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Hidden Convexity in QCQP with
Toeplitz-Hermitian Quadratics
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Abstract—Quadratically Constrained Quadratic Programming
(QCQP) has a broad spectrum of applications in engineering. The
general QCQP problem is NP–Hard. This article considers QCQP
with Toeplitz-Hermitian quadratics, and shows that it possesses
hidden convexity: it can always be solved in polynomial-time
via Semidefinite Relaxation followed by spectral factorization.
Furthermore, if the matrices are circulant, then the QCQP can
be equivalently reformulated as a linear program, which can be
solved very efficiently. An application to parametric power spec-
trum sensing from binary measurements is included to illustrate
the results.
Index Terms—Circulant-Toeplitz QCQP, distributed spectrum

sensing, linear programming, moving-average processes, Toeplitz-
Hermitian QCQP, semi-definite relaxation, spectral factorization.

I. INTRODUCTION

Q UADRATICALLY Constrained Quadratic Programming
(QCQP) is an important class of optimization problems
that arise in various science and engineering fields,

ranging from wireless communications and networking, (e.g.,
multiuser detection [1], multicast beamforming [2]–[4],

and the MAXCUT problem [5]), to radar (e.g., robust adaptive
radar detection [6], and optimum coded waveform design [7]),
and signal processing (e.g., parametric model-based power
spectrum sensing [8]). A QCQP can be expressed as

(1a)

(1b)

where , i.e., positive semidefinite, are
Hermitian matrices , while
are real numbers. For the special case ,
the problem is convex and can be efficiently solved to global
optimality using interior point algorithms [9]. However, the
general case of the QCQP (1) (where the quadratic constraints
(1b) involve negative semidefinite or indefinite matrices) is
non-convex and is known to be NP–Hard [10]. In fact, for an
arbitrary instance of (1), even establishing (in)feasibility is
NP–Hard. Only in certain cases, involving a small number of
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non-convex constraints (e.g., see [11]–[20]) or special problem
structure, or both (e.g., see [21]–[27]) can (1) be solved to
global optimality in polynomial time. We say that such special
instances possess hidden convexity.
A popular polynomial-time approximation strategy for ob-

taining sub-optimal solutions to (1) is that of Semidefinite Re-
laxation (SDR) [28]. Defining and utilising the cyclic
property of the trace operator, (1) can be equivalently recast
as the following rank constrained Semidefinite Programming
(SDP) problem.

(2a)

(2b)
(2c)
(2d)

Upon dropping the non-convex rank constraint, we obtain the
following rank-relaxed SDP problem

(3a)

(3b)
(3c)

whose solution yields a lower bound on the optimal value of the
cost function of (1). Note that (3) is the Lagrangian bi-dual of
(1), and can be solved efficiently using modern interior point
methods, at a worst case computational complexity of
[29]. If the optimal solution of (3) is rank-1, then its principal
component is the globally optimal solution for (1). However,
solving (3) does not solve the original NP–Hard problem (1) in
general, i.e., the rank of the optimal solution of (3) is generally
higher than 1.
In this article, we consider the special case of the non-convex

QCQP (1) where all the matrices are Toeplitz-Hermitian. No ad-
ditional structure is assumed, except (so that we always
have a valid minimization problem). It is shown that for this spe-
cial case of (1),
1) (In)feasibility can always be established in polynomial-

time; and
2) If the problem is feasible, then it can be solved to global

optimality in polynomial-time too.
Our proof uses the Toeplitz structure of the matrices to show

the tightness of SDR, although simply solving SDR for this spe-
cial case of the QCQP problem does not return a rank-1 solu-
tion in general. Instead, we use a relaxed SDP formulation for
(1) based on representation of finite autocorrelation sequences
(FAS) via Linear Matrix Inequalities (LMIs) to show the exis-
tence of a rank-1 solution, which is also shown to be equiva-
lent to SDR. A rank-reduction technique based on spectral fac-
torization is used to convert the higher rank solution of SDR
into a feasible rank-1 solution with the same cost. The proof of
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tightness does not depend on the number of constraints . The
implication is that non-convex QCQP with Toeplitz-Hermitian
quadratics is not NP–Hard, but in fact exactly solvable in poly-
nomial time.
To the best of our knowledge, our work is the first to show that

any non-convex QCQP with Toeplitz-Hermitian quadratics can
be solved optimally. Special cases have been previously con-
sidered in [30], [31], but none of them settled the general non-
convex Toeplitz-Hermitian QCQP problem. Toeplitz quadratic
minimization subject to Toeplitz equality constraints was con-
sidered in [30, p.30] (each equality corresponds to a pair of in-
equalities with the same Toeplitz-Hermitian matrix). Another
special case was investigated in [31], which considered pos-
itive-semidefinite Toeplitz-Hermitian quadratics and a special
QCQP structure arising in multi-group multicast beamforming.
In [31], the proof of existence of an optimal rank-1 solution uses
the Caratheodory parametrization of a covariance matrix [32, p.
181], which is only valid for positive-semidefinite Toeplitz ma-
trices. Our work can be considered as an extension of this result,
since we prove the existence of an optimal rank-1 solution for
indefinite Toeplitz matrices. In [31], the optimal solution is ob-
tained from the solution of the SDP relaxation based on the LMI
representation of FAs. We show that this problem is equivalent
to SDR,which is cheaper computationally, and demonstrate how
an optimal rank-1 solution can be obtained, which also solves the
original non-convex QCQP problem.
When all matrices are circulant (a special class of Toeplitz

matrices), we further show that the QCQP problem (1) can
be equivalently reformulated as a Linear Programming (LP)
problem, which can again be solved to global optimality in
polynomial-time, at a far lower computational complexity
compared to the SDR approach.

II. QCQPS WITH TOEPLITZ QUADRATIC FORMS

Consider a special case of (1) where the Hermitian matrices
are also Toeplitz. Each can then be written as

(4)

where , is an elementary Toeplitz matrix with
ones on the diagonal and zeros elsewhere ( main di-
agonal, super-diagonals, and sub-diagonals),
while represents the entries along the diagonal, i.e.,

, where .
Note that due to the Hermitian property, .
Using (10), we can express each quadratic term in (1) as

, where ,
, , and .

Overall, (1) can be expressed as

(5a)

(5b)
(5c)
(5d)
(5e)

where . Note that (5c) and (5d)
. Upon dropping the rank constraint, we obtain the fol-

lowing convex SDP relaxation.

(6a)

(6b)
(6c)
(6d)

Claim 1: For Toeplitz , problems (3) and (6) are
equivalent.

Proof: For any satisfying (6c) and (6d)

(7a)

(7b)

(7c)

(7d)

(7e)

therefore we may replace every instance of in (6) (in-
cluding the cost function ) with . Then it
becomes evident that is completely determined by via (6c).
Thus we may drop (6c) and simply compute from the optimal
. What remains is precisely (3).
We next show that feasibility of any instance of (1) can always

be checked in polynomial time by checking the feasibility of (6).
Furthermore, if feasibility of (1) is established, then the optimal
solution of (6) can always be transformed into a globally op-
timal solution of (1). Since (6) is equivalent to (3), a solution to
(1) can also be obtained from a solution of (3), as we will soon
show. Although solving (3) is more computationally efficient
compared to (6) (since it has fewer variables and constraints), it
is more convenient to establish the proof of the following claims
by considering (6).
Claim 2: For Toeplitz , (in)feasibility of (6) is

equivalent to (in)feasibility of (1). Furthermore, if (1) is feasible,
then it can be solved to global optimality in polynomial time.

Proof: Taken together, constraints (5c), (5d), (5e) consti-
tute the LMI parametrization of the autocorrelation sequence

of an MA process of order , and it has been shown in
[33, Appendix A] that (5e) is redundant, in the sense that the
set of feasible defined by (5c), (5d), and (5e) is the same
as that defined by (5c) and (5d) only. If a solution of (6) has

, then there exists a rank-1 matrix which defines
the same sequence , and such a rank-1 matrix can be obtained
by determining a spectral factor of using a spectral factor-
ization algorithm (e.g., see [34]) and setting . Spectral
factorization is non-unique, but we only need one (e.g., the min-
imum phase) factor.
The implication is that for the special case of (1) consid-

ered here, with Toeplitz-Hermitian quadratic forms, the problem
is not NP–Hard (as is general QCQP with non-convex Hermi-
tian quadratic forms), but is in fact exactly solvable in poly-
nomial-time using convex programming, followed by a simple
post-processing step.
A globally optimal solution of (1) can also be obtained by

solving (1) first, followed by defining the autocorrelation se-
quence , where denotes the
optimal solution of (3). Since solving (3) is equivalent to solving
(6), determining a spectral factor of will yield the
optimal solution to (1). This is the preferred approach since
solving (3) is more computationally efficient compared to (6).



KONAR AND SIDIROPOULOS: HIDDEN CONVEXITY IN QCQP WITH TOEPLITZ-HERMITIAN QUADRATICS 1625

Thus, for QCQPswith non-convex Toeplitz-Hermitian quadratic
forms, the solution of SDR (which is not rank-1 in general), can
always be converted into an optimal rank-1 solution via spectral
factorization; SDR is tight.

III. QCQPS WITH CIRCULANT QUADRATIC FORMS

We now consider a more special case of (1) where the ma-
trices are circulant. Although circulant matrices are a
subset of the set of Toeplitz matrices, and hence the results of the
previous section apply, we show that by exploiting the circulant
structure, the QCQP problem (1) can be equivalently reformu-
lated as a LP problem which can again be solved to global op-
timality, at a lower complexity cost as compared to solving the
SDP (3). Circulant matrices are diagonalized by the DFT ma-
trix, i.e., we can write , where is the
unitary DFT matrix

...
...

...
. . .

...
(8)

where is the th root of unity, and is a diagonal
matrix of the eigenvalues of obtained by taking the discrete
Fourier Transform (DFT) of the first row of . Hence, each
quadratic term in (1b) can be expressed as

(9a)
(9b)

(9c)

with obvious notation. Define ,
, and . Then,

we have

(10)

Similarly for the objective, we have . Putting
everything together, we obtain the following formulation

(11a)

(11b)
(11c)

which is a LP problem in . Thus, by exploiting the fact that
all circulant matrices are diagonalized by the same eigen-basis,
we can equivalently reformulate the non-convexQCQP problem
(1) as the LP problem (11), which can be solved to global opti-
mality very efficiently. If is the optimal solution of (11),
then we define as .
Since is unitary, an optimal solution for (1) can be ob-
tained as . Again, the optimal solution is not unique
since, from the definition of , all phase information about is
irrelevant.

IV. NUMERICAL RESULTS
In order to illustrate our claims, we carried out the following

simulation experiments in MATLAB on a 64-bit desktop with
8 GB RAM and a 3.40 GHz Intel CORE i7 processor. YALMIP
was chosen as the modeling language and the MOSEK solver
was used to solve the optimization problems.

TABLE I
RESULTS USING SDR + SPECTRAL FACTORISATION FOR

TOEPLITZ QUADRATIC QCQPS

In our first experiment, we consider a problem with
complex dimensions, , and all the ma-
trices are Toeplitz-Hermitian. The following procedure was used
to create each instance of the QCQP problem (1). Generating the
Toeplitz-Hermitian constraint matrices only requires
specification of the first row of each matrix. Every such row is
drawn randomly and independently from a complex, circularly
symmetric Gaussian distribution with zero mean and covariance
matrix equal to identity. The Hermitian part of each matrix was
finally taken to obtain . An initial point was randomly
generated, while the each of the values were sampled
randomly from a Gaussian distribution .
If , then both sides of the inequality are multi-
plied by to obtain inequalities. In order to generate , a
Gaussian random vector was randomly drawn from the previous
distribution, and its one-sided deterministic autocorrelation se-
quence was calculated, which was then used to specify the first
row of . This technique ensures that is Toeplitz-Hermi-
tian, and also positive semi-definite. In order to solve (1), the
SDR problem (1) was solved first, followed by a spectral fac-
torization step to obtain a globally optimal solution of (1). The
results, depicted in Table I, were obtained after averaging over
1000 Monte-Carlo trials.
The table reports the average difference between the cost of

the rank-1 solution obtained from SDR followed by spectral fac-
torization and the lower bound obtained from the (higher-rank)
solution of SDR alone; plus the average execution time of the
algorithm. It was observed that, in all instances, a feasible solu-
tion was obtained, at a very modest computational effort, which
is extremely close to the SDR lower bound.
In our second experiment, we consider the case of the QCQP

problem (1) where all the matrices are Circulant-Hermitian.
The number of complex dimensions was set to be and
the constraints . In order to generate
each of the constraint matrices , a random vector of
eigen-values was independently sampled from a uniform distri-
bution in the interval . Upon forming a diagonal matrix
of the eigen-values, followed by pre- and post-multiplication by
the unitary DFT matrix [as defined in (8)], we obtain . The
right hand sides were generated and the sign of each
inequality was fixed in the same manner as described in our pre-
vious experiment. was also synthesized in a similar fashion
as each , except that the vector of eigen-values was
drawn randomly from a uniform distribution on the interval
[0,20], in order to ensure positive semi-definiteness. Each
problem instance was solved by both the LP approach and SDR
followed by spectral factorization. The results are summarized
in Tables II and III.
Each table reports the average loss incurred in the cost func-

tion when the cost of the solutions obtained via the respective
methods are compared to the SDR lower bound, along with
the average execution times. From the tables, it is seen that
the obtained solutions from both methods are indeed the glob-
ally optimal solutions of the non-convex QCQP problem (1),
as evidenced by the very low average loss. As expected, the
LP approach is considerably faster as compared to the SDR
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TABLE II
RESULTS USING SDR + SPECTRAL FACTORISATION FOR

CIRCULANT QUADRATIC QCQPS

TABLE III
RESULTS USING LINEAR PROGRAMMING FOR CIRCULANT QUADRATIC QCQPS

method. In addition, it was empirically observed that the solu-
tion of the former method was more accurate as compared to
that of the latter method, in the sense that the average loss was
typically an order of magnitude smaller. Overall, this illustrates
the benefit of using the LP approach over the SDR method for
solving non-convex QCQP problems with Circulant-Hermitian
quadratic forms.
Parametric Frugal Sensing of Moving Average Power

Spectra.We next consider an application to a distributed spec-
trum sensing problem originally formulated as a nonconvex
QCQP in [8], and solved therein using approximation algo-
rithms, in light of its apparent non-convexity. Using the system
model defined in [8], the problem of estimating a Moving
Average (MA) power spectrum from quantized power mea-
surements can be cast as non-convex QCQP with two-sided
constraints involving Toeplitz-Hermitian quadratics.
We considered a scenario where the signal was generated by

pulse shaping streams of symbols drawn independently from a
quadrature phase shift keying (QPSK) constellation using a dis-
crete-time raised cosine filter spanning a window of 8 symbols,
at 4 samples per symbol and a roll-off factor of 0.75. A total
of sensors were used for the spectrum sensing oper-
ation, and the length of the impulse response of the broadband
pseudo-noise filters was set to be (see [8] for the ex-
perimental setup–we omit many details here due to space lim-
itations, but our experiments are reproducible if one also con-
sults [8]). It was assumed that the true model order is known at
the fusion center. We used SDR followed by spectral factoriza-
tion to solve the problem optimally, and used its performance to
benchmark the FPP-SCA algorithm proposed in [8]. The latter
algorithm was initialized by the procedure described in [8], and
run until the cost function did not improve more than in the
last 10 iterations. When this required iterations, FPP-SCA
was re-initialized from a different starting point, up to a max-
imum of 5 such re-initializations. Upon obtaining a solution, the
magnitude square of its DTFT is used to obtain a spectral esti-
mate. We used the Normalized Mean Square Error (NMSE) as
performance criterion, defined as , where

is the true spectrum and is the estimated spectrum, with
both spectra normalized by the respective peak values. The ex-
pectation is taken with respect to the randomness in the primary
signal and the impulse responses of the wideband FIR filters em-
ployed by each sensor. The threshold was tuned in order to
vary the number of sensors reporting above threshold, and
the results were averaged over 400 Monte-Carlo trials for each
value of . It was observed that SDR followed by spectral fac-
torization exhibited lower spectral NMSE as compared to the
FPP-SCA algorithm - the gap is small for up to 80 but in-
creases sharply after that and is almost an order of magnitude

Fig. 1. NMSE versus .

Fig. 2. Cost function versus .

at . See Fig. 1. We note that while NMSE captures
estimation performance, it only indirectly reflects optimization
performance. From the optimization point of view, the cost of
the solution obtained from spectral factorization always matches
the SDR lower bound, see Fig. 2, implying that the algorithm is
indeed successful in solving the non-convex QCQP problem to
global optimality. Although FPP-SCA is what one would call
‘engineering approximation’, the cost of the FPP-SCA solution
was on average only dB away from the globally
optimal cost - see Fig. 2. A feasible solution was also identified
in every trial, without any restarts.

V. CONCLUSIONS
We considered QCQPs with Toeplitz-Hermitian quadratics

and proved that they are exactly solvable in polynomial-time
via SDP relaxation followed by spectral factorization. For cir-
culant-Hermitian quadratics, it was shown that the QCQP can
be reformulated as LP, which can be solved very efficiently. Nu-
merical experiments illustrated the main claims. The result was
applied to a parametric model-based power spectrum sensing
application, where the problem was solved to global optimality
and used to benchmark the performance of the FPP-SCA algo-
rithm, which is an iterative approximation technique for general
non-convex QCQPs. Simulations indicate that the latter algo-
rithm performs unexpectedly well in this context.
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