithms for constrained tensor
factorization based on Alternating Direction Method of Multi-
pliers (ADMoM). ADMoM has recently attracted renewed in-
terest [26], primarily for solving certain types of convex op-
timization problems in a distributed fashion. However, it can
also be used to tackle non-convex problems, such as non-nega-
tive matrix factorization [26], albeit its convergence properties
are far less understood in this case. We focus on non-negative
CP decompositions as a working problem, due to the impor-
tance of the CP model and non-negativity constraints; but our
approach can be generalized to many other types of constraints
on the latent factors, as well as other tensor factorizations, such
as Tucker3, and tensor completion.

The advantages of our approach are as follows. First, during
each ADMoM iteration, we avoid the solution of constrained
optimization problems, resulting in considerably smaller com-
putational complexity per iteration compared to constrained
least-squares based algorithms, such as alternating non-negative
least-squares (NALS). Second, our approach leads naturally to
distributed algorithms suitable for parallel implementation on
regular high-performance computing (e.g., mesh) architectures.
Finally, our approach can easily incorporate many other types
of constraints on the latent factors, such as sparsity.

Numerical experiments are encouraging, indicating that
ADMoM-based NTF has significant potential as an alternative
to state-of-the-art approaches.

The rest of the manuscript is structured as follows. In
Section II, we present the NTF problem and in Section IIT we

5451

present the general ADMoM framework. In Section IV, we
develop ADMoM for NTF, while in Section V we develop
distributed ADMoM for large NTF. In Section VI, we test the
behavior of the developed schemes with numerical experi-
ments. Finally, in Section VII, we conclude the paper.

Notation

Vectors, matrices, and tensors are denoted by small, capital,
and underlined capital bold letters, respectively; for example,
x, X, and X. [Rifrx‘]XK denotes the set of (I x J x K) real
non-negative tensors, while Rf‘] denotes the set of (I x .J)
real non-negative matrices. ||- || r denotes the Frobenius norm of
the tensor or matrix argument, A denotes the Moore-Penrose
pseudoinverse of matrix A, and (A) denotes the projection of
matrix A onto the set of element-wise non-negative matrices.
The outer product of three vectors a € R’ b € R/*!, and
¢ € REX!L is the rank-one tensor a o b o ¢ € RIX/XK with
elements (achoc)(i, j, k) = a(i)b(j)c(k). For matrices A and
B, with compatible dimensions, A © B denotes the Khatri-Rao
(columnwise Kronecker) product, A ®B denotes the Hadamard
(element-wise) product, and A * B denotes the matrix inner
product, that is A * B := trace(A"B) = 33, ; A; ;B ;.

II. NON-NEGATIVE TENSOR FACTORIZATION

Let tensor X° € RerJXK admit a non-negative3 CP decom-
position of order F’

F
X°=[A"B°,C% = Za‘} oc}och,
f=1

RUF, Be =
KxF
c%] e R,

where A° = [a§ a%] €
[b¢ b%] € R7F and Co = [¢¢
We observe a noisy version of X expressed as

In order to estimate A°, B°, and C°, we compute matrices A €
RIY,B € RT*F, and C € R ** that solve the optimization
problem

fX(AaBaC)
subject to A >0,B>0,C >0, (1)

min
.B.,C

1

where f is a function measuring the quality of the factorization,
0 is the zero matrix of appropriate dimensions, and the inequal-
ities are element-wise. A common choice for fx, motivated via
maximum likelihood estimation for E with Gaussian indepen-
dent and identically distributed (i.i.d.) elements, is

1
fx(A,B,C) = 3 [|IX ~ [A,B,]|} @)

3Note that, due to the non-negativity constraints on the latent factors, F' can
be higher than the rank of X°.

5452

Let W = [A,B,C] and W), W2 and W) be the matrix
unfoldings of W, with respect to the first, second, and third
dimension, respectively. Then,

w® = A(CoB)T,
W@ =B(C o A)T,
w® =cBoA), (3)

and fx can be equivalently expressed as

2
fx(A,B,C) = % HX(U ~ACO B)THF

-1 Hx@) _B(Co A)TH2
2 F
:EHXW —C(B@A)THQ. @)
2 F

These expressions are the basis for ALS-type CP optimization,
because they enable simple linear least-squares updating of one
matrix given the other two. Using NALS for each update step
is a popular approach for the solution of (1), but non-negativity
brings a significant computational burden relative to plain ALS
and also complicates the development of parallel algorithms for
NTF. It is worth noting that (4) will also prove useful during the
development of the ADMoM-based NTF algorithm.

III. ADMoM

ADMoM is a technique for the solution of optimization prob-
lems of the form [26]

min f(x) + g(z)
subject to Ax -+ Bz = c, (5)
where x € R™,z € R™2, A ¢ R™*™ B € R™*" ¢ € R™,
f:R"™ - R,and g : R™ — R.
The augmented Lagrangian for problem (5) is
L,(x,2,y) = f(x) + g(z) +y” (Ax + Bz — c)
+2lAx+ Bz —cl3, (©)
where p > 0 is a penalty parameter. Assuming that at time

instant k we have computed z* and y*, which comprise the state
of the algorithm, the (k + 1)-st iteration of ADMoM is*

x**+! = arg min (f(x) + y*T Ax + gHAX + Bz* — cHé)
2" — arg min (g(z) +y* "Bz + gHAxk+1 +Bz - cHg)
yrtl =yF 4 p(AX”c+1 + BzFt! — c).

It can be shown that, under certain conditions (among them con-
vexity of f and g), ADMoM converges in a certain sense (see
[26] for an excellent review of ADMoM, including some con-
vergence analysis results). However, ADMoM can be used even
when problem (5) is non-convex. In this case, we use ADMoM
with the goal of reaching a good local minimum [26]. Note

“4Note that y*7 is shorthand notation for (y*)”.

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 63, NO. 20, OCTOBER 15, 2015

that this is all we can realistically hope for anyway, irrespec-
tive of approach or algorithm used, since tensor factorization is
NP-hard [15].

A. ADMoM for Set-Constrained Optimization

Let us consider the set-constrained optimization problem

min f(x)

subject to x € X,

where x € R” and X C R™ is a closed convex set. At first sight,
this problem does not seem suitable for ADMoM. However,
if we introduce variable z € R™, we can write the equivalent
problem

min f(x) + g(2)
subject to x—z =0, (7

where ¢ is the indicator function of set X', that is,

9(z) == {0’

o0,

z € X,
z¢ X.

Then it becomes clear that (7) can be solved via ADMoM. As-
suming that at time instant & we have computed z* and y*, the
(k + 1)-st iteration of ADMoM is [26]

x40 = arg min (£(x) +y*"x + £ Jx - 2°]13)

. P 1
— ¥ Tzt £t —)

z*1 = arg min (g(z)
z

. 1
:HX (Xk+1 + ;yk>

Yyt =yF 4 p(a T - 2R,

where IIx denotes projection (in the Euclidean norm) onto X'.

IV. ADMOM FOR NTF

In this section, we adopt the approach of Section III-A and
develop an ADMoM-based NTF algorithm. At first, we must
put the NTF problem (1) into ADMoM form. Towards this end,
we introduce auxiliary variables A € RIXF B e RI*F, and
C € RE*F and consider the equivalent optimization problem

fx(A,B,C) + g(A) + ¢(B) + »(C)

min
A ABB,CC -
subjectto A—A=0B-B=0,C—-C=0, (8

where, for any matrix argument M,

0, ifM2>o0,
00, otherwise.

g(M) = {)

We introduce the dual variables Yo € RI*F, Yg € R/*F,
and Yo € REXF and the vector of penalty terms

LIAVAS AND SIDIROPOULOS: PARALLEL ALGORITHMS FOR CONSTRAINED TENSOR FACTORIZATION VIA ADMoM

p = [pa pB pc]T. The augmented Lagrangian is given in
(10), at the bottom of the page.
The ADMoM for problem (8) is as follows:

(Ak+1, BFH1 Ck+1) _ aigénci:n(fl(A7 B,C)

+Yh+ A+ 22 A - AF|2
+Yh « B+ 2B - B}

+YE«C+ 22| Ic - CHE)

- 1

Ak+l _ (Ak+1 4 p_YZ>
A +

~ 1

Bk+1 — (Bk+1 + p_YIII%>
B +

~ . 1 .

oo = e s Lye)

e +

YEL =Yk 4 pa (Ak+1 _ Akﬂ)
YES =YE 4 pp (B’“+1 = Bk“)
YE =Y+ pe (Ck+1 _ ckJrl) . N

The minimization problem in the first line of (11) is non-convex.
Using the equivalent expressions for fx in (4), we propose the
alternating optimization scheme of (13) at the bottom of the
page. The updates of (12) can be executed either for a predeter-
mined number of iterations, or until convergence.> We observe

5In our implementations, we execute these updates once per ADMoM itera-
tion.

5453

that, during each ADMoM iteration, we avoid the solution of
constrained optimization problems. This seems favorable, espe-
cially in the cases where the size of the problem is (very) large.

We note that A*, B%, and C* are not necessarily non-neg-
ative. They become non-negative (or, at least, their negative
elements become very small) upon convergence. On the other
hand, A*, B* and C* are by construction non-negative.

A. Computational Complexity per Iteration

Each ADMoM iteration consists of simple matrix operations.
Thus, rough estimates of its computational complexity can be
easily derived (of course, accurate estimates can be derived after
fixing the algorithms that implement the matrix operations).

A rough estimate for the computational complexity of the up-
date of A% (see the first update in (12)) can be derived as fol-
lows:

1) O(nF + IF) for the computation of the term X1 (C* @
B*) + paAF — Y%, where n is the number of nonzero
elements of tensor X (also of matrix X(1)). Note that n =
IJK for dense tensors, but for sparse tensors n < I.JK.
This is because the product X()(C* ©® B*) can be com-
puted with 3nF flops, by exploiting sparsity and the struc-
ture of the Khatri-Rao product [27]-[29]. With 5nF flops,
it is possible to parallelize this computation [21]. Efficient
(in terms of favorable memory access pattern) in-place
computation of all three products needed for the update of
A* B* CF from a single copy of X has been recently
considered in [30], which also features potential flop gains
as a side-benefit.

2) O((K + J)F?) for the computation of the term (C* @
B*)T(C*k ® B*) + palr, and O(F3) for its Cholesky

LP(A7B7 C7A7]~37@7YA7YB3YC) = f&(A7B7 C) +g(A) + g(B) + g(é)

+ YA LA - Al

A-A)+
+ Y« (B-B)+ 2 |B-B|}
CcC-C)+

+ Yo (I - il (10)
AR argmin (X0 - A(CH @ B [} - Yh« A+ 2 A - A¥)
= (X(l)(ck © BF) 4 pa Ak - fo)) ((Ck © BX)T(C* @ BF) +pAIF)71,
B —argmin (X% - B(CH© AM)T 5+ Yh + B+ 2B - B3)
— (X(Q)(Ck © AR 1 pp B _Yg> ((Ck @Ak+1)T(Ck@Ak+1)+pBIF)*1,
Cch+l :argénin (%HX('Z) ~CB* o AF T3 + Y&+ C+ %HC - Ckﬁ?)
- (x<3>(Bk+1 ® AR 4+ peCF — Yg) (B © AMH)T (B © AM) 4 polp) . (12)

5454

decomposition. This is because (C* @ B¥)T(C* @ BF) =
(€)' ck)e (B4 BF).
3) O(F?I) for the computation of the system solution that
gives the updated value A*+!,
Analogous estimates can be derived for the updates of B¥ and
CF. Finally, the updates of the auxiliary and dual variables re-
quire, in total, O ((I + J + K)F') arithmetic operations.

B. Convergence

Let Z := (A,B,C,A,B,C,YA,Yg,Y¢). It can be
proven that Z is a Karush-Kuhn-Tucker (KKT) point for the
NTF problem (8) if

(X<1> ~ACO B)T) (COB)—Ya =0

(x<2> ~B(CoA)T)(COA)-Yp =0

S N’

(X<3> ~CBoAT)BOA)-Yc=0

A-A=0B-B=0,C-C=0

YA < O:YB < OaYC SO

YA®A=0,Ys®B=0,Yc®C=0. (13

Proposition 1: Let {Z"} be a sequence generated by
ADMoM for NTF that satisfies condition

lim (Z*! - Z%) = 0.

Then, any accumulation point of {Z*} is a KKT point
of problem (8). Consequently, any accumulation point of
{AF B* C*} is a KKT point of problem (1).
Proof: The proof follows closely the steps of the proof of
Proposition 2.1 of [31] and is omitted.6 O
Proposition 1 implies that, whenever {Z*} converges, it con-
verges to a KKT point. We will further discuss ADMoM con-
vergence from a practical point of view in the section with the
numerical experiments.

C. Stopping Criteria

The primal residual for variable A* is defined as

P4 = A* — AF, (15)

while quantity

D% = pa(AF — AR) (16)
can be viewed as a dual feasibility residual (see [26, Section
3.3]). We analogously define P, DY, P&, and DY,.

We stop the algorithm if all primal and dual residuals are suf-
ficiently small. More specifically, we introduce small positive

constants €**> and €™ and consider P and D% small if

IPhle < VIFE™ + & max { | A% |, |A*|F } (17)
D | < VIFe™ + &Y | . (18)

6See report [32] for a detailed proof.

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 63, NO. 20, OCTOBER 15, 2015

Analogous conditions apply for the other residuals. Reasonable
values for € are €' < 102, while the value of €*®* depends
on the scale of the values of the latent factors.

We note that stopping criteria (17) and (18) involve quan-
tities of the size of the latent factors which, in most cases, is
small compared to the size of the tensor. Thus, their computa-
tion, even during every ADMoM iteration, is not computation-
ally demanding.

D. Varying Penalty Parameters

We have found very useful in practice to vary the values of
each one of the penalty parameters, pa, pB, and pc, depending
on the size of the corresponding primal and dual residuals (see
[26, Section 3.4]). More specifically, the penalty parameters
pkp, for M = A, B, C, are updated as follows:

Tk, i [PRalle > plDE e,
i 4 i
Pt =S pky/riem, Af DR e > plPEylle, (19

e otherwise,

where g1 > 1, 7" > 1, and 79°°" > 1 are the adaptation pa-
rameters. Large values of png place large penalty on violations
of primal feasibility, leading to small primal residuals, while
small values of png tend to reduce the dual residuals.

E. ADMoM for Tensor Factorization With Structural
Constraints

ADMOoM can easily handle certain structural constraints on
the latent factors [26], [33]. For example, if we want to solve
an NTF problem with the added constraint that the number of
nonzero elements of A is lower than or equal to a given number
ca, then we can adopt an approach similar to that followed in
Section IV with the only difference being that, instead of using
g(A) defined in (9), we use g., (A) where, for any matrix ar-
gument M,

ge(M) := {

The only difference between the ADMoM for this case and
the one presented in (11) and (12) is in the update of Ak,
More specifically, instead of using projection onto the set of
non-negative matrices, we must use projection onto the set
of non-negative matrices with at most co nonzero elements,
which can be easily computed through sorting of the elements
of A%, Using analogous arguments, we can incorporate into
our ADMoM framework box or other set constraints on the
latent factors. The development of the corresponding ADMoM
is almost trivial if projection onto the constraint set is easy.

Thorough study of ADMoM-based algorithms for tensor fac-
torization and/or completion with more complicated structural
constraints is a topic of future research.

0, ifM>0and|Mlo<ec,

oo, otherwise. (20)

V. DISTRIBUTED ADMOM FOR LARGE NTF

In this section, we assume that all dimensions of tensor X
are large and derive an ADMoM-based NTF that is suitable for
parallel implementation. Of course, our framework can handle
the cases where only one or two of the dimensions of X are
large.

LIAVAS AND SIDIROPOULOS: PARALLEL ALGORITHMS FOR CONSTRAINED TENSOR FACTORIZATION VIA ADMoM

A. Matrix Unfoldings in Terms of Partitioned Matrix Factors

Let W = [A, B, C], and A, B, and C be partitioned as
A B, C,
A= : ,B = : ,C = : 21
Axn, B, Cn,
with A,,, € Rha>¥ forn, = 1,. NA ZM 1 Iny =1,
B,, € R7"s*F forng =1,.. NB, A . J and
CncEHK"GXF,fornC:1,...,NC,ZnC 1K =K.

We first derive partitionings of the matrix unfoldings of W
in terms of (the blocks of) matrices A, B, and C. Towards this
end, we write W) as

- Al - - Cl T
= | . |oB
LA, LCne
T Ay T CieoB 7\ "
—ANA- _CNC@B
F AL
= C | ([(CroB)” (Cn. ©@B)T)).
-A'NA-

Thus, W) can be partitioned as

1 1
wi) wiL,
wl = : - : ,
3 . K
Wg\fzhl W‘(’ViNc

where the (n.4,n¢)-th block of W) is equal to the I,,, x
(JK,.) matrix W) .. = A,,(Cn, ® B)T, for ng =
1,...,Nyandne =1,...,N¢.

Similarlgf it can be shown that W(2) can be partitioned into
blocks Wiz e = Bpy(Cre ® AT, of dimensions J,,, x
(IK,,),forng =1,. ..,J\B andnc =1,...,No,and W®
can be partitioned into blocks Wﬁf’gnB =C,.(B,, ® A)T,

5455

of dimensions K,,, x (IJ,,,),forng =1,...,Ncandng =
1,...,NgJ
If we partition X1, X and X3 accordingly, then we can

write

Na Ne
> \PinAnc Ay (Che ©B) |7

na= lng 1

Z Z HXnB no TLB(CHCQA)TH%’

np= ITLC 1
Nz Np

SDIPDIE

ne=1lng=1

fx(A,B,C)

= Cao(Bry ©A)[3.

(22)

These expressions will be fundamental for the development of
the distributed ADMoM for large NTF.
B. Distributed ADMoM for Large NTF

In order to put the large NTF problem into ADMoM form,

we introduce auxiliary variables A = [AT ... AT 17, with
A, eR"axF forny =1,...,N4,B =[BT - B’;C,B] ,
with BnB~ € RInpXE, for ng = 1,...,Np, and
Cc = [CT C%C} , with C,, € RK“CXF, for
ne =1,..., No, and consider the equivalent problem
Na
min _ fx(A,B,C)+) g(A,,)
AABB.CC sl
JVB NC"
np=1 no=1
subject to AnA—AnA: na=1,..., Ny,
BanﬁnBZO, TLB:].,...,NB,
Cho —Cpno =0, ne=1,...,Ng. (24)
If we introduce dual variables Yo = [Y} --- Y;;NA]T’
with Yo, € R™a*F forny = 1,....N4, Yp =
Yg -- YgA_B}T, with Yg, € R7s*F for ng =
1,...,Np,and Yo = [Y{, - YENA]T, with Y, , €

RE~e*F forng = 1,..., N, the augmented Lagrangian is
written as in (23) at the bottom of the page.

7An extension of the above partitioning scheme to higher order tensors ap-
pears in Appendix A.

Ny Np Ne
Lp(A7B7C7A7Bvc7YA7YBsYC) :fX(A,B7C) + Z g(AnA) + Z g(BnB) + Z (C)
na=1 np=1 ne=1
Na P
- A .
+ Z (YAnA (A, —Any)+ THAHA - A”AH%‘)
na=
ak p
B -
"3 (Ys,, * Boy — Buy) + 22| Bay — Bay)
d p
C -
Z (Crg nc - Cnc‘) THCHC - Cnc”%‘) : (23)

5456

The ADMoM for this problem is as follows:
(AR BEFL CFHl)y = argmin <f§(A,B, C)

[l

Na
PA :
+ 30 (YA, * A+ 22 AL - AL JIE)
na=1
Ng p
B
+ Y. (Yh,, *Buo + 5 IBas — B I%)
’I’LB:].
N¢ p
C
+ 3 (Yh,, *Coc + 2ENCu. — L))
no=1
. 1
k+1 k+1 k _
AnA - (AnA +P_A AnA>+a nA—17 "aNAa
1
BiiT = (Bigl + —Y§) ,ng=1,...,Ng,
PB "B +
. 1
kE+1 _ kE+1 k —
Cnc = (Cnc +pCYC"C> ,hg=1,...,Ng,
Yiti :YkAnA +pa (AkH ARt) sma=1...,Na,
Y]I;tjlg :anB +,OB (Bk+1 Bk+1) , hp = ,. .. ,:\‘737
Y& =YL +po (ChT-CELY) ine=1,..., No. (25)

The minimization problem in the first line of (25) is non-convex.
Based on (22), we propose the alternating optimization scheme
given in (26) at the bottom of the page.

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 63, NO. 20, OCTOBER 15, 2015

Again, during each ADMoM iteration, we avoid the solution
of constrained optimization problems. Furthermore, and more
importantly, having computed all algorithm quantities at itera-
tion k, the updates of AnA, forng = 1,..., N4, are indepen-
dent and can be computed in parallel. Then, we can compute in
parallel the updates of B,, g>forng =1,..., Ng, and, finally,
the updates of Cn ,forne =1,...,Ne.

We note that we can solve problem (24) using the central-
ized ADMoM of Section IV. In fact, if we initialize the corre-
sponding quantities of the two algorithms with the same values,
then the two algorithms evolve in exactly the same way. As a
result, the study (for example, convergence analysis and/or nu-
merical behavior) of one of them is sufficient for the character-
ization of both.

Thus, via the distributed ADMoM, we simply uncover the in-
herent parallelism in the updates of the blocks of A*, B¥, and
C*. In Appendix B, we present a detailed proof of the equiva-
lence of these two forms of ADMoM NTF.

C. A Parallel Implementation of ADMoM for Large NTF

In the sequel, we briefly describe a simple implementation of
ADMoM for large NTF on a mesh-type architecture. In order to
keep the presentation simple, we assume that (1) N4 = Np =
N¢ = N and (2) each of the matrix unfoldings X, X(®) and
X) has been split into N2 blocks, with their (, §)-th blocks
stored at the (i, j)-th processing element, for i,5 = 1,..., N
(for related results in the matrix factorization context see [34]).

Ak+1

nA ng= 1
. ((z X0 @B’“)) b oAk
no=1

No
; 3 ; PA
N arﬁmln ((Z _” nA,nC - 71A(szc © Bk)Tl%> + Yf&nA * AnA + THA"A 71A”F>

YZnA>

-1

JVC
((Y (¢t eBHT(CE, @B’“)) +pAIF> ,forna=1,...,Ny,

ne=1

No
; G 3 B
Bﬁ,;l arg min ((Z _” nB,nc - 718(020 © AIle)T”%') + Y]k3nB * B’VLB + 7||Bn3

_ Yl’%n3>

1
Ak+1)> +PBIF> ,forngp=1,...,Np,

"B neg=1
<(S X3, (Ch @A’””) +puB,
no=1
Ng
<<z<czC@Ak+1> ct o
ne=1

Ng
1
CfLJCrl _ argmin ((Z §||X5i3c),,713 ~C,, <B2;1

no np=1

(< Z X”C TLB Bﬁ;;l © Ak+1)> * pCéZC

nBI

N
((ZB (Bf{;l @ Alm“rl) (B’{\;Zl @ Ak+1

’I’lB:].

1
)> +/~)CIF> , forng =1,...,Ne¢.

7LB|F>

G pc
Ak+1)T|%«“> +Yénc *Chrp + = ||Chp — nc||F>

2

anc>

(26)

LIAVAS AND SIDIROPOULOS: PARALLEL ALGORITHMS FOR CONSTRAINED TENSOR FACTORIZATION VIA ADMoM

A k k
ck, B* C3.B
1)
) X
Xl’l 1 b 1)
x{)(ck o B¥) . xickoB)

(ck oBMT(Ct oB")

] (ct oBHT(Cf o BY) |

l ck, B¥ l C%,B*
xM x,
N1 (1 3 k ’ 2 (1) k k
Xyi(CT e BY) i=1Xn,(CF @ BY)

(ct oBMT(Ck 0 BY)

i (cF oBMT(CF o BF)

Cck, B* Cck BF
x (1) xM
21 (1) ke & ' 2 1)k k
X351 (CY 0 BF) Yiz1 X, ; (G ©BY)

Y2 (¢t oBMT(CloBY) ‘

5457

ck Bk
Ak
(1) Aj :
XI,N YZ L A]{+l
1
k k
ck.B
Ak
(1) A 3
Xy N i | AkH
2
k k
lcN,B
Ak
(1) Ay
b SN Yj,gN = AkH
N

i (CFoBMT(ck o Bk

Fig. 1. Distributed computation of A5+ forn = 1,...,N.

In Fig. 1, we depict the data flow for the computation of the
blocks of A**1. The inputs to the N top processing elements
are Ck, forn = 1,..., N, as well as B, which is common
input to all top processing elements. Each processing element
uses its inputs and memory contents and computes certain par-
tial matrix sums. The communications between the processing
elements are local and involve either the forwarding of the terms
Ck forn =1,...,N, and B* (top-down communication), or

7 -
the forwarding of the partial sums >°7_; XS’; (CF ® B*) and

{:1(Cf ® BF)T(CF ® BF) (left-right communication), of
dimensions % x F and F x F, respectively. The computation
of AET1 forn = 1,..., N, amounts to solution of p systems
of linear equations with common coefficient matrix and takes
place at the rightmost computing elements.

Then, using a similar strategy, we can compute the blocks of
B**! and, finally, the blocks of C**!. The updates of the aux-
iliary and dual variables are very simple and can be performed
locally (see at the rightmost computing elements of Fig. 1).

As we see in Fig. 1, in order to compute the blocks of the
A**1 we use the appropriate blocks of C¥, forn =1,..., N,
as well as the whole matrix B¥. When the size of B” is not
very large, the communication cost is not prohibitive (analogous
arguments holds for the computation of the blocks of B**! and
C**1). Of course, if one or more latent factors are very large,
the communication cost significantly increases.

Concerning the distributed implementation of ADMoM for
large tensor factorization with structural constraints other than
the non-negativity of the latent factors, we note that, if the size
of the latent factors is not very large, the communication cost
of gathering together the blocks of the auxiliary variables Ak
B*, and C*, is not prohibitive, enabling the computation of
more complicated non-separable projections, like, for example,
projection onto the set of non-negative matrices with a certain
maximum number of non-negative elements.

Actual implementation of the distributed ADMoM for large
NTF will depend on the specific parallel architecture and pro-
gramming environment used. Since our aim in this paper is
to introduce the basic methodology and computational frame-
work, we leave those customizations and performance tune-ups,
which are further away from the signal processing core, for
follow-up work to be reported in the high-performance com-
puting literature.

VI. NUMERICAL EXPERIMENTS

A. Comparison of ADMoM With NALS and NLS

In our numerical experiments, we compare ADMoM NTF
with (1) NALS NTF, as implemented in the parafac routine
of the N-way toolbox for Matlab [35] and (2) NTF using the
nonlinear least-squares solvers (NLS), as implemented in the
sdf_nls routine of tensorlab [36] (with the non-negativity op-
tion turned on in both cases). In all cases, we use random ini-
tialization. More specifically, the initialization of the ADMoM
NTF is as follows. We give non-negative random values to B®
and C° and zero values to the other state variables of the algo-
rithm, namely, A°, B®, C°, Y%, YR, and Y2 8

In extensive numerical experiments, we have observed that
the relative performance of the algorithms depends on the size
and rank of the tensor as well as the additive noise power. Thus,
we consider 12 different scenarios, corresponding to the combi-
nations of the following cases:

1) one, two, or three tensor dimensions are large;

2) rank I is small or large;

3) additive noise is weak or strong.

8In certain cases, it may be possible to employ algebraic initialization
schemes (e.g., see [16] and references therein), but for NTF we observed that
they perform (very) well only in (very) high SNR cases. In the same vein,
projecting an unconstrained decomposition to force non-negativity a posteriori,
only seems to work in high SNR cases.

5458

For each scenario, we generate R = 50 realizations of tensor X
as follows. We generate random matrices A°, B, and C° with
i.i.d. U[0, 1] elements (using the rand command of Matlab) and
construct X = [A°,B?, C°] + N, where N consists of i.i.d.
N(0,0%) elements. For each realization, we solve the NTF
problem with (1) NALS (parafac), (2) NLS (sdf nls), and
(3) ADMoM.

We designed our experiments so that, upon convergence, all
algorithms achieve practically the same relative factorization
error. Towards this end, we set the values of the stopping pa-
rameters as follows: the parameter Options(1) of parafac is
set to Options(1) = 105, the parameter TolFun of sdf nls
is set to TolFun = 108, and the ADMoM stopping parameters
are set to €2P® = 10~ % and €' = 104,

In all cases, the initial values of the ADMoM penalty terms
are pp = 1, for M = A, B, C, while the ADMoM penalty
term adaptation parameters are o = 8, 71 = 4, rdeer — 2,

In practice, convergence properties of ADMoM NTF depend
on the (random) initialization point. In some cases, convergence
may be quite fast while, in others, it may be quite slow. As we
shall see in the sequel, this phenomenon seems more prominent
in the cases where rank F' is large. In order to overcome the
slow convergence properties associated with bad initial points,
we adopted the following strategy. We execute ADMoM NTF
for up to nmax = 400 iterations (we have observed that, in the
great majority of the cases in the scenarios we examined, this
number of iterations is sufficient for convergence when we start
from a good initial point). If ADMoM does not converge within
Nmax 1terations, then we restart it from another random initial
point; we repeat this procedure until ADMoM converges.?

Before proceeding, we mention that al/ the algorithms con-
verged in all the realizations we run.

Since an accurate statement about the computational com-
plexity per iteration of parafac is not easy, the metric we used
for comparison of the algorithms is the cputime of Matlab. De-
spite the fact that cputime is strongly dependent on the com-
puter hardware and the actual algorithm implementation, we
feel that it is a useful metric for the assessment of the relative ef-
ficiency of the algorithms.!0 The reason is that we used carefully
developed, publicly available Matlab toolbox implementations
of the baseline algorithms, and we carefully coded our ADMoM
NTF implementation.

In Table I, we present the mean and standard deviation of
cputime, in seconds, denoted as mean(t) and std(t), respec-
tively, for NALS, NLS, and ADMoM. We also present the mean
relative factorization error (which is common to all algorithms
up to four decimal digits), defined as

1~ [IX; — [Ak: B, Cillr
mean(RFE) := — — ——)
D e

where X, is the k-th noisy tensor realization and A, By, and
C}, are the factors returned by a factorization algorithm. Our
observations are as follows:
1) There is no clear winner. Certainly, for high ranks, NLS
has very good behavior.
2) In general, both NALS and NLS have more predictable
behavior than ADMoM. Especially for high ranks, the

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 63, NO. 20, OCTOBER 15, 2015

70 T T T T T

50 B

40 B

cputime

20+] ! — .

") Y ot 7

L \ 1
2 st N _ g ‘,‘\,' U V- a— Y .,

0 L L I I L
0 5 10 15 20 25 30 35 40 45 50

Realization r

Fig. 2. cputime for I/ = 3000 J = K = 50, F = 3,and 03, = 1072,
NALS (blue solid line), NLS (green dashed line), ADMoM (red dotted-dashed
line).

cputime

. .
0 5 10 15 20 25 30 35 40 45 50
Realization r

Fig. 3. cputime for I = 3000, J = K = 50, F = 30 and 0%, = 10 2.
NALS (blue solid line), NLS (green dashed line), ADMoM (red dotted-dashed
line).

cputime of our implementation of ADMoM has large
variance.

3) For small ranks, ADMoM looks more competitive and, in
the cases where one dimension is much larger than the
other two, it behaves very well (we shall say more on this
later).

In order to get a better feeling of the behavior of the three algo-
rithms, we plot their cputime, along the 50 realizations we used
to obtain the averages of Table I, for two different scenarios. In
Fig. 2, we consider the case for I = 3000, J = K = 50, F
= 3 and o3 = 1072. We observe that the behavior of the
algorithms is stable, in the sense that there is a clear ordering
among the three algorithms, with no large variations. In Fig. 3,
we keep the dimensions and the noise power the same as before

90f course, one may think of more elaborate strategies such as, for example,
running in parallel more than one versions of the algorithm, with different ini-
tializations.

10For our experiments, we run Matlab 2014a on a MacBook Pro with a 2.5
GHz Intel Core i7 Intel processor and 16 GB RAM.

LIAVAS AND SIDIROPOULOS: PARALLEL ALGORITHMS FOR CONSTRAINED TENSOR FACTORIZATION VIA ADMoM

5459

TABLE I
MEAN RELATIVE FACTORIZATION ERROR AND MEAN AND STANDARD DEVIATION OF cputime, IN SEC, FOR NALS, NLS AND ADMOM NTF
. NALS NLS ADMoM NALS NLS ADMoM
Size F X mean(RFE) mean(t) mean(t) mean(t) std(t) std(t) std(t)
3000 x 50 x 50 3 1072 0.2156 12.4010 17.2584 7.1806 1.4770 6.9348 3.8647
10~ 0.0221 16.6500 16.5962 7.5098 1.9625 3.3589 4.2499
30 1072 0.0260 212.0598 115.7030 110.4128 11.4579 8.0409 91.4882
104 0.0026 270.6671 117.2152 148.5052 11.5324 11.3154 119.0542
400 x 400 x 50 3 1072 0.2175 8.6174 4.7124 8.0710 0.9264 1.4596 4.4952
104 0.0222 11.0670 4.8916 8.3614 1.2075 1.6443 3.1833
30 1072 0.0260 71.1950 31.7546 106.1362 8.2119 3.2162 76.5743
10—¢ 0.0026 92.4838 31.1690 94.5734 7.9280 3.7062 88.1671
200 x 200 x 200 5 1072 0.1400 10.9142 4.1756 12.5190 1.2783 0.7915 2.1334
10—4 0.0143 14.2882 4.1070 12.6184 2.5817 0.9059 2.1616
30 1072 0.0260 55.0806 16.1838 33.9268 4.4886 1.3649 12.2687
10—4 0.0026 70.0238 16.7624 32.1670 6.5737 1.4152 10.0182
TABLE II

MEAN RELATIVE FACTORIZATION ERROR AND MEAN AND STANDARD DEVIATION OF cputime, IN SEC, FOR NALS, NLS AND
ADMOM NTF FoR I = 10*,J = K = 50, F = 10, AND 0%, = 10 2.

NALS
mean(RFE)

NLS
mean(RFE)

ADMoM
mean(RFE)

NALS
mean(t)

ADMoM
std(t)

ADMoM
mean(t)

NALS
std(t)

NLS
std(t)

NLS
mean(t)

0.0752 0.0758 0.0751 116.0722

201.6556 30.6460 19.8483 38.5401 16.5823

and increase the rank to ' = 30. We observe that the variance
of ADMoM cputime has significantly increased, while both
NALS and NLS show stable behavior. When ADMoM starts
from a good initial point, it converges faster than NALS and
NLS while, when it starts from bad initial points, it needs one
or more restarts.

In order to check if ADMoM maintains its advantage over
NALS and NLS in the cases where one dimension is very large,
compared with the other two, and the rank is relatively small, we
performed an experiment with I = 10%,J = K =50, F = 10,
and 0% = 10~ 2. However, in this case, we used somewhat re-
laxed stopping conditions for all algorithms; more specifically,
we used Options(1) = 10 3, TolFun = 10 6, €3PS = 10 3,
and e'*! = 1073, In Table I, we present the mean relative factor-
ization errors and the mean and standard deviation of cputime.
As we can see, both NALS and NLS are slightly less accurate
than ADMoM, in terms of relative factorization error, which
means that their stopping criteria are more relaxed. In terms of
cputime, we see that ADMoM is much faster than both NALS
and NLS. In Fig. 4, we plot the cputime of the three algorithms
for the 50 realizations of the experiment. Again, we see the sig-
nificant difference between ADMoM and both NALS and NLS.
We note that if we had used as values of the stopping parame-
ters those of our initial experiments, then the gain of ADMoM,
compared with NALS and NLS, would have been much greater.
However, we believe that we have made clear that, in this case,
ADMOoM has a clear advantage. We have made analogous ob-
servations for larger I.

B. A Closer Look at ADMoM

In order to get a more detailed view of the convergence prop-
erties of ADMoM, we return to the scenario with I = 3000,
J =K =50, F = 30, and 012\, 10~2, whose cputime
we plot in Fig. 3. We recall that, in order to converge in this
case, ADMoM needed often restarts. In Fig. 5, we plot the
total number of ADMoM iterations, denoted as iters, and
the number of ADMoM iterations during its final way to

300 T T T T T

250 \ g ~

N

o

=)
T
L

cputime
&
g
T

100

50

S - Y -
g AP e B
- SN R/ N,

0 5 10 15 20 25 30 35 40 45 50
Realization r

Fig. 4. cputime for I = 10%, J = K = 50, F = 10, and %, = 1072.
NALS (blue solid line), NLS (green dashed line), ADMoM (red dotted-dashed
line)..

2500 -

—iters B

-mod (iters, 400)

N
o
S
=)
T
L

1500 &

i

.
5 10 15 20 25 30 35 40 45 50
Realization r

1=}
S
S

ADMoM Iterations

500

Fig. 5. Number of ADMoM iterations for I = 3000, J = 50 = K = 50, F
= 30, and 3, = 1072%; iters (blue line), and mod(iters, nmax) (green
line).

5460

convergence, which is equal to mod{iters, nyay). As ex-
pected, iters is compatible with the corresponding cputime
(see the red line in Fig. 3). Quantity mod{iters, Nmax)
shows how many iterations are required for convergence if
ADMOoM always starts from good initial points. We observe
that mod(iters, nya,y) is quite stable around its mean, which
is approximately equal to 320. This gives an estimate of the
fastest possible ADMoM convergence in this case.

C. ADMoM NTF With Under- and Over-Estimated Rank

In the sequel, we consider ADMoM behavior in the cases
where we under- or over-estimate the true rank, in both noisy
and noiseless cases. Towards this end, we fix I = J = K
= 100 and F = 30, and investigate ADMoM with exact
rank as well as with rank under- and over-estimated by 1. We
expect that, in this case, all versions of ADMoM may need
restarts. In the sequel, we examine the influence of under-
and over-estimating the rank on (1) factorization accuracy and
(2) number of restarts. Of course, in under-modeled cases,
we expect that the relative factorization error will be higher
than that of the true rank case. However, we know nothing in
advance about ADMoM behavior in over-modeled cases. In
order to get insight into these issues, we perform the following
experiment. We set stopping parameters €% = ¢! = 1074
and run each of the three versions of ADMoM for npmax =
500 iterations. For each version, we proceed as follows: if
it converges within n,,,, iterations, we stop; otherwise, we
restart, and repeat until convergence. Thus, finally, the number
of iterations for each ADMoM version will be a multiple of
Nmax- FOr the computation of the trajectory of the mean relative
factorization error we use only the last ny,,x values; in this way,
we avoid the influence of bad initial points. However, we keep
count of the restarts of each version and, thus, can assess the
time it needs to achieve convergence.

In Fig. 6, we plot the average relative factorization errors
(computed over 50 realizations in the way we mentioned
before), versus the iteration number, for 012\, = 1072. As was
expected, the ADMoM version with under-estimated rank
converges to a higher relative factorization error. We observe
that the average relative factorization errors for ADMoM
with exact rank and rank over-estimated by 1 follow almost
the same trajectory. The average numbers of restarts for the
three ADMoM versions are mean(restartSexacs) = 1.08,
mean(restartsypger) = 1.22, and mean(restartsyyey) = 1.92.
Thus, in the cases of over-estimated rank, we finally achieve
a relative factorization error trajectory as good as in the exact
rank case, but we may need more restarts and, thus, more
time. This implies that the probability of bad initial points may
increase.

In Fig. 7, we plot the same quantities for noiseless data.
Again, the ADMoM behavior in the under-modeled case is
as expected. Interestingly, we observe that there is no relative
factorization error floor neither for the exact rank nor for the
over-estimated by 1 rank case. Reasonably, after a certain
precision level, the over-modeled case converges slower. The
average numbers of restarts for the three ADMoM versions are
mean(restartSeyacs) = 1.14, mean(restartsypgey) = 1.54, and
mean(restartsyyer) = 1.06.

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 63, NO. 20, OCTOBER 15, 2015

0.055 1

Exact

----- = Overmodeled
Undermodeled

0.05

0.035

0.03

0.025 A

0.02 L L L L L ! L L I
50 100 150 200 250 300 350 400 450 500

Iteration k

Fig. 6. Average relative factorization errors for I = J = K = 100, F' = 30,
and 03, = 0.1. Exact rank case (solid blue line), over-estimated rank by 1
(dotted-dashed red line), underestimated rank by 1 (green dashed line).

107 4
w10 E
(£
~
=]

o
o
g 40 4

105k Exact i

‘‘‘‘‘ - Overmodeled
Undermodeled
10’6 1 L L 1 L L 1 L L
0 50 100 150 200 250 300 350 400 450 500
Iteration k
Fig. 7. Average relative factorization errors for noiseless case with I = J

= K = 100 and F = 30. Exact rank case (solid blue line), over-estimated
rank by 1 (dotted-dashed red line), underestimated rank by 1 (green dashed line).

We have observed similar behavior for more drastic rank
under- and over-estimation.

D. ADMoM for NTF With Box-Linear Constraints

In our final experiment, we briefly consider NTF for the case
where two of the latent factors, say A and B, are non-negative
while C is subject to box-linear constraints in the sense that each
row of C is a probability mass function, that is, has non-negative
elements with sum equal to 1.

The only difference between the ADMoM for this case and
the ADMoM for NTF is that, instead of computing C**! as the
solution of an unconstrained least-squares problem, we compute
it as the solution of linearly constrained least-squares; note that
both cases exhibit closed-form solutions.

In Fig. 8, we illustrate the behavior of ADMoM in this case
by plotting the trajectories of the norms of the average (over 50
realizations) relative estimation errors of the latent factors, as
computed by function cpderr of tensorlab, versus the iteration
number, for a noiseless case with I = J = 100, K = 50 and F
= b. We observe that ADMoM works to very high precision.

LIAVAS AND SIDIROPOULOS: PARALLEL ALGORITHMS FOR CONSTRAINED TENSOR FACTORIZATION VIA ADMoM

Factor relative error
: o
L
-
;

.
0 50 100 150 200 250 300 350 400 450 500
Iteration k

Fig. 8. Average relative estimation errors for noiseless case with I = J =
100, K = 50 and F' = 20. Factors A (solid blue line), B (dashed red line),
and C (green dotted-dashed line).

E. Discussion

Our numerical results are encouraging and suggest that, in
many cases, ADMoM NTF can efficiently achieve close to
state-of-the-art factorization accuracy. The fact that ADMoM
is suitable for high-performance parallel implementation (the
first NTF algorithm with this property, as far as we know) can
only increase its potential. Thus, we believe that it will be a
valuable tool in the NTF toolbox.

Obviously, in order to fully uncover the pros and cons of
ADMoM NTF, more extensive experimentation is required. But
our intention in this paper is to give the fundamental ideas and
some basic performance metrics. Experiments with real-world
data (using ADMoM for tensor completion and factorization)
as well as constraints well beyond non-negativity are ongoing
work.

A weak point of the version of ADMoM we developed in this
manuscript is the high cputime variance in cases of high rank,
where ADMoM seems more sensitive than other algorithms
with respect to initialization. The improvement of the ADMoM
behavior in these cases remains a very interesting problem. To
achieve this goal, it might be possible to combine elements of
NLS and ADMoM and derive a more efficient algorithm. How-
ever, more research efforts are needed in this direction.

As we mentioned, if the centralized and the distributed algo-
rithms start from the same initial point, they evolve in exactly
the same way. Thus, distributed ADMoM inherits the conver-
gence properties of centralized ADMoM.

VII. CONCLUSION

Motivated by emerging big data applications, involving
multi-way tensor data, and the ensuing need for scalable tensor
factorization tools, we developed a new constrained tensor
factorization framework based on the ADMoM. We used
non-negative factorization of third order tensors as an example
to work out the main ideas, but our approach can be generalized
to higher order tensors, many other types of constraints on the
latent factors, as well as other tensor factorizations and tensor

5461

completion. Our numerical experiments were encouraging,
indicating that, in many cases, the ADMoM-based NTF has
high potential as an alternative to the state-of-the-art and,
in some cases, it may become state-of-the-art. The fact that
it is naturally amenable to parallel implementation can only
increase its potential. The improvement of its behavior in the
high rank cases remains a very interesting problem.

APPENDIX A
EXTENSION TO HIGHER ORDER TENSORS

In this appendix, we highlight how our approach can be ex-
tended to higher order tensors. We focus on fourth-order tensors,
with the general case being obvious. f W = [A, B, C, D], then
its matrix unfoldings satisfy relations

Wl =ADoe (CoB)T,
W® =B(D e (Co A))T,
wW® =C(Do (BeA)T,
W® =D(Co (B A))L.

Partitioning matrices A, B, C, and D as in Section V-A, we ob-
tain that matrix W1 can be partitioned into N4 X Np blocks,
with the (7, j)-th block being equal to

wl = A,D; 0 (CoB).

Analogous partitionings apply to the other matrix unfoldings.
Then, development of ADMoM NTF (centralized and dis-
tributed) is rather easy.

APPENDIX B
ON THE EQUIVALENCE OF THE CENTRALIZED AND THE
DISTRIBUTED ADMOM NTF

A simple proof of the equivalence of the centralized and the
distributed ADMoM NTF is as follows. We focus on the update
of A® of the centralized algorithm and the updates of its blocks,
AfLA, forng = 1,..., N4, of the distributed algorithm, and
prove that they are equivalent. We remind that

AR = (XW(CH O BY) + paAl - V)

((CF @ BMT(C* © BF) + paly) "

Using the partitionings of C* & B (see Section V-A), it can be
shown that

N¢
(CtoBMT(CtoBY) =) (Ck

ngo

®BMT(Ck_ o BF).

no=1

Rewriting the update of A% in terms of partitioned matrices,
we obtain (27) at the top of the next page. If we focus on a
certain block of A¥*+1 in (27), then we obtain the corresponding
update of the distributed algorithm (see (26)). We observe that
the matrix inverse in the second line of (27) is common to all
blocks, and should be computed once.

5462

k 1 1
Aftt x{ - X,
k1 1 ' 1)
ANA XSVZ;J Xg\fl,Nc
Nc

< (| Y (ck oB"T(CE, oB*) | + palr

ne=1

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 63, NO. 20, OCTOBER 15, 2015

Ck o Bk paAl - Y,
. + .
C{ch O] BlC pAA’fVA — YJL&NA
—1

27

Analogous statements hold for the updates of B*¥ and C*. The

equivalence of the updates of the rest of the variables is trivial.

Thus, in fact, using the partitionings of Section V-A, the dis-

tributed ADMoM simply uncovered the inherent parallelism of
the centralized ADMoM.

REFERENCES

[1] A. P. Liavas and N. D. Sidiropoulos, “Parallel algorithms for
large-scale constrained tensor decomposition,” presented at the IEEE
ICASSP, Brisbane, Australia, Apr. 19-24, 2015.

[2] N. D. Sidiropoulos, R. Bro, and G. Giannakis, “Parallel factor analysis
in sensor array processing,” IEEE Trans. Signal Process., vol. 48, no.
8, pp. 2377-2388, 2000.

[3] N. D. Sidiropoulos, G. Giannakis, and R. Bro, “Blind PARAFAC re-

ceivers for DS-CDMA systems,” IEEE Trans. Signal Process., vol. 48,

no. 3, pp. 810-823, 2000.

D. Nion, K. Mokios, N. D. Sidiropoulos, and A. Potamianos, “Batch

and adaptive PARAFAC-based blind separation of convolutive speech

mixtures,” IEEE Trans. Audio, Speech, Lang. Process., vol. 18, no. 6,

pp. 1193-1207, 2010.

C. Fevotte and A. Ozerov, “Notes on nonnegative tensor factoriza-

tion of the spectrogram for audio source separation: Statistical insights

and towards self-clustering of the spatial cues,” in Exploring Music

Contents, ser. Lecture Notes in Computer Science, S. Ystad, M. Ara-

maki, R. Kronland-Martinet, and K. Jensen, Eds. Berlin, Germany:

Springer, 2011, vol. 6684, pp. 102-115.

E. E. Papalexakis, C. Faloutsos, and N. D. Sidiropoulos, “Parcube:

Sparse parallelizable tensor decompositions,” in ECML/PKDD (1), ser.

Lecture Notes in Computer Science, P. A. Flach, T. D. Bie, and N.

Cristianini, Eds. New York, NY, USA: Springer, 2012, vol. 7523, pp.

521-536.

R. Bro and N. D. Sidiropoulos, “Least squares regression under uni-

modality and non-negativity constraints,” J. Chemometrics, vol. 12, pp.

223-247, 1998.

A. Cichocki, D. Mandic, C. Caiafa, A.-H. Phan, G. Zhou, Q. Zhao,

and L. De Lathauwer, “Tensor decompositions for signal processing

applications: From two-way to multiway component analysis,” IEEE

Signal Process. Mag., vol. 32, no. 2, pp. 145-163, Feb. 2014.

[9] R. Harshman, “Foundations of the PARAFAC procedure: Models and
conditions for an “explanatory” multimodal factor analysis,” UCLA
Working Papers in Phonetics, vol. 16, pp. 1-84, 1970.

[10] R.Harshman, “Determination and proof of minimum uniqueness con-
ditions for PARAFAC-1,” UCLA Working Papers in Phonetics, vol. 22,
pp. 111-117, 1972.

[11] J. Carroll and J. Chang, “Analysis of individual differences in multi-
dimensional scaling via an N-way generalization of ‘Eckart—Young’
decomposition,” Psychometrika, vol. 35, no. 3, pp. 283-319, 1970.

[12] L. Tucker, “Some mathematical notes on three-mode factor analysis,”
Psychometrika, vol. 31, no. 3, pp. 279-311, Sep. 1966.

[13] L. De Lathauwer, “Decompositions of a higher-order tensor in block
terms—Part II: Definitions and uniqueness,” SIAM J. Matrix Anal.
Appl., vol. 30, no. 3, pp. 1033-1066, 2008.

[14] A. Smilde, R. Bro, P. Geladi, and J. Wiley, Multi-Way Analysis With
Applications in the Chemical Sciences. New York, NY, USA: Wiley,
2004.

[15] C. Hillar and L.-H. Lim, “Most tensor problems are NP-hard,” 2009
[Online]. Available: http://arxiv.org/abs/0911.1393

[16] G. Tomasi and R. Bro, “A comparison of algorithms for fitting the
PARAFAC model,” Comput. Statist. Data Anal., vol. 50, no. 7, pp.
1700-1734, 2006.

[4

—

[5

—

[6

—_

[7

—

(8

[}

[17] E. Acar, D. M. Dunlavy, and T. G. Kolda, “A scalable optimization ap-
proach for fitting canonical tensor decompositions,” J. Chemometrics
vol. 25, no. 2, pp. 67-86, 2011 [Online]. Available: http://dx.doi.org/
10.1002/cem.1335

[18] L. Sorber, M. van Barel, and L. De Lathauwer, “Optimization-based
algorithms for tensor decompositions: Canonical polyadic decompo-
sition, decomposition in rank-(l., 1., 1) terms, and a new generaliza-
tion,” SIAM J. Optim., vol. 23, no. 2, pp. 695-720, 2013.

[19] Hadoop Apache [Online]. Available: http://hadoop.apache.org/

[20] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107-113, 2008.

[21] U.Kang, E. E. Papalexakis, A. Harpale, and C. Faloutsos, “Gigatensor:
scaling tensor analysis up by 100 times-algorithms and discoveries,” in
Proc. 18th ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., 2012,
pp. 316-324.

[22] N. D. Sidiropoulos, E. E. Papalexakis, and C. Faloutsos, “A parallel
algorithm for big tensor decomposition using randomly compressed
cubes (PARACOMP),” presented at the IEEE ICASSP, Florence, Italy,
May 4-9, 2014.

[23] N. D. Sidiropoulos, E. E. Papalexakis, and C. Faloutsos, ‘“Parallel ran-
domly compressed cubes: A scalable distributed architecture for big
tensor decomposition,” IEEE Signal Process. Mag., vol. 31, no. 5, pp.
57-70, Sep. 2014.

[24] A. de Almeida and A. Kibangou, “Distributed computation of tensor
decompositions in collaborative networks,” in Proc. IEEE 5th Int.
Workshop Comput. Adv. Multi-Sensor Adapt. Process. (CAMSAP),
Dec. 2013, pp. 232-235.

[25] A. de Almeida and A. Kibangou, “Distributed large-scale tensor
decomposition,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal
Process. (ICASSP), May 2014, pp. 26-30.

[26] S.Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed op-
timization and statistical learning via the alternating direction Method
of Multipliers,” Found. Trends Mach. Learn. vol. 3, no. 1, pp. 1-122,
Jan. 2011 [Online]. Available: http://dx.doi.org/10.1561/2200000016

[27] B. W. Bader and T. G. Kolda, “Efficient MATLAB computations with
sparse and factored tensors,” SIAM J. Scientif. Comput. vol. 30, no.
1, pp. 205-231, 2008 [Online]. Available: http://dx.doi.org/10.1137/
060676489

[28] T. G. Kolda and J. Sun, “Scalable tensor decompositions for multi-
aspect data mining,” in Proc. [EEE ICDM, 2008, pp. 363-372.

[29] B. W.Bader et al., Matlab Tensor Toolbox. ver. 2.5, Jan. 2012 [Online].
Available: http://www.sandia.gov/tgkolda/TensorToolbox/

[30] N.Ravindran, N. D. Sidiropoulos, S. Smith, and G. Karypis, “Memory-
efficient parallel computation of tensor and matrix products for big
tensor decomposition,” presented at the Asilomar Conf. Signals, Syst.,
Comput., Nov. 3-5, 2014.

[31] Y. Xu, W. Yin, Z. Wen, and Y. Zhang, “An alternating direction algo-
rithm for matrix completion with nonnegative factors,” Frontiers Math.
China, vol. 51, no. 2, pp. 365-384, 2010.

[32] A. P. Liavas and N. D. Sidiropoulos, “Parallel algorithms for con-
strained tensor factorization via the alternating direction method of
multipliers,” Tech. Univ. of Crete, Greece, Tech. Rep., 2014.

[33] L. Xu, B. Yu, and Y. Zhang, “An alternating direction and projection
algorithm for structure-enforced matrix factorization,” 2013 [Online].
Available: http://www.caam.rice.edu/yzhang/reports/tr1311.pdf

[34] R. Gemulla, E. Nijkamp, P. J. Haas, and Y. Sismanis, “Large-scale ma-
trix factorization with distributed stochastic gradient descent,” in Proc.
17th ACM SIGKDD Int. Conf. Knowl. Discov. Data Min. (KDD’11),
New York, NY, USA, 2011, pp. 69—77 [Online]. Available: http://doi.
acm.org/10.1145/2020408.2020426

[35] C. A. Andersson and R. Bro, The N-way Toolbox for Matlab. [Online].
Available: http://www.models.life.ku.dk/source/nwaytoolbox

[36] L. Sorber, M. Van Barel, and L. De Lathauwer, Tensorlab. ver. v2.0
[Online]. Available: http://www.tensorlab.net/

LIAVAS AND SIDIROPOULOS: PARALLEL ALGORITHMS FOR CONSTRAINED TENSOR FACTORIZATION VIA ADMoM

Athanasios P. Liavas (M’89) received the Diploma
and the Ph.D. from the Department of Computer
Engineering and Informatics, University of Patras,
Greece, and in 1989 and 1993, respectively. He
served as Assistant Professor at the Department
of Mathematics of the University of the Aegean
(2001-2004); Associate Professor (2004-2009)
and Professor (2009-present) at the Department
of Electronic and Computer Engineering at the
Technical University of Crete. His current research
interests lie in the area of signal processing and

machine learning.
Dr. Liavas is a member of the Technical Chamber of Greece.

5463

Nicholas D. Sidiropoulos (F’09) received the
Diploma in electrical engineering from the Aris-
totelian University of Thessaloniki, Greece, and
M.S. and Ph.D. degrees in electrical engineering
from the University of Maryland—College Park,
in 1988, 1990 and 1992, respectively. He served
as Assistant Professor at the University of Virginia
(1997-1999); Associate Professor at the University
of Minnesota-Minneapolis (2000-2002); Pro-
fessor at the Technical University of Crete, Greece
(2002-2011); and Professor at the University of
Minnesota-Minneapolis (2011-), where he currently holds an ADC Chair
in Digital Technology. His current research focuses primarily on signal and
tensor analytics, with applications in cognitive radio, big data, and preference
measurement.

He received the NSF/CAREER award (1998), the IEEE Signal Processing
Society (SPS) Best Paper Award (2001, 2007, 2011), and the IEEE SPS Merito-
rious Service Award (2010). He has served as IEEE SPS Distinguished Lecturer
(2008-2009), and Chair of the IEEE Signal Processing for Communications and
Networking Technical Committee (2007-2008). He received the Distinguished
Alumni Award of the Department of Electrical and Computer Engineering, Uni-
versity of Maryland, College Park (2013). He was elected Fellow of EURASIP
in 2014.

