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Abstract—Wideband spectrum sensing is a fundamental com-
ponent of cognitive radio and other applications. A novel frugal
sensing schemewas recently proposed as ameans of crowdsourcing
the task of spectrum sensing. Using a network of scattered low-end
sensors transmitting randomly filtered power measurement bits to
a fusion center, a non-parametric approach to spectral estimation
was adopted to estimate the ambient power spectrum. Here, a
parametric spectral estimation approach is considered within
the context of frugal sensing. Assuming a Moving-Average (MA)
representation for the signal of interest, the problem of estimating
admissible MA parameters, and thus the MA power spectrum,
from single bit quantized data is formulated. This turns out
being a non-convex quadratically constrained quadratic program
(QCQP), which is NP–Hard in general. Approximate solutions
can be obtained via semi-definite relaxation (SDR) followed by
randomization; but this rarely produces a feasible solution for this
particular kind of QCQP. A new Sequential Parametric Convex
Approximation (SPCA) method is proposed for this purpose,
which can be initialized from an infeasible starting point, and
yet still produce a feasible point for the QCQP, when one exists,
with high probability. Simulations not only reveal the superior
performance of the parametric techniques over the globally op-
timum solutions obtained from the non-parametric formulation,
but also the better performance of the SPCA algorithm over the
SDR technique.

Index Terms—Cognitive radio, distributed spectrum sensing,
parametric spectral analysis, moving-average processes, quantiza-
tion, quadratically constrained quadratic programming (QCQP),
semidefinite programming (SDP) relaxation.

I. INTRODUCTION

W IDEBAND spectrum sensing is one of the core com-
ponents of cognitive radio, since it forms the basis for

adaptive spectrum sharing [2]. In cognitive radio, discovering
transmission opportunities requires the unlicensed secondary
users to scan a wide band of frequencies. Spectrum sensing
aims to detect spectral occupancy in a particular frequency band,
preferably without scanning the entire band. In order to over-
come issues related to reliability, fading, and the hidden ter-
minal problem, collaborative spectrum sensing schemes are es-
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sential. These involve a network of scattered sensors taking ju-
dicious measurements across space, time and frequency. Apart
from cognitive radio, collaborative spectrum sensing schemes
are also employed in other diverse fields such as industrial mon-
itoring, smart agriculture, weather forecasting, military surveil-
lance, disaster response, and health monitoring applications [3].
Wideband spectrum sensing at very high sampling rates

requires expensive analog-to-digital converters (ADCs) which
cannot easily fit in portable devices, and have high power
consumption. In cognitive radio settings, however, it is com-
monly assumed that the frequency band is under-utilized, i.e.,
most of the band is idle during most of the time, which in
turn implies frequency domain sparsity. Exploiting this prior
information, compressive spectrum sensing techniques have
been developed, which provide accurate spectrum estimates at
sub-Nyquist rates, without using frequency sweeping [4], [5].
Cooperative protocols for distributed compressive spectrum
sensing were introduced in [6], [7], which involve estimating
the spectrum locally, followed by achieving consensus on
globally fused sensing outcomes. The main drawback is that
these methods are computationally intensive in terms of the
calculations performed at each sensor node and also require
significant message-passing between sensors.
Although the aim of most work on spectrum sensing (e.g.,

[2]–[7]) has been on the reconstruction of the signal’s Fourier
spectrum, in cognitive radio and many other applications, it
is sufficient to only consider reconstructing the power spec-
trum [8]. Recent work on Power spectrum (PS) sensing, (e.g.,
[8]–[12]) establishes that spectrum sparsity is not essential for
relaxing sampling rate requirements. Instead, by exploiting the
fact that the power measurements are linear in the autocorrela-
tion function, the utilization of a low-order correlation model
enables estimation of a finite number of autocorrelation lags
from a system of over-determined linear equations, resulting in
a reduction in sampling rate. If spectral information, in the form
of spectral masks and carrier frequencies are available before-
hand, it is possible to obtain a further reduction in the sampling
rate [13].
The PS estimation methods described in [8]–[13] assume

analog amplitude samples, which is reasonable if ADCs that
operate at a high sampling rate are employed. However, this
is undesirable in distributed spectrum sensing scenarios, since
transmitting streams of finely quantized bits to a fusion center
creates a large communications overhead and has an adverse
effect on battery lifetime. In [14], a network sensing scenario
was introduced, where the case of each sensor transmitting a
single, randomly filtered power measurement bit to the FC was
considered. A non-parametric model for the spectrum was as-
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sumed, and the problem of estimating the power spectrum from
the received bits was formulated as a Linear Programming (LP)
problem, generalizing classical non-parametric PS estimation
to the case where the data is in the form of inequalities, instead
of equalities.
If we know a priori that the signal admits a representation

in terms of a parametric model of a certain order, then it
is well-known [15] that classical parametric PS estimation
methods are more accurate as compared to the non-parametric
methods, provided the modeling assumptions are valid. A
parametric model provides a more parsimonious representation
of the PS, since it requires estimation of fewer parameters as
compared to a non-parametric model. This is the main moti-
vation for our present work, where we assume that the signal
of interest admits a Moving Average (MA) representation.
From an application point of view, an MA parametrization is
well-suited for sensing digital communication signals, which
are pulse-shaped using finite impulse response (FIR) filters,
and transmitted over wireless channels which are also modeled
as FIR filters1.
The problem of MA parameter estimation has been exten-

sively studied in signal processing, statistics, econometrics, and
other areas. One approach is to estimate the autocorrelation se-
quence first, from which the MA parameters can then be de-
termined by solving a system of non-linear equations by the
method of moments (MOM) [16]. However, it is well known
that MOM does not yield good estimates in general. Another
technique utilizes the autocorrelation estimates to obtain the
MA parameters by employing a spectral factorization step. This
method fails in the event that the estimated autocorrelation se-
quence is not positive semidefinite, in which case the estimated
spectrum will take negative values at certain frequencies, and
will not admit factorization. This drawback was overcome by
the MA autocorrelation estimation method proposed in [17],
which can be used to determine the optimal MA autocorrela-
tion approximation of an invalid autocorrelation sequence, in
the least square sense. An approximate maximum-likelihood
approach, based on the likelihood function of the data, is de-
scribed in [18, p. 281], which results in a non-linear optimization
problem. An iterative algorithm for theMA parameter estimates
is presented, but the method can only converge to a local min-
imum of the likelihood function, and convergence is not guar-
anteed. Other methods, which involve approximating the MA
model by an auto-regressive (AR) model of sufficiently large
order (e.g., Durbin’s method [19] and the inverse covariance
method [20]), are known to produce highly biased estimates for
MA models with zeros close to the unit circle. It is to be noted
that none of the aforementioned methods work directly with the
underlying MA representation of the signal in their formula-
tions, which is in contrast to our formulation that explicitly uses
the MA structure from the outset. We obtain an admissible MA
parameter vector and take the magnitude square of the discrete
time Fourier transform (DTFT) to obtain the spectral estimate.
Considering the same network sensing scenario as in [14], we

develop parametric methods for PS estimation of an MA model

1When the channel is random and different from sensor to sensor, but with
the same second-order statistics, and each sensor averages out the power mea-
surements over multiple fading realizations, it has been shown in [14] that all
sensors will report consistent measurements, as if all channels were equal to a
spectral factor.

from 1 bit quantized power sensing data. Parametrizing the MA
autocorrelation sequence in terms of the MA parameters, it is
shown that the problem of estimating admissible MA parame-
ters from 1 bit data can be expressed as a non-convex Quadrati-
cally Constrained Quadratic Program (QCQP). This is NP–Hard
[21] in general, and hence cannot be solved to global optimality
in polynomial time. Instead, we resort to two approximation al-
gorithms in order to obtain polynomial time sub-optimal solu-
tions.
First, a semi-definite relaxation (SDR) approach is consid-

ered. SDR is conceptually simple and widely used together with
randomization procedures to obtain high quality approximate
solutions for a large ensemble of NP–Hard problems that arise
in engineering practice (e.g., [22]–[25]). However, it is known
that SDR followed by randomization may fail to obtain a fea-
sible point when the constraints are stringent [26]. The second
method is a sequential parametric convex approximation ap-
proach (SPCA) that requires solving a sequence of second-order
cone programs (SOCPs), initialized from a starting point that
is designed to be feasible for only one subset of constraints
of the non-convex QCQP. Although several SPCA algorithms
exist in the current literature ([27]–[30]), they require initial-
ization from a starting point that lies in the feasible set of the
non-convex problem. However, finding a feasible point is hard
in general for non-convex QCQPs. This is the main motivation
for pursuing the development of an SPCA algorithm whose ini-
tial starting point is infeasible. Using a linear restriction to ap-
proximate the non-convex constraints, adding slack variables to
the convex ones to ensure feasibility, and imposing an -norm
penalty on the slacks tominimize constraint violations, the mod-
ified problem is formulated as a SOCP. Upon iteratively solving
the SOCP, using the solution of the current iteration as the point
about which the linear restriction is computed for the next it-
eration, a feasible point for the non-convex QCQP can be ob-
tained in a few iterations, for a large percentage of problem in-
stances. We also consider a two-step approach that combines
the non-parametric LP formulation in [14] with a second step
that imposes MA structure to the autocorrelation estimate pro-
vided by [14]. A comprehensive comparison of these methods
is then carried out in different scenarios and various aspects of
their performance are evaluated.
Relative to [1], this journal version adds the more effective

SPCA/SOCP approach, proofs and derivations, and comprehen-
sive simulations providing interesting insights and new find-
ings. The particular SPCA approach that we advocate here for
MA power spectrum sensing from 1-bit data is closely related
to our recent work on feasible point pursuit for a general class
of non-convex QCQPs [31] – in fact the MA power spectrum
sensing application paved the way to [31]. There are two impor-
tant differences between the specific method proposed here and
the generic one in [31]. The first is that we tighten the linear re-
striction used to lower bound the non-convex constraints, which
results in a better approximation. The second is that we use a
more intelligent initialization strategy that ensures satisfaction
of all non-convex constraints. These two custom modifications
make a difference in terms of the quality of the estimated power
spectra.
The rest of the paper is organized as follows. We begin with

some preliminaries in Section II, followed by a description
of the signal model in Section III. The formulations of the
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proposed parametric PS estimation schemes are presented
in Section IV. Comprehensive simulations are provided in
Section V, along with a discussion of the results, insights, and
how these guide the choice of design parameters. Conclusions
are drawn in Section VI. Technical derivations are relegated to
the Appendices.
Throughout the rest of the article, we adopt the following

notations. The superscript denotes conjugation, whereas in-
line denotes convolution, as is customary. The superscript
is used to denote the Hermitian (conjugate) transpose of a

vector/matrix, while denotes plain transposition. Capital bold-
face is used for matrices, while vectors are denoted by small
boldface. Scalar terms are represented in the normal face. The
circularly symmetric complex Gaussian distribution is denoted
by . and denote the expectation operator
and the gradient of the function respectively. The
Identity matrix is denoted by .

II. PRELIMINARIES

Consider a discrete-time wide-sense stationary (WSS) signal
and let denote its autocorrela-

tion sequence, where . Assuming that
admits an MA representation, we can characterize it as being
generated by passing complex, circularly symmetric, uncorre-
lated, zero mean White Gaussian Noise (WGN) of unit vari-
ance through a linear shift invariant FIR filter with an impulse
response , where is the order of
the MA process. Hence, can be expressed as

(1)

where . We can parametrize in terms of
the MA parameters as

:
:

(2)

:

:

(3)

:
:

(4)

where is the elementary Toeplitz matrix
with ones on the sub-diagonal and zeros everywhere
else (note that ) . Given a finite length data sequence

of length , we
define the Toeplitz-Hermitian autocorrelation matrix

as

...
...

. . .
...

(5)

The PS of , according to the parametric model, is given
by , where is the discrete-time
Fourier Transform (DTFT) of and is given by

.

III. SYSTEM MODEL

A network sensing scenario is considered (as in [14]), where
scattered sensors measure the ambient signal power and

report to a fusion center (FC). For simplicity of exposition, let
us assume that all sensors sense a signal that is common up
to a sensor-specific constant that models the effects of path
loss, frequency-flat fading and shadowing. Frequency-selective
fading that varies from sensor to sensor can be accommodated,
provided sensors average out their measurements over many
fading states, and the ‘expected fading spectrum’ is the same
across sensors (not the fading realizations); see [14]. The
received signal at each sensor is downcon-
verted to baseband, and then automatic gain control (AGC) is
used to scale each to a common reference signal . Since
the power spectrum is invariant to sensing timing offsets and
phase shifts, it is not necessary to compensate for these effects.
After the AGC stage, the signal is sampled using a Nyquist rate
ADC to yield the WSS sequence . As shown in [14], the
Nyquist rate sampling requirement can be relaxed by using an
equivalent analog processing and integration chain. Then,
is passed through a wideband FIR filter with complex binary
pseudo-noise (PN) impulse response of length ,i.e.,

:
: otherwise

(6)

The filter output is given by ,
where are the filter tap weights
and are the tap inputs.
The use of PN random filters promotes diversity, simplifies the
convolution operation, there being no need for multiplications,
and eliminates the need for coordination between sensors. De-
note the average power of the WSS signal by , i.e.,

. Each sensor obtains soft estimates of by
averaging over samples

(7)

Finally, each sensor compares its estimate to a single
threshold . If , then a is transmitted, otherwise a is
transmitted to the FC. We define the sets
and , with and
such that . Since , it can be
shown that where is the

Toeplitz-Hermitian autocorrelation matrix of given
in (5). Thus, on receiving a (or a ) from a sensor, the
FC learns that (or ), assuming
sufficient averaging to ensure that sample averages converge to
ensemble averages. As an alternative to using PN random filters
for diversity, one can also consider exploiting the diversity
due to the random fading channels. One may naturally wonder
why we employ PN filters instead of exploiting the inherent
frequency selectivity that is different from sensor to sensor?
The answer is two-fold.
• First, we do not know the fading channel realization for
each sensor, and the task of estimating it is much more
challenging than power spectrum estimation per se. Since
we do not know the random fading channel realization
for each sensor, we cannot plug it in the linear inequality
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constraint associated with the corresponding binary mea-
surement. To circumvent this issue, we average out these
random fading effects, and rely on pseudo-random filters
seeded using the serial number of each sensor (which is
known to the FC) to collect diversity.

• Second, since our goal is to estimate the power spectrum
instead of the Fourier spectrum, averaging is in fact re-
quired to get rid of short-term effects such as fading.

The job of the FC is to estimate the ambient PS of the signal
from these inequalities, which are linear in the autocorrelation
sequence . In the next section, it is shown that exploiting the
underlying MA parametrization of , the inequalities can be
explicitly expressed in terms of MA model parameters .

IV. PROBLEM FORMULATION

Define as our postulated model order of the MA process
i.e., we believe is generated by passing complex, circu-
larly symmetric, uncorrelated, zero meanWGN of unit variance
through the linear shift invariant FIR filter whose frequency re-
sponse is given by , with impulse
response . Note that it is not necessary to
have , where is the true model order. Instead, may rep-
resent an upper bound on the true model order. , as defined
in (5), can also be expressed as

(8)

where is the elementary Toeplitz matrix with ones
on the diagonal and zeros elsewhere, and

is the autocorrelation
sequence. The upper limit on the summation term stems from
the fact that , and thus, depending on
whether we set to be larger than or not, we get the cor-
responding number of terms in the sum. Using (8), each

can be expressed as

(9)

(10)

(11)

where in (10), represents the lag of the deterministic
autocorrelation sequence of the broadband filter with im-

pulse response . Using the expression for given by (4),
we obtain

(12)

(13)

where by construction, each matrix is also Toeplitz,
Hermitian and positive semi-definite. We refer the reader
to Appendix A for a proof. Hence, the linear inequalities

can now be expressed as the quadratic inequali-
ties in the MA parameters .
In order to estimate the PS from these inequalities, an admis-

sible set of MA parameters are estimated first, and then the
spectrum is computed as where
is the DTFT of . The total signal power

is chosen as a cost function tominimize, since in the cogni-
tive radio setting, it is implicitly assumed that most of the spec-
trum is idle at most times. Overall, we obtain the following for-
mulation.

(14a)

(14b)

(14c)

Remark 1: Note that identifiability of cannot be guaran-
teed, since the phase of its Fourier transform cannot be estimated
even from exact analog power measurements – let alone quan-
tized ones. Our ultimate goal, however, is to estimate the power
spectrum (i.e., the magnitude squared of the DTFT of h) which
is unaffected by this spectral factorization ambiguity. Further-
more, our choice of cost function does not discriminate amongst
the spectral factors (by Parseval’s Theorem they all have the
same cost), so the lack of identifiability of does not hurt our
ultimate goal of power spectrum estimation.
Problem (14) is a QCQP, where the ellipsoid exterior con-

straints (14b) are non-convex, and is NP–Hard in general. We
now present two formulations which produce approximate so-
lutions for this problem.

A. SDR Formulation

The non-convex QCQP (14) can be recast as

(15a)

(15b)

(15c)

(15d)

(15e)

where we have defined and utilized the fact that
and similarly,

. is a complex,
rank one, symmetric positive semidefinite (PSD) matrix. Our
reformulation results in an equivalent problem, with linear ob-
jective and linear trace constraints, while the set of symmetric
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PSD matrices is convex. The non-convexity has been isolated
in the form of the rank constraint on . The technique of
semidefinite relaxation (e.g., see [32]) now entails dropping the
rank constraints to obtain the following relaxed problem.

(16a)

(16b)

(16c)

(16d)

which is a Semidefinite Programming (SDP) problem. Using
modern interior-point algorithms, SDP problems can be solved
efficiently to global optimality at a complexity cost that is at
most [33] and is usually much less. The cone
programming solver SeDuMi [34] can be used to solve (16) ef-
ficiently. However, solving the relaxed problem does not solve
the actual NP–Hard problem in general. Even so, the process of
rank relaxation to obtain the SDP problem can be justified since
doing so yields the Lagrange bi-dual of the original non-convex
QCQP, which, in a certain sense, is the closest convex problem
to the original NP–Hard problem [35]. Using rank relaxation,
various post-processing procedures have been developed for ob-
taining approximate solutions for the original problem from the
optimal solution of the relaxed problem. This may be done via
randomization techniques, which are computationally inexpen-
sive compared to solving the relaxed SDP problem.
1) Randomization Algorithm: In general, solving the relaxed

SDP problem does not result in a rank 1 solution. If it does, then
the principal component of the solution , will be the op-
timal solution to the original problem. Otherwise, we use the
following randomization approach to convert the globally op-
timal solution for problem (16) into an approximate solu-
tion that is feasible for the original problem (14).
1) Consider the case of determining the rank 1 approx-
imation of . Let and define

as the eigen-de-
composition of , where
are the eigen-values and are the
corresponding eigen-vectors. Since the best rank 1 ap-
proximation of (in the Frobenius norm sense) is
given by , we can define as a
possible candidate solution. Unless , will not
be feasible for the problem (14). In the event that is
approximately rank 1, we propose scaling to satisfy
both set of constraints of (14). We first scale up a
factor until it satisfies all the constraints in the set
(14b), which can be determined as

(17)

Thus, we obtain a new candidate vector . If the
candidate vector also satisfies all the constraints in the set
(14c), then it is kept as a candidate solution. However, if it
violates one or more constraints in (14c), it is discarded.

2) In general, will not even be approximately rank 1.
Hence, we employ the technique of Gaussian random-
izations to generate approximate solutions to the original
problem (14). Using , we generate a series of can-
didate Gaussian random vectors from which the

‘best’ solution is chosen, where denotes the number of
randomization rounds. We calculate the eigen-decomposi-
tion of and in each randomization round, generate

, where . A feasible
vector that satisfies both sets of constraints can be
found by scaling to first satisfy the set of constraints
(14b) and then checking to see if the constraints (14c) are
satisfied too for the given choice of scaling. The scaled
vector is given by , where is de-
fined as

(18)

If violates one or more constraints in the set (14c),
then it is discarded and a new randomization round begins.
Finally, amongst the feasible candidate vectors, the one
which has the smallest objective value given by (14a), is
chosen as the suboptimal solution .

3) In many cases, it is not even possible to obtain any sub-
optimal solution that is feasible for the original problem
(14) by the previously outlined approaches. In such an in-
stance, we propose to drop the convex constraint set (14c)
and scale the candidate vectors to satisfy the non-convex
constraints (14b) only. For example, we scale the prin-
cipal component of by as defined in (17). This
scaling ensures that satisfies the constraints
(14b), but we do not check to see if any of the convex con-
straints (14c) are violated. Similarly, for Gaussian random-
ization, after drawing a random vector , the constraint
set (14c) is dropped and the vector scaled by to be only
feasible for the set (14b). Thereafter, the scaled vector that
minimizes the objective is chosen as the solution . Our
basic intuition for doing so is that in the frugal sensing set-
ting the set (14b) is more informative, as it corresponds
to activity detection events, and the choice of cost func-
tion in (14a) places an upper bound on each quadratic term
in the set (14b), by virtue of the Rayleigh-Ritz criterion
which upper bounds the Rayleigh quotient by its principal
eigenvalue, thus controlling the violation of the dropped
constraints on average. Hence, we expect this approach to
also yield a good quality, albeit infeasible estimate.

Overall, after solving an instance of the problem (16) to ob-
tain , we proceed as follows. First, it is checked whether

is rank 1 or not. If it is, then its principal component is
the globally optimal solution to the problem (14). Otherwise,
we check if a suboptimal solution or that satisfies both
sets of constraints exists. If both and exist, then the one
having the smaller objective value is chosen as the solution. In
the event that both sets of constraints cannot be satisfied, then
the set (14c) is dropped, and a pair of candidate solutions
and is obtained. Again, the one having the smaller objective
value is chosen as the solution.

B. Sequential Parametric Convex Approximation

We will refer to the non-convex QCQP (14) as (problem) .
In order to tackle the non-convexity, we employ the following
affine approximation of the left hand side of the non-convex
constraints (14b). Since , , ,
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on expanding and rearranging terms, we obtain
the following inequality

(19a)

(19b)

(19c)

(19d)

where the right hand side of (19b) represents the first order
power series expansion of about the point and
in (19c), we have defined the constants and

. Hence, for a chosen , the function
is affine in , and is a lower bound to .
We now propose to solve the original problem via a se-

quence of convex problems. At each step , we replace the left
hand side of each non-convex constraint by
the affine lower bound at an appropriately chosen
point . The convex constraints are left unchanged. Thus, at
step , we obtain a convex problem of the form

(20a)

(20b)

(20c)

where the vector is a fixed parameter depending on the so-
lution of the problem instance . Let be the optimal so-
lution to (assuming it is feasible). Since for every and

we have , it follows that
is feasible for the original problem .We update the param-

eter vector at each iteration by setting . For this
choice of update, is also feasible for . This is because

. The inequality
holds since is optimal for . Since is also feasible for

, it follows that . Hence, the method
generates a monotonically non-increasing cost sequence. The
overall procedure is as follows.

Algorithm I

Step 0: Choose an arbitrary point that is feasible for the set
of the original problem .

Step k: Solve the problem to obtain a solution . Set
,

Until stopping criterion

1) SOCP Formulation With Slack Variables: At each
problem instance , we are effectively restricting the feasible
set of the original problem , since using the affine lower
bounds in place of the actual non-convex constraints forms a
convex subset of . Owing to this restriction, and the fact
that the starting point is only feasible for the part of
the constraints, problem may be infeasible from the very
outset. In order to ensure feasibility at every step, we propose
adding non-negative slack variables to
each of the convex constraints in the set , and augment the
objective with a penalty in order to enforce
sparsity in , such that the number of violated inequalities
is approximately minimized. We also modify the first-order
approximation of the non-convex constraints to ensure a better
approximation of the constraint set at each step. Towards

this end, we translate the hyperplane until it becomes
tangent to the hyper-ellipse defined by . This
is done by scaling by until it touches the hyper-ellipse

, i.e., , from which we

obtain . After linearizing about ,

we obtain a hyperplane that
is tangent to the hyper-ellipse at the point ,
where and . As a result of
tightening the hyperplanes, note that the following inequalities
hold.

(21)

This procedure is applied to each of the non-convex constraints.
Overall, we can formulate the problem as follows

(22a)

(22b)

(22c)

(22d)

where is a positive weighting factor. The parameter update
equation remains unchanged. When solving the sequence of
convex problems , the corresponding cost sequence will be
non-increasing, i.e., if , are the optimal solution of ,
then is monotonically non-increasing in . This
is because are also feasible for . To see this, note
that for the linearized constraints, we have

, while it is obvious
that the convex constraints (22c) and (22d) are also satisfied by

. Hence, the optimal cost of cannot be larger than
that of . Moreover, extensive simulations have revealed that
not only is the overall objective monotonically non-increasing,
but the two parts of the objective are also non-increasing, i.e.,

and . Simulations also
strongly suggest that the slacks (i.e., a feasible point
for the non-convex QCQP is found) in a finite number of it-
erations, in numerous spectrum sensing scenarios where is
feasible by construction. When the slacks become zero, it can
be further shown using arguments similar to those in [29], that
continued iterations produce a sequence of feasible vectors
with monotonically non-increasing cost, which eventually con-
verges to a Karush-Kuhn-Tucker (KKT) point of , under the
assumption that the linear independence constraint qualification
(LICQ) [36, p. 320] is satisfied.
We now reformulate this problem as an SOCP. Since the con-

straints (22b) and (22d) are linear in and respectively, no re-
formulation is needed. In order to represent the constraints (22c)
in the second order cone (SOC) form, we proceed as follows

(23a)

(23b)

(23c)

(23d)

(23e)
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where in (23c), we have taken
as the square-root decomposition of , and is the
vector of zeros. In (23d), we have defined the new variables

, and
, and in (23e), we have converted the quadratic constraint

of the previous step into a SOC constraint. Since the objective of
is quadratic in , we introduce an upper bound and

minimize the upper bound instead. Putting everything together,
we have the overall formulation for the problem instance

(24a)

(24b)

(24c)

(24d)

which is an SOCP that can be solved using standard packages,
such as SeDuMi. Feasibility of each problem instance is guar-
anteed because of the added slack variables. Hence, in each it-
eration, we solve an SOCP with a worst case per iteration com-
plexity of [37]. The overall procedure is as
follows.

Algorithm II

Step 0: Randomly generate a point that satisfies the set of
constraints for the original problem .
Step k: Solve the problem to obtain a solution . Set

,
Until stopping criterion (see text)

The initial starting point is obtained by first gener-
ating 1000 random directions on the unit norm
ball, and then scaling each vector by a factor until it sat-
isfies the constraints in the set . We choose the scaling

, which is the smallest required to make

feasible for the constraint set . Finally, we set to be
the scaled vector which has the smallest norm. The algorithm
is terminated when a feasible point for the original problem
(14) is found. If feasibility is not achieved in 30 iterations, then
the algorithm is re-initialized from a different starting point. If,
after 5 such re-initializations, feasibility is still not achieved,
then the algorithm is terminated and the solution returned by
the last SOCP is chosen. Throughout our experiments, we use

. V. NUMERICAL RESULTS

In this section, we present pertinent simulation results to gain
insight regarding the effects of various parameters on the quality
of spectral estimates. In addition to the previously described
parametric and non-parametric approaches, we also include an-
other technique for comparison, which involves fitting an MA
model using the autocorrelation estimate obtained from the LP
in [14]. The details of this method are discussed in Appendix B.
First, we present a simulation which provides a comparison of
the parametric methods presented here and the non-parametric

Fig. 1. Illustrative example for the proposed approaches for a real MA(5)
model. (a) Mean Normalized Spectra. (b) Variance of Normalized Spectra.

LP formulation. A scenario was considered with sen-
sors, setting filter length and the threshold t such that

. Fig. 1 shows the PS estimation results for a signal
generated by a real MA(5) process while Fig. 2 shows the same
for a complex MA(4) process under the same setting. It is as-
sumed that the true order of the process is known a priori in each
case, i.e., we have . The spectra were normalized by their
peak values and the plots were obtained over 500 Monte-Carlo
trials. A few remarks are now in order:
• The quality of the PS estimates, obtained from only 100
input bits, is very satisfactory. The proposed parametric
methods not only provide superior spectral estimates on
average as compared to the non-parametric methods, but
they also exhibit lower variance.

• Even though the SDR and the iterative SOCP algorithms
produce approximate solutions for the non-convex QCQP,
their performance is superior as compared to non-para-
metric LP followed by MA model fitting, for which both
steps can be solved to global optimality. This is because
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Fig. 2. Illustrative example for the proposed approaches for a complex MA(4)
model. (a) Mean Normalized Spectra. (b) Variance of Normalized Spectra.

the former methods utilize the MA representation from the
outset, while the latter two-step method exploits the MA
parametrization only in the second step.

• SDR followed by randomization failed to find a feasible so-
lution which satisfied both sets of constraints for the orig-
inal problem 99.8% and 100% of the trials, for the real and
complex model cases respectively. In such instances, the
solutions obtained by dropping the lower set of constraints
still provide good quality spectral estimates, as explained
previously.

• Solving the sequence of SOCPs, a feasible solution for the
original problem was obtained in 100% of the trials, re-
quiring an average of only 2.3 iterations (for the real case)
and 3.9 iterations (for the complex case) to achieve fea-
sibility. The choice to terminate the algorithm once feasi-
bility is attained was based on the observation that addi-
tional iterations, which resulted in a feasible solution with
a lower cost, did not, in general, bring about an improve-
ment in the spectral estimate. Re-initializations of the algo-

Fig. 3. NMSE vs for MA(9) models.

rithm from a different starting point was required in 0.4%
and 0.6% of the trials for the real and the complex case,
respectively.2

• Although the worst-case computational complexity of
solving each SOCP is theoretically much lower than that
of the SDR, and few SOCP iterations are needed, in prac-
tice it was observed that the iterative SOCP algorithm was
slower than SDR.

To better illustrate the performance of these methods, we use the
Normalized Mean Square Error (NMSE) to define the quality of
the PS estimate as

(25)

where is the true spectrum, is the estimated spectrum,
with both spectra being normalized by their peak values, and
the expectation is taken with respect to the random signal and
the random impulse response of the broadband FIR filters. We
present another simulation in Fig. 3 where 50 realMAmodels of
order 9 were randomly generated, in a scenario with ,

, and the spectral NMSE was plotted as a function of
the number of sensors reporting above threshold 3. For each
value of , the spectral NMSE was computed for each model
over 100Monte Carlo trials, with the final NMSE value obtained
by averaging across the models. The superior performance of
the parametric methods is once again noted. The non-parametric
method is significantly worse – off in comparison. While fit-
ting an MA model to the autocorrelation lags brings about an
improvement, the SDR and iterative SOCP algorithms still per-
form better, except when is large. Some statistics regarding

2The iterative SOCP method may also be initialized using SDR followed by
the proposed randomization algorithm in Section IV A, resulting in a marginal
improvement in performance, in terms of spectral NMSE. However, the number
of re-initializations and average number of iterations taken to reach feasibility
were similar to the random initialization strategy described in Section IV B.
Since the SDR initialization does not result in a substantial all-round perfor-
mance improvement, and has a theoretically worse computational complexity
as compared to the SOCP method itself, we feel that its use is not justified in
this case.
3This experiment (and also others) were repeated for the case where each MA

model realization was excited by streams of symbols drawn independently from
BPSK and QPSK constellations, instead of complex i.i.d. WGN. The results
obtained were very similar to the ones we present in this manuscript.
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TABLE I
RESULTS USING THE SDR APPROACH

TABLE II
RESULTS USING THE ITERATIVE SOCP APPROACH

the solutions obtained from the SDR followed by randomization
and the iterative SOCP algorithms are summarized in Tables I
and II respectively.
Table I reports the percentage of simulation runs where SDR

resulted in rank 1 solutions, feasible solutions after scaling the
principal component/randomization candidates, and solutions
after dropping the convex constraint set and scaling the principal
component/randomization candidates, as the number of sensors
reporting above threshold was varied. It is observed that the
percentage of feasible solutions obtained from SDR, (either di-
rectly from rank 1 solutions or after randomization and scaling)
is small to begin with, and as increases, i.e., the number of
non-convex constraints increases, it decreases even further. In
the majority of the cases, SDR failed to return a feasible solu-
tion and we had to resort to dropping the convex constraints in
order to obtain a working estimate.
In contrast, using the iterative SOCP algorithm always

yielded a feasible solution (in 100% of the trials, including
re-initializations for each value of ). Table II shows that
the average number of iterations required by the algorithm to
achieve feasibility is small, and the percentage of simulation
runs which required re-initializing the algorithm from a dif-
ferent starting point is also very low.

A. Threshold Selection

The choice of threshold plays an important role in deter-
mining the quality of the PS estimate in terms of NMSE. In order
to determine the optimal choice of threshold, for which min-
imum NMSE is attained, we considered the following experi-
ment. Setting , , the threshold was changed
in order to vary , for different MA model orders. For each
model order, 50 MA models were generated and for a given
model, for each value of , the spectral NMSE calculated
was averaged over 100 Monte Carlo trials, with the final NMSE
value obtained by averaging across all models. Prior knowledge
of the true model order was assumed. The results are plotted
in Fig. 4. It was noted that the SDR and iterative SOCP ap-
proaches achieve the lowest NMSE when the threshold is se-
lected such that approximately 25–35% of the sensors report
above threshold, for the range of model orders depicted in the
plot. However, the minimum NMSE value for the parametric
model-based algorithms increases with model order. This hap-
pens because the number of parameters to be estimated from a
fixed set of data (80 bits in this case) increases with increase in

Fig. 4. NMSE vs for different model orders. (a) MA(3) models. (b)
MA(6) models. (c) MA(9) models. (d) MA(12) models.

model order, which in turn results in an increase in the minimum
NMSE.

B. Number of Sensors

Increasing the number of sensors makes the problem less un-
derdetermined, i.e., estimating a fixed set of parameters using
a larger number of bits should improve the estimation perfor-
mance, since the number of inequality constraints increases. To
investigate this, a scenario was considered where 50MAmodels
of order 12 were randomly generated, with , and
the spectral NMSE was computed for each model as a func-
tion of the number of sensors over 100 Monte-Carlo trials. In
each trial, the threshold was fixed such that 50 sensors re-
ported above threshold. The results were averaged out across
all model realizations and are depicted in Fig. 5. It is observed
that all methods exhibit improved performance as the number of
sensors is increased. However, the parametric methods achieve
lower NMSE values as compared to the other methods. In par-
ticular, as increases (i.e., decreases), the iterative SOCP
method’s performance improves, while in contrast, SDR does
not improve beyond a certain performance floor. Thus, as in-
creases, so that decreases with , very low spectral NMSE
can be achieved using the proposed iterative SOCP method.

C. Broadband Filter Length

Setting the broadband filter length determines the length of
the autocorrelation lag window. For an MA( ) process,
the length of the autocorrelation lag window is , since

. Hence, should be set at least equal
to , in order to capture the correct parametrization of the
underlying MA model. From [14], it is known that for the LP
formulation, setting to be too low results in a smeared spec-
tral estimate, while setting it too large also degrades the spec-
tral estimate, since it involves estimating more unknowns from
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Fig. 5. NMSE vs for MA(9) models.

a fixed number of linear inequalities. We considered an exper-
iment where , , with 50 randomly gener-
ated MA models and . The spectral NMSE was plotted
as a function of the filter length in Fig. 6, from which it
can be seen that for , the estimation results are very
poor, since the underlying MA model is incorrectly parame-
trized. For , the number of autocorrelation lags estimated
( ) is exactly equal to the true number of auto-
correlation lags . In this case, the LP formulation
exactly matches the right extent of the underlying finite auto-
correlation sequence, albeit it still does not use a model for it.
Subsequently using the MA model to fit the finite autocorrela-
tion obtained from LP results in an even better approximation
of the true PS. For this choice of , LP and LP followed byMA
both outperform SDR and iterative SOCP, even though it is as-
sumed that the true model order is known to both of the latter.
The reason this happens is that the LP problem and the SQP (see
Appendix B) can be solved to global optimality while the SDR
and iterative SOCP approaches only generate approximate so-
lutions for the non-convex QCQP. However as is increased
further, the non-parametric model ceases to be a good approxi-
mation to the MA model. Hence, it’s performance deteriorates
relative to the parametric techniques. Also, the problem setup
becomes more under-determined as the number of unknowns
increases. The SDR and iterative SOCP do not suffer from this
drawback since in their problem setup, the number of unknowns
is independent of . It is to be noted that for these algorithms,
the NMSE decreases very slowly once is increased to roughly
2 – 3 times the true model order . Even for high values of ,
the minimumNMSE achieved with the SDR and iterative SOCP
approaches is larger than that achieved with the LP problem fol-
lowed by the MA model fit for .

D. Estimated Model Order

An important observation from Fig. 6 is that SDR and itera-
tive SOCP methods are robust to model order over-estimation.
In reality, it is not easy to change the length of the random
sensing filters to match the order of the operational model,

Fig. 6. NMSE vs for MA(6) models.

Fig. 7. NMSE vs for MA(3) models.

which is unknown. Assuming that an upper bound on the true
model order is known is much more realistic. It is known that
underestimating the model order results in a highly smoothed
spectral estimate, while overestimation introduces spurious
details into the spectrum. Several model order selection criteria
are available in the literature. We refer the interested reader
to [15, Appendix C] for an overview of these techniques. For
most of these rules, with a large data record, the probability of
underestimating the model order approaches zero, while the
probability of overestimating the model order remains non-zero
even when the size of the data record tends to infinity.
Keeping this fact in mind, we consider the case where we

overestimate the model order by a certain factor of the true order
. In Fig. 7, a scenario was considered with , ,

where 50 minimum phase real MA(3) models were
randomly generated and the spectral NMSE was plotted as a
function of the assumed model order . The NMSE was com-
puted for each model over 100 Monte Carlo trials and the final
values were averaged across the models. The performance of
the LP remains constant, since it does not make any model order
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TABLE III
RESULTS USING THE SDR APPROACH

TABLE IV
RESULTS USING THE ITERATIVE SOCP APPROACH

postulations. The performance of the parametric methods is very
satisfactory, even when the model order is overestimated by a
significant amount. Moreover, the iterative SOCP method ap-
pears to more robust to model order overestimation, as com-
pared to the SDR and the MA model fitting methods. Certain
statistics of the solutions obtained from the SDR and SOCP al-
gorithms are reported in Tables III and IV respectively. Note
that represents the number of problem unknowns. Hence,
by increasing , the problem dimensions are also increased. It is
observed that the percentage of trials where SDR finds a feasible
solution decreases as increases, since in higher dimensions,
not only is a rank 1 solution very rare, but finding a feasible
solution after randomization and scaling is either extremely dif-
ficult or very expensive in terms of the number of randomization
rounds. Thus, in the near total majority of these cases, the lower
set of constraints is dropped in order to obtain a working es-
timate. For iterative SOCP, a feasible solution was obtained in
more than 98% of the trials, at an average of approximately only
3–5 iterations. Although the parametric approaches are robust
to model order overestimation, one should refrain from setting
too high, since the computational cost of solving the optimiza-
tion problems increases.

VI. CONCLUSIONS

Considering a distributed spectrum sensing scenario, where
a network of low end, scattered sensors transmitting randomly
filtered power measurement bits to a fusion center is employed,
it was shown that under the assumption that the signal of interest
admits an MA representation, the problem of estimating admis-
sible MA parameters, and hence the power spectrum, from 1 bit
quantized data can be expressed as a non-convex QCQP.
Although this problem is NP–Hard, high quality approximate

solutions were obtained by using the rank relaxation technique
of SDR to solve a SDP problem, and a SPCA-based technique,
formulated as a sequence of SOCPs, initialized from a point that
is only known to be feasible for the non-convex constraints. The
methods were compared with the non-parametric LP formula-
tion in [14] and a two-step LP followed by MA model fitting
approach, and their performance was assessed in various sce-
narios, through simulations. The averaged spectral estimates ob-
tained from the parametric approaches exhibited lower NMSE
and variance as compared to their non-parametric counterparts.

Also, in the majority of the cases, SDR failed to find a fea-
sible solution for the non-convex QCQP, in contrast to the itera-
tive SOCP technique. In order to obtain the best performance
from the parametric approaches, in terms of spectral NMSE,
the choice of threshold was revealed to be such that roughly
25–35% of the total number of sensors reported above threshold,
for a wide range of MA model orders.
It was further demonstrated that when the true model order is

known, and if it is possible to select the sensing filter length to
match the resulting truncated autocorrelation model to the ex-
tent of the true autocorrelation sequence, then solving the LP
followed by MA model fitting is superior compared to the para-
metric methods. However, when the true model order is un-
known and only an upper bound is available, it was shown that
the parametric methods outperform the non-parametric LP and
the two-step LP-MA approach. In particular, the iterative SOCP
algorithm features notable robustness to model order overesti-
mation.
Overall, we can conclude by saying that when the signal of in-

terest admits an MA parametrization, then employing the para-
metric formulations yields better spectral estimates as compared
to the non-parametric techniques, even though the former can
only be solved approximately, as opposed to the latter. Amongst
the parametric approximation techniques, the iterative SOCP al-
gorithm conclusively exhibited superior performance over the
SDR technique.
Whereas we focused on single-bit quantization, multi-bit

sensor reports can be incorporated in two ways. The first is by
equipping each sensor with multiple PN filters, instead of a
single one. This can be implemented by using a single linear
PN shift register at each sensor, and taking different shifts of the
PN sequence as the impulse responses of the filters. Due to the
shifts, the different impulse responses will be (approximately)
uncorrelated, and hence, so will be the filter measurements. In
essence, each sensor would perform the job of several sensors
and would report multiple bits to the fusion center, from which
it follows that we can use the proposed estimation methods
without modification. Alternatively, each sensor could use a
single broadband filter yet transmit multiple bits to the fusion
center by using more quantization levels. However, in order to
mitigate the effects of frequency selective fading, each sensor
would be required to acquire a larger number of samples in
order to average out its measurements across multiple fading
states to within the higher accuracy required by multi-bit
quantization. In our case, using a single threshold allows us to
relax the sample averaging requirements since we only need
sufficient averaging to ensure that the sign of the inequality
corresponding to each power measurement is not reversed.
Hence, there is a tradeoff in the number of samples to be
acquired and the number of quantization levels employed – the
finer the quantization, the higher sample averaging is needed.

APPENDIX A
PROPERTIES OF MATRICES

From (12), we have given by

(26)
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where is the deterministic autocorrelation
of the broadband filter with impulse response , and

are and elementary Toeplitz ma-
trices respectively, with ones on the sub-diagonal and zeros
elsewhere. From (26), it is evident that possesses Toeplitz
structure. Since we also have

is also Hermitian. In order to show positive semi-definite-
ness, we consider the following cases, when and

.
: In this case, from (26), we have

(27)

Note that corresponds to the principal subma-
trix of the deterministic autocorrelation matrix of the

broadband filter. Since the autocorrelation matrix is pos-
itive semi-definite, it follows that all it’s principal submatrices
are also positive semi-definite. Hence, is also positive semi-
definite.

: From (26), we have

(28)

where the last term indicates that we substitute zeros on the sub
– diagonals . In this case, can be interpreted as
being the deterministic autocorrelation matrix
of the filter with impulse response ,

which is also positive semi-definite.

APPENDIX B
MA MODEL FITTING

In this section, a different parametric MA spectral estimation
method is considered , which uses the estimate of the autocorre-
lation vector of the signal of interest, obtained from the solution
of the LP in [14], as a starting point. Here, we make use of the
signal’s MA representation in a second step, in contrast with the
previously defined methods which utilize the MA parametriza-
tion from the very outset. Given the lag autocorrelation
sequence from the LP, we denote the non-parametric spectral
estimate as . Let
be the PSD of an MA process of order ; where is our es-
timate of the order of the process. Thus, we have,

where constitutes the lag autocor-
relation sequence of the MA process. We seek to determine the

that is closest to in the following least squares
sense

(29)

As shown in [15, p. 131], the spectral least squares criterion
can be rewritten as a weighted least squares autocorrelation
fitting criterion with an infinite number of spectral non-neg-
ativity constraints. Exploiting the trace parametrization of an
MA autocorrelation sequence to express the non-negativity con-
straints, the problem is reformulated as a semidefinite quadratic
program (SQP) in terms of the MA autocorrelation sequence

, which can be efficiently solved using interior point
methods in MATLAB (e.g., using SeDuMi) at a complexity
of flops. Taking the DTFT of the sequence
gives us the spectral estimate. If a minimum phase estimate of ,

is desired, then using , a spectral factorization
step, as described in [38] is carried out. The spectral estimate
may then also be obtained by taking the magnitude square of
the DTFT of . Note that these two techniques of obtaining
the spectral estimate from are equivalent due to the
trace parametrization of in terms of .
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