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Abstract—Transmit beamforming is used to steer radiated
power towards a receiver of interest and to limit interference to
unintended receivers, thereby facilitating coexistence. Transmit
beamforming requires accurate channel state information (CSI)
at the transmitter, which is often difficult to acquire, particu-
larly in cognitive underlay settings, where the primary receiver
cannot be expected to cooperate with the secondary system to
enable it to learn the secondary to primary crosstalk channel.
This paper considers cases where it is not realistic to assume
channel reciprocity, or that the receivers are capable of accurate
CSI estimation and feedback—because they are legacy systems,
or have limited computation/energy resources. Transmit beam-
forming from binary and infrequent CSI is first considered for
an isolated link. An online beamforming and learning algorithm
is developed using the analytic center cutting plane method and
is shown to asymptotically attain optimal performance. A ro-
bust maximum-likelihood formulation is next developed to handle
feedback errors and correlation drift. The setup is then general-
ized to a cognitive underlay setting, also exploiting the standard
acknowledgement/negative-acknowledgement feedback on the re-
verse primary link. This is the first solution to jointly tackle
secondary signal-to-noise ratio maximization and primary inter-
ference mitigation from only rudimentary CSI, without assuming
channel reciprocity.

Index Terms—Transmit beamforming, spatial channel correla-
tion, online learning, cutting plane method, maximum likelihood,
cognitive radio network underlay.

I. INTRODUCTION

TRANSMIT beamforming uses multiple antennas and
channel state information at the transmitter (CSIT) to steer

radiated power towards directions of interest, limiting leakage
in other directions [1]. The direction(s) of interest correspond to
line-of-sight and specular multipath components of the propa-
gation channel to the desired receiver(s), while limiting leakage
controls interference to nearby co-channel systems. Transmit
beamforming therefore facilitates coexistence, which is crucial
for dynamic spectrum access in cognitive radio networks. The
price paid is the need for accurate channel estimation at the
receiver (Rx), and channel state feedback to the transmitter
(Tx). In order to mitigate the communication overhead involved
in feeding back instantaneous channels, an alternative is to work
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with the channel correlation matrix, which enables the Tx to
optimize the average received signal to noise ratio (SNR). This
is known as long-term transmit beamforming.

Designing long-term transmit beamforming vectors for the
secondary system in cognitive radio networks presents the
secondary Tx with the additional challenge of learning the cor-
relation matrix of the channel to the non-cooperative primary
Rx, in addition to the correlation matrix of the channel to the
intended secondary Rx. For a cognitive radio underlay network,
where the secondary and the primary system share the same
frequency band for communication, this knowledge is essential
for optimizing the average received SNR at the secondary Rx,
while limiting interference to the primary network, thereby
maintaining the Quality of Service (QoS) at the primary Rx.
It is much more difficult for the secondary Tx to learn the
correlation matrix of the channel to the primary Rx versus the
secondary Rx, due to lack of cooperation from the primary Rx
[2], [3]. This is especially true when the primary is a legacy
system, that is not only unwilling, but also unable to cooperate.

A. Prior Work

The transmit beamforming vector that maximizes the average
received SNR for a multiple-input single-output (MISO) link is
the principal eigenvector of the channel correlation matrix [4].
In a cognitive underlay scenario [5] comprising a primary and
a secondary link, the optimal transmit beamforming vector that
maximizes the average SNR at the secondary Rx while limiting
the interference caused to the primary Rx can be obtained by
solving a convex optimization problem [6], [7], provided the
secondary Tx knows the correlation matrices of the channel
to the secondary Rx and the crosstalk channel to the primary
Rx. Information about these correlation matrices can only be
obtained through the respective receivers, except in cases where
channel reciprocity can be assumed. Channel reciprocity can
only be assumed in time-division duplex systems, but even
there reciprocity can be a very coarse approximation, e.g., due
to differences in local scattering, or when nodes use different
transmit and receive beampatterns.

For most types of systems, CSI is acquired at the Rx-side and
fed back to the corresponding Tx. In our context, this means that
each Rx is responsible for estimating the channel correlation
matrix for its own link. Instead of feeding back the correlation
matrix, each Rx may compute the optimal beamforming vector
(i.e., its principal eigenvector, e.g., via the power method) and
send this back to the Tx. Either way, scalar or vector quanti-
zation is needed to limit the feedback rate. The beamforming
vector can be quantized using a custom codebook, see [8] where
bounds on the codebook size needed for a given SNR loss are
given. The approach in [8] was developed for instantaneous
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feedback, but it can be extended [8] to long-term feedback. A
rate-distortion analysis of vector quantization performance in
this context can be found in [9]. In [8] and [9], the codebook
is assumed to be designed off-line and shared between the Tx
and Rx beforehand; this is not suitable when the Tx and Rx are
opportunistically paired.

For designing secondary transmit beamforming vectors, al-
most all methods in the literature assume crosstalk channel
reciprocity and suggest that the secondary Tx can learn the
channel to the primary Rx by overhearing the transmissions
of the primary Rx to the primary Tx [2], [3], [10], [11]; and
either secondary channel reciprocity or that the secondary Rx
estimates and feeds back accurate link CSI to the secondary Tx.

B. Motivation

What if the receivers cannot perform correlation matrix
estimation, summarization, and feedback? This can happen if
they have limited computation and communication capabilities
(low cost, small size and battery), when they are hard-wired
for legacy protocols, or when they are opportunistically paired
with a transmitter, with limited negotiation before payload
transmission. Is it possible to acquire accurate CSI at the trans-
mitter with only rudimentary feedback from the receivers, e.g.,
acknowledgement/negative-acknowledgement (ACK/NACK)-
type? Is it possible to design effective transmit beamforming
solutions this way for cognitive underlay and more sophisti-
cated (e.g., broadcast/multicast) beamforming scenarios?

For a point-to-point MISO channel, Mudumbai et al. [12] and
Banister et al. [13] have proposed transmit weight vector adap-
tation algorithms using 1-bit feedback from the Rx. In both the
cases, the Tx periodically updates and stores the beamforming
vector wbest(t), that resulted in the maximum SNR at the Rx
until the current time slot t and the Rx updates and stores the
maximum received SNR till t denoted by SNRbest(t). At the
start of time slot (t+ 1), the Tx perturbs wbest(t) to obtain
the beamforming vector w(t+ 1) and uses it to send data to
the Rx. The Rx measures the corresponding received SNR,
compares it with SNRbest(t) and reports a “1” or a “0” to
the Tx depending on whether the SNR at current time slot
is ≥ or < SNRbest. Upon receiving a “1,” the Tx updates
wbest(t+ 1) with w(t+ 1) or with wbest(t) otherwise. The
difference in [12] and [13] is that in the former all entries
of the beamforming vector have fixed magnitude equal to√

1
N , (N = number of Tx antennas) and the phase of every

entry is randomly perturbed each time; while in the latter the
beamforming vector is perturbed with a coarse estimate of the
gradient of the received signal power, and the resulting vector
is normalized to unit norm. It is assumed that the channel
remains fixed or changes very slowly during this adaptation
process. Asymptotic convergence to the optimal beamforming
vector has been shown for both algorithms when the channel
remains fixed. Simulations show that these random exploration
algorithms result in a slow convergence rate.

For the cognitive radio underlay scenario, notable excep-
tions to the pervasive use of the crosstalk channel reciprocity
assumption are recent works by Zhang [14] and Noam and

Goldsmith [15], [16]. A primary and a secondary single antenna
Tx–Rx link were considered in [14], where it was assumed that
the communication protocol in the primary network and the
transmission rate and power adaptations by the primary Tx are
known to the secondary Tx. The communication is split into
two phases: a) active learning, and b) supervised transmission.
During the active learning phase, the secondary Tx probes the
primary Rx with interfering signals, observes the corresponding
transmit rate/power adaptations in the primary network and
uses this as indirect feedback from the primary network to
estimate the interference channel gain from the secondary Tx to
the primary Rx. During the supervised transmission phase, the
secondary Tx uses the interference channel estimate obtained
by active learning and transmits data in such a way that the
secondary Rx receives it with high SNR and the interference
to the primary Rx is below its interference threshold, which is
also assumed known at the secondary Tx. Overall, [14] requires
inside knowledge and tight monitoring of the primary system,
which may not be possible in ad-hoc deployments.

Noam and Goldsmith [15], [16] proposed an algorithm that
enables the secondary Tx to learn the fixed interference channel
to the primary Rx, by measuring a monotonic function of
the interference to the primary Rx [15] or overhearing the
ACK/NACK feedback [16] in the reverse primary link. They
proposed to vary the secondary transmit precoding matrix to
probe the primary Rx, gradually collecting information on what
it can tolerate. They proposed using a cyclic Jacobi subspace
estimation algorithm, and proved that it converges to the inter-
ference channel between the secondary Tx and primary Rx. The
secondary Tx can indirectly learn the best signaling subspace
this way, without assuming channel reciprocity, and without
altering the primary communication protocol—an exciting de-
velopment. Ideally though, such primary Rx “probing” should
be done in parallel with secondary Rx channel exploration (and
possibly also payload transmission); and acquisition speed is of
essence. We explore these and other issues next.

C. Contributions

We begin by considering the long-term transmit beamform-
ing problem for a MISO link in the case when the Rx has
limited computational capabilities, and/or is paired up oppor-
tunistically with the Tx. We explore how the Tx can learn
to beamform on-the-fly from very low-rate channel quality
indicator bits fed back from the Rx (average received SNR �
pre-determined threshold), while transmitting payload simulta-
neously. The beamforming vectors are designed such that they
not only exploit the acquired information gathered in the past to
maximize a Tx-side estimate of the average received SNR, but
are also diverse enough to explore the channel correlation space
efficiently and learn the channel correlation matrix accurately
over time. Towards this end, the analytic center cutting plane
method (ACCPM) from optimization is leveraged to develop an
online channel correlation matrix learning algorithm based on
one-bit SNR feedback. In the absence of binary measurement
or feedback communication errors, the proposed algorithm
restricts the channel correlation estimate to a ball of radius
r centered around the true value, within O

(
N2

r2

)
iterations
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(where N is the number of transmit antennas) and the aver-
age received SNR converges asymptotically to the maximum
achievable SNR value (obtained with perfect knowledge of the
channel correlation matrix at the Tx) [17].

For the practically important case where there are occasional
SNR measurement errors at the receiver, or binary feedback
errors in the reverse link from the receiver to the transmitter,
a robust maximum likelihood formulation is proposed and
shown to be effective in dealing with such errors. A discounted
maximum likelihood formulation is also proposed to enable
CSI tracking and adaptation of the transmit beamforming vector
in cases where the channel correlation matrix itself changes
slowly, as time goes by.

The techniques proposed for an isolated MISO link are
subsequently used as a foundation for designing secondary
transmit beamforming vectors for cognitive radio networks
(CRNs). Learning to beamform at the secondary transmitter
in a cognitive underlay setting is far more challenging, as the
primary receiver cannot be assumed to cooperate in “teaching”
the secondary transmitter how to avoid causing interference.
Based on novel formulations that exploit the binary feedback in
the secondary system and the possibility of “overhearing” the
usual ACK/NACK feedback on the reverse primary link, joint
cognitive beamforming and primary interference avoidance al-
gorithms are developed. Two distinct scenarios are considered,
depending on whether or not the secondary transmitter knows
the primary interference threshold. When it does, convergence
of the beamforming vector to the optimal one (obtained with
perfect CSIT) is proven; otherwise a power back-off mecha-
nism is proposed to enable the secondary transmitter to learn
the unknown primary interference threshold. Interestingly, sim-
ulations show that it is possible to learn the primary interference
threshold and approach optimal secondary link performance
this way, as if perfect knowledge of the interference threshold
and CSIT were available—albeit we do not have proof of
convergence in this case.

The main novelty is the ability to gradually acquire CSI and
design optimal transmit beampatterns from rudimentary CSI
feedback. This is the first solution to jointly tackle secondary
SNR maximization and primary interference avoidance, with-
out assuming reciprocity or altering the primary’s signaling
protocol, while enabling asymptotically optimal performance
from only binary CSI. Some of the proposed approaches are
very simple, making them ideal for practical implementation.
As cognitive radio research and development inches closer to
deployment, algorithms that can work under realistic channel
and feedback conditions are likely to have a big impact in terms
of practical transceiver and network engineering.

Relative to its conference precursor [17], this journal version
brings in the robust discounted maximum likelihood formu-
lation, generalization to the cognitive radio underlay setting,
including proof of convergence of a pair of jointly driven cut-
ting plane iterations for the case when the primary interference
threshold is known to the secondary transmitter, and extensive
simulation results.

As we were putting the finishing touches on this manuscript,
we became aware, through the reviews of our conference paper
[17], of a parallel submission to the same conference by Xu

and Zhang [18], containing an idea that is very similar to [17].
Namely, [18] considers transmit beamforming for wireless en-
ergy transfer (vs. communication), and a cutting plane method
to learn the channel correlation matrix from one-bit feedback.
While several design choices are naturally different, these being
independent pieces of work, the core idea is the same in both
papers. Summarizing the differences, [18] assumes separate
learning and “bulk transfer” phases, uses higher-rank precoding
instead of beamforming during the learning stage, and does
not communicate thresholds to the receiver—at the cost of not
controlling the transmission power during the learning phase.
Using a higher-rank precoder may enable faster exploration and
learning, but requires separate up-conversion chains that are not
needed during show time (the payload phase) where beamform-
ing is used. These different design choices are complementary
in many ways, and it is interesting to see that the same basic
idea was independently discovered but fleshed out in different
ways by the two groups.

II. SYSTEM MODEL AND BASIC PROBLEM FORMULATION

Consider a point-to-point MISO link comprising a Tx with
N antennas and a Rx with a single antenna. Time is divided
into transmission rounds or slots of length T seconds, with
each slot comprising enough symbols for the Rx to perform
relatively accurate power estimation. Initially, the Tx starts
transmitting data using an arbitrary beamforming vector w0.
At time tT + τ , where t is a “slow time” (slot index) and τ is
“fast time,” the channel from the Tx to the Rx is modeled as
a complex random N × 1 vector h(tT + τ), with E[h(tT +
τ)hH(tT + τ)] = Rh, ∀ t, ∀ τ . At the same time, the Tx sends
the complex zero-mean unit-variance symbol x(tT + τ) times
a complex beamforming vector wt, and the Rx measures

y(tT + τ) = wH
t h(tT + τ)x(tT + τ) + z(tT + τ), (1)

where the additive noise z(·) has zero mean, variance σ2, and
is independent of x(·) and h(·). In order to decode the data,
the Rx should at least estimate wH

t h(tT + τ). This can be
accomplished using a few pilot symbols per slot (or differential
modulation/demodulation), and it is far simpler than estimating
the vector h(tT + τ). The average received SNR for slot t

is given by E
(

|wH
t h|2
σ2

)
=

wH
t Rhwt

σ2 . The beamforming vector

that maximizes the average received SNR is the principal
eigenvector of Rh scaled according to the available transmit
power. The Tx does not have any initial CSI and its objective
is to learn Rh and maximize the average received SNR based
on binary CSIT—that is, binary slot-average SNR feedback.
More specifically, in each time slot t, the Rx estimates the
average SNR and compares it with a threshold γt. A “1” is
fed back to the Tx if the average SNR is ≥ γt and a “0” is
fed back otherwise. It is initially assumed that there are no
measurement or feedback communication errors. Based on the
single-bit feedback at time t, the Tx learns that{

wH
t Rhwt ≥ γt, when st = 1; or

wH
t Rhwt < γt, when st = 0,

(2)
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where st is the 1-bit feedback at time t. For every feedback
bit, the Tx learns an additional inequality, which can reduce
the uncertainty about Rh. This naturally raises the question
whether appropriate choice of {wt, γt} can quickly shrink the
feasible region for Rh, and even yield a sequence of estimates
R̂h(t) → Rh, as t → ∞. More importantly, is it possible to
approach the SNR attained with full CSIT, i.e., using the princi-
pal eigenvector of Rh? While this may seem an ambitious goal
with only rudimentary CSIT, we will see that the answer is on
the affirmative, and in fact relatively few feedback bits suffice
to approach optimum performance, for practical purposes.

Simultaneous Exploration–Exploitation: For every slot t,
the Tx can choose wt in such a way that it not only gathers
a significant amount of information about Rh (from the 1-
bit feedback), but also tries to deliver a high average received
SNR, thus enabling channel learning in parallel with payload
transmission. To accomplish the former objective, the beam-
forming vectors chosen at each instant should be as diverse
as possible relative to the previously chosen weight vectors,
so that, over time, the Tx will learn about Rh from as many
different directions as possible. For the latter, the best that
the Tx can do to deliver a high average received SNR is to
assume that R̂h is close to Rh and choose the beamforming
weight vector along the direction of the principal eigenvector
of R̂h. Since the Tx does not have any CSI to start with,
initially it has to give preference towards choosing weight
vectors that aggressively explore the channel correlation space
to improve the accuracy of R̂h; and as time progresses, slowly
shift emphasis towards beamforming vectors in the direction
of the principal eigenvector of R̂h. This ensures that as R̂h

approaches Rh (as will be shown later), wt will approach the
direction of the principal eigenvector of Rh, thus attaining the
maximum average received SNR that is achievable with perfect
knowledge of Rh at the Tx.

At the end of slot t, the Tx has learned the following
inequalities about Rh from the t received feedback bits from
the Rx.

wi
HRhwi ≥ γi, ∀ i ∈ G1 (3)

wi
HRhwi <γi, ∀ i ∈ G2 (4)

where G1 = {i : 1 ≤ i ≤ t, si = 1}, G2 = {i : 1 ≤ i ≤ t, si =
0}, G1

⋃
G2 = {1, 2, . . . , t} and t is the number of elapsed time

slots.
We propose to update R̂h(t) (the Tx-side estimate of Rh at

time t) as follows.

Π1 R̂h(t) = argmax
Rh

∑
i∈G1

log (Tr(WiRh)− γi)

+
∑
j∈G2

log (γj − Tr(WjRh)) + log detRh

where Wi = wiw
H
i and the term wi

HRhwi has been rewrit-
ten as Tr(WiRh). Π1 is a convex optimization problem which
obtains the analytic center of the feasible region at time slot
t formed by the linear inequalities (3), (4) and the positive
semi-definite cone [19], [20]. It can be solved efficiently using
interior point methods with worst case complexity O(N7).

A) Design of Beamforming Vector wt+1 and Threshold
γt+1:

• Design of beamforming vector wt+1: After updating
R̂h(t), we propose to select wt+1 as follows.

Π2 : wt+1 = arg max
‖w‖=1

wHR̂h(t)w − λtw
HVw,tV

H
w,tw

where Vw,t = [w1,w2, . . . ,wt], and λt is a non-
increasing function of t, e.g., λt =

λ
	0.1t
 , with λ1 � 1.

The solution of Π2 can be obtained in closed form, i.e.,
wt+1 is the unit vector along the principal eigenvector of
the matrix R̂h(t)− λtVw,tV

H
w,t. The objective function

in Π2 consists of two terms, the first one is proportional to
the Tx-side estimate of the average received SNR (which
is close to the actual average received SNR if the Tx has
estimated R̂h(t) close to Rh), and the second one is the
squared norm of the vector VH

w,tw. Maximization of this
objective function gives a weight vector that strikes a bal-
ance between maximizing the estimated average received
SNR and minimizing similarity to the weight vectors
chosen in previous time slots. For small t, the choice
of weight vector is dictated by VH

w,tw, yielding diverse
weight vectors that explore different directions, gathering
information about Rh; for large t, λt � 1 and preference
shifts to the first term wHR̂h(t)w, resulting in weight
vectors aligned with the principal eigenvector of R̂h(t).
Therefore, if R̂h(t) → Rh as t → ∞, the beamforming
vector chosen by the Tx will asymptotically align itself
with the principal eigenvector of Rh, thus attaining the
maximum average received SNR.

• Design of threshold γt+1: Analytic Center Cutting
Plane Method (ACCPM). After choosing wt+1, the
Tx selects an appropriate SNR threshold γt+1 such
that the subsequent inequality constraint for Rh

obtained from the 1-bit feedback at time slot t+ 1
considerably reduces the feasible region at time t denoted
by Pt, where Pt = {R : R 
 0,wi

HRwi ≥ γi, ∀ i ∈
G1,wi

HRwi <γi, ∀ i ∈ G2,G1

⋃
G2 = {1, 2, . . . , t}}.

This is crucial for the convergence of R̂h(t) to Rh.
Since the Tx already communicates payload information
to the Rx in parallel to learning to beamform, the new
threshold can “piggyback” on the payload transmission at
limited overhead—unlike the Rx feedback on the reverse
link, which is more severely limited in terms of rate.
(The basic method still works without having the Tx
dictate thresholds to the Rx, albeit convergence to the true
channel correlation matrix cannot be guaranteed in this
case.)

One way to ensure that the feasible region is reduced at
each time step is to choose wt+1 and γt+1, such that the
resulting hyperplane wt+1

HRwt+1 = γt+1 passes through an
interior point of Pt. Here, we propose to design the beam-
forming vector wt+1 and the threshold γt+1 such that the
resulting hyperplane passes through the analytic center of Pt

(Analytic Center Cutting Plane Method—ACCPM), which is
R̂h. Since the analytic center is the point that maximizes the
product of distances to the defining hyperplanes and the positive



GOPALAKRISHNAN AND SIDIROPOULOS: COGNITIVE TRANSMIT BEAMFORMING FROM BINARY CSIT 899

semi-definite cone, it gives the deepest interior point of Pt.
Hence for a given wt+1, we choose γt+1 = wt+1

HR̂h(t)×
wt+1. This ensures that the resulting cutting plane wt+1

H ×
Rwt+1 = γt+1 will pass through R̂h(t) and cut off a signifi-
cant part of the current feasible region Pt.

From known convergence results for ACCPM [20], [21], it
then follows that R̂h(t) (updated as the analytic center of the
current feasible region) is restricted to a ball of radius r around

Rh within O
(

N2

r2

)
iterations. Therefore, if λt is designed so

that it becomes negligible by
⌈
N2

r2

⌉
iterations, then the objective

function of Π2 can be approximated as wHR̂h(t)w. Hence
asymptotically, as R̂h(t) → Rh, the beamforming weight vec-
tor will converge to the principal eigenvector of Rh and the
average received SNR will approach the maximum achievable
average SNR (obtained with perfect a priori knowledge of Rh).

Remark 1: One can avoid the threshold communication
overhead by fixing the threshold at the receiver, and scaling the
transmit beamforming vector instead. This relinquishes control
of transmission power, however, and is not as good a fit to our
simultaneous exploration–exploitation setup, where power con-
trol is important and threshold information can piggyback on
the payload. On the other hand, one can dispense with threshold
communication when the transmission power can be allowed to
vary freely, and this is in line with separate learning and payload
phases, as in [18]. Threshold communication appears appealing
from a practical point of view, taking into account the limited
dynamic range of the receiver front-end, and power amplifier
nonlinearities.

III. MAXIMUM LIKELIHOOD FORMULATION

In practice, bits may be flipped due to inaccurate SNR
estimation at the Rx or communication errors in the reverse
link. Assuming a memoryless feedback link, these errors are
independent from slot to slot. We propose modeling both types
of errors using an additive measurement noise model that is
equivalent from the point of view of the Tx. Including this noise,
the inequalities become{

wH
t Rhwt + nt ≥ γt, when st = 1, or

wH
t Rhwt + nt < γt, when st = 0,

(5)

where nt ∼ N (0, σ2
n) is the equivalent noise at time t.

The measurements received at the Tx are the bits st =
(sign(wH

t Rhwt + nt − γt) + 1)/2. The conditional likeli-
hood of these bits s1, s2, . . . , st conditioned on the unknown
parameter Rh can be written as

f(st|Rh) =
∏
i∈G1

Pr [Tr(WiRh) + ni ≥ γi]

×
∏
i∈G2

Pr [Tr(WiRh) + ni < γi]

=
∏
i∈G1

Φ

(
Tr(WiRh)− γi

σn

)

×
∏
i∈G2

Φ

(
γi − Tr(WiRh)

σn

)
,

where st = [s1, s2, . . . , st]
T , G1 and G2 are defined as before,

and Φ(x) = 1√
2π

∫ x

−∞ e−
z2

2 dz is the standard Gaussian c.d.f. At

time slot t+ 1, R̂h(t) is updated as the maximum likelihood
estimate (MLE) R̂MLE

h (t) (as compared to the analytic center
in the error-free case) obtained from Π3 which maximizes the
log-likelihood function log(f(st|Rh)) with a positive semi-
definite constraint.

Π3 R̂MLE
h (t) = arg max

Rh
0

∑
i∈G1

log Φ

(
Tr(WiRh)− γi

σn

)

+
∑
i∈G2

log Φ

(
γi − Tr(WiRh)

σn

)

Π3 is a convex optimization problem since it involves the
maximization of the logarithm of the c.d.f. of a Gaussian
distribution which is concave, with a positive semi-definite
constraint which is convex. Once the channel correlation matrix
estimate is updated, wt+1 is chosen as the principal eigenvector
of R̂MLE

h (t)− λtVw,tV
H
w,t and γt+1 = Tr(Wt+1R̂

MLE
h (t)),

where Vw,t = [w1,w2, . . . ,wt] and λt is a non-increasing
function of t.

Our 1-bit/slot measurement model is a special case of what
is known as a probit model. Statistical identifiability and MLE
consistency conditions and proof for the probit model can be
found in [22], and a more compact proof for a generalized
model can be found in [23]. The basic idea is that, by the law of
large numbers, the normalized log-likelihood function will con-
verge to its expectation, and by the information inequality this
will have a unique maximum at the true parameter when this
is identifiable. However, the proof assumes that the regressors
vec(WT

t ) are independently drawn from a distribution with

nonsingular E[vec(WT
t )vec(W

T
t )

H
]. A random model for

vec(WT
t ) is needed to invoke the information inequality. In our

context, however, the vec(WT
t )’s are iteratively generated—in

fact, judiciously designed—based on interim ML estimates
of the sought channel correlation matrix, according to the
proposed exploration–exploitation trade-off schedule. In certain
cases, one can prove consistency of the MLE designed for inde-
pendent and identically distributed (i.i.d.) data, but operating on
non-i.i.d. data [24], [25]. We do not have proof of convergence
and consistency of the MLE in our context, but our experiments
indicate that the MLE approaches the true Rh as the number of
feedback bits increases.

A. Tracking Changes in Rh

When the channel correlation matrix Rh changes over time
due to mobility, the Tx should be capable of tracking these
changes and adapting its beamforming vector to maintain high
average SNR at the Rx. Assuming that Rh changes slowly
with time, it is natural to consider the following “discounted”
modification of the MLE in Π3.

Π3′ R̂dMLE
h (t)=arg max

Rh
0

∑
i∈G1

βt−i log Φ

(
Tr(WiRh)−γi

σn

)

+
∑
j∈G2

βt−j log Φ

(
γj − Tr(WjRh)

σn

)
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Fig. 1. Secondary beamforming schematic: primary system (#1, top) and
secondary system (#2, bottom).

where 0 < β < 1 and G1

⋃
G2 = {1, 2, . . . , t}. Each term in-

side the summation of the objective function is weighted by
a forgetting factor that decays exponentially with time. As a
result, the terms corresponding to inequalities obtained from
the recent past are given higher weight.

IV. COGNITIVE BEAMFORMING AND INTERFERENCE

AVOIDANCE FROM BINARY CSIT

Consider a cognitive radio underlay scenario where the sec-
ondary and the primary Tx share the same frequency spectrum
for communicating with the corresponding receivers. The con-
straint for the secondary Tx in this scenario is that it should
transmit in such a way that the interference caused due to its
transmission at the primary Rx is restricted below a primary
interference threshold. In our cognitive radio setup, the sec-
ondary system consists of a multi-antenna Tx serving a single
antenna Rx, coexisting with a primary system comprising a
Tx–Rx pair, see Fig. 1. Let hij denote the random complex
channel from the Tx of system i to the Rx of system j and Rij

be the auto-correlation matrix of hij , {i, j} ∈ {1, 2}, where
index 1 refers to the primary system, and index 2 to the
secondary system. Initially, the secondary Tx does not know
R22 and R21, the correlation matrices of the channels to the
secondary Rx and to the primary Rx, respectively. Its goal is to
design beamforming vectors for learning these matrices while
sending payload data to the secondary Rx, with the ultimate
objective of maximizing the average SNR at the secondary Rx
without seriously degrading the QoS of the primary Rx. The
challenge here for the secondary Tx is that the primary Rx
cannot be assumed to cooperate in the learning process. Note
that we do not assume channel reciprocity, as this does not
hold with frequency-division duplex or when nodes employ
different transmit and receive beam patterns. The secondary
Rx (sRx) operates as in the case of an isolated MISO link,
considered earlier. In addition to the feedback bits from the
sRx, the secondary Tx (sTx) can overhear the regular ACK-

NACK feedback that the primary Rx (pRx) sends to the primary
Tx (pTx) over its reverse link. We consider two scenarios in
what follows, depending on whether or not the sTx knows the
primary interference threshold τp. Note that, in the absence of
third-party interference, τp primarily depends on the modula-
tion and coding scheme employed over the primary link, which
are often fixed in legacy systems. Assuming that τp is known to
the secondary system is far less realistic, on the other hand, if
the primary system uses adaptive modulation and coding.

Case 1—sTx Knows Primary Interference Threshold τp: At
time slot t, the sTx employs beamforming vector wt. Let Gp1

and Gp0 be the set of time slots where the pRx sends an ACK
and NACK feedback, respectively to the pTx. Listening in to
the primary’s reverse link, the sTx infers that

wH
i R21wi <τp ∀ i ∈ Gp1

wH
j R21wj ≥ τp ∀ j ∈ Gp0

⇐⇒ Tr(WiR21) <τp ∀ i ∈ Gp1

Tr(WjR21) ≥ τp ∀ j ∈ Gp0. (6)

On the other hand, the sTx also receives 1-bit feedback from
the sRx, yielding the following inequalities.

Tr(WiR22) ≥ γi, ∀ i ∈ Gs1

Tr(WiR22) <γi, ∀ i ∈ Gs2 (7)

where Gs1 = {i : i ∈ {1, 2, . . . , t}, si = 1} and Gs2 = {i : i ∈
{1, 2, . . . , t}, si = 0}. For every time slot t, the secondary Tx
has to update its estimate of R22 and R21 and design the
beamforming vector wt such that the average received signal
power of the sRx is maximized without causing excessive
interference to the pRx on average.

At time t+ 1, the sTx updates R̂22(t+ 1) and R̂21(t+ 1)
as follows

R̂22(t+ 1) = argmax
R22

∑
i∈Gs1

log (Tr(WiR22)− γi)

+
∑
j∈Gs2

log (γj − Tr(WjR22)) + log detR22

(8)

R̂21(t+ 1) = argmax
R21

∑
i∈Gp0

log (Tr(WiR21)− τp)

+
∑
j∈Gp1

log (τp − Tr(WjR21)) + log detR21

(9)

where R̂22(t+ 1) and R̂21(t+ 1) are the estimates of R22 and
R21 at time t+ 1. From (8) and (9), it can be seen that R̂22(t+

1) and R̂21(t+ 1) are the analytic centers of the feasible region
formed by the associated linear inequalities in (7) and (6) and
the positive semi-definite cone [19], [20].

We propose the following steps to design the beamforming
vector wt+1. First we solve

Π6 w̃t+1=argmax
w

[
wHR̂22(t+ 1)w−λtw

HVw,tV
H
w,tw

]
s.t. wHR̂21(t+ 1)w ≤ τp (10)

‖w‖2 ≤ Pw (11)
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where Vw,t = [w1,w2, . . . ,wt], Pw is the maximum avail-
able transmit power at the sTx and λt is a non-increasing
function of t. By solving Π6, we get a w̃t+1 that not only
maximizes the sTx-side estimate of average received signal
power at sRx, but also is diverse enough to explore the channel
correlation space, gain more information about R22 and R21

and eventually improve the accuracy of their estimates, while
limiting the average interference to pRx below τp. Π6 involves
the maximization of an indefinite quadratic objective function
subject to two convex quadratic constraints. From the results in
[7], the optimal solution to Π6 can be obtained by using semi-
definite relaxation (SDR) and solving Π6a.

Π6a W̃t+1=argmax
W
0

[
Tr(WR̂22)− λtTr

(
WVw,tV

H
w,t

)]
s.t. Tr(WR̂21) ≤ τp (12)

Tr(W) ≤ Pw (13)

where W = wwH and w̃t+1 can be obtained as the principal
eigenvector of W̃t+1. Notice that semi-definite relaxation in-
curs no loss of optimality here, as shown in [7]. Once w̃t+1 is
obtained, wt+1 is designed as follows.

wt+1 =

⎛
⎝√

τp

w̃H
t+1R̂21(t+ 1)w̃t+1

⎞
⎠ w̃t+1. (14)

This step is necessary to ensure that the hyperplane
wH

t+1Rwt+1 = τp passes through R = R̂21(t+ 1).
Remark 2: Here, the scaling step is adopted because the

primary interference threshold τp is fixed and cannot be varied
by the sTx, see also remark 1. The drawback is that transmission
power cannot be directly controlled this way. In contrast to
the case of an isolated MISO link that we considered earlier,
this is necessary here because we wish to drive two parallel
cutting plane iterations with a common beamforming vector
and threshold, thus we must use all degrees of freedom we have.

After designing wt+1, the threshold for the sRx γt+1 is
designed as follows

γt+1 = wH
t+1R̂22(t+ 1)wt+1. (15)

This ensures that the hyperplane wH
t+1Rwt+1 = γt+1 passes

through R = R̂22(t+ 1).
Convergence of wt+1 to the Optimal Beamforming Vector:

The design of wt+1 and γt+1 ensures that the hyperplanes
corresponding to the inequalities inferred by the sTx upon
receiving the feedback bit and overhearing the primary ACK-
NACK feedback for time t+ 1 pass through the analytic cen-
ters of the feasible regions of R22 and R21, i.e., R̂22(t+ 1)

and R̂21(t+ 1), respectively. Hence convergence of ACCPM
[21] can be invoked. As a result, R̂22(t+ 1) and R̂21(t+ 1)
are confined to a ball of radius r centered around R22 and

R21 respectively, within O
(

N2

r2

)
iterations. Furthermore, λt

decreases to zero as t → ∞. Therefore, as R̂22(t+ 1) → R22,
R̂21(t+ 1) → R21 and λt → 0, Π6 becomes

w̃ = arg max
‖w‖2≤Pw

wHR22w

s.t. wHR21w ≤ τp

which is the optimal secondary beamforming vector design
when sTx has perfect knowledge of R22 and R21. Note that this
is a special kind of non-convex problem (“one constraint away”
from the Rayleigh quotient) that can be solved exactly [7].

Case 2—sTx Does Not Know τp: Here we assume that the
sTx does not have any knowledge about τp. In this case,
by overhearing the primary ACK-NACKs, the sTx infers the
following inequalities

wH
i R21wi ≤ wH

j R21wj

⇐⇒Tr(WiR21)≤Tr(WjR21), ∀ i∈Gp1, ∀ j∈ Gp0. (16)

From the feedback bits sent by the sRx to the sTx, the sTx
infers the inequalities mentioned in (7). As before, the sTx
updates R̂22(t+ 1) as the analytic center of the associated lin-
ear inequalities and the positive semidefinite cone as shown in
(8). For designing the beamforming vector wt+1 and updating
R̂21(t+ 1), we propose the following formulation:

Π7 : max
w,R21
0[
wHR̂22(t+1)w−μwHR21w−λtw

HVw,tV
H
w,tw

]
s.t. ‖w‖2 ≤ Pw (17)

Tr(WiR21) ≤ Tr(WjR21), ∀ i∈Gp1, ∀ j∈Gp0

(18)

where μ ∈ R+ and λt is a non-increasing function of t. The
motivation for the objective function in Π7 is as follows. The
first term is the sTx-side estimate of the signal power received
at the sRx. For a given w, the second term in the objective of
Π7 selects from the admissible R̂21(t+ 1) the one that is most
favorable from the sTx point of view; that is, the one that is
annoyed the least by wt+1. The third term diversifies the choice
of w to explore the channel correlations space from as many
directions as possible to gather information about R22 and R21,
and eventually improve the accuracy of the estimates.

Since Π7 is not jointly convex in w and R21, it can be
tackled using alternating optimization. The update of R21 is
semi-definite programming (SDP). For a fixed R21 = R̂21(t+
1), the update of w is simply the unit vector along the princi-
pal eigenvector of R̂22(t)− μR̂21(t+ 1)− λtVw,tV

H
w,t. The

threshold γt+1 for the sRx at time t+ 1 can be obtained
using ACCPM, namely γt+1 = Tr(Wt+1R̂22(t+ 1)), where
Wt+1 = wt+1w

H
t+1.

Since the update of R̂22(t) is independent of R̂21(t) and
there is no dependency in terms of the constraints, convergence
of R̂22(t) follows from the ACCPM, as before. On the other
hand, the constraints determining the feasible region for R21

are all homogeneous, Tr(WmR21) ≤ Tr(WnR21), ∀m ∈
Gp1, ∀n ∈ Gp0 and R21 
 0. The hyperplanes corresponding to
the linear inequalities all pass through the origin, so the feasible
region remains unbounded for all t. As a result, there is no
hope that R̂21(t) will converge to R21, or that the interference
to the pRx will converge below its (unknown) interference
tolerance level. On the other hand, with appropriate choice of
the sequence of the Wi’s (⇔ the wi’s), there is hope that
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Fig. 2. Evolution of average link SNR (left) and ‖Rh − R̂h‖F (right) for
ACCPM, N = 5.

the direction of vec(R̂21(t)) will align with that of vec(R21),
despite the fact that the scale cannot be recovered. This suggests
using an additional interference management mechanism to
limit sTx to pRx interference, when needed. Towards this end,
we may: (a) Fix μ and vary P at slot t+ 1 based on whether
an ACK or NACK was heard from the pRx at slot t; i.e., wt+1

is scaled by
√
αt+1, where αt+1 = αtα, if a NACK was heard,

else αt+1 = max(αt/α, Pw), with back-off parameter α < 1.
Alternatively, we may (b) Fix P and vary μ in Π5, thereby
changing the relative preference to directions that cause lower
estimated average interference power to the pRx. Whenever the
sTx hears a NACK from the pRx, it sets μt+1 = μtδ, while an
ACK results in μt+1 = μt/δ, with δ > 1.

As we will see, simulations show that the fix μ vary P power
back-off scheme can learn the primary interference threshold
and approach optimal secondary link performance—albeit we
do not have proof of convergence in this case.

V. SIMULATION RESULTS

A. MISO Link

Fig. 2 shows simulation results for the average link SNR
and the estimation error ‖Rh − R̂h‖F for a point to point
MISO link using N = 5 transmit antennas, using ACCPM. The
x-axis is labeled (slow) “time,” i.e., the slot index. For simu-
lation purposes, the channel vector h is drawn independently
during each time slot from a complex normal distribution with
zero mean and covariance matrix Rh and λt =

5
	0.1t
 . The

channel correlation matrix Rh was obtained by generating
a random orthonormal matrix U, a random diagonal matrix
D with positive real numbers along the main diagonal, and
setting Rh = UDUH . The dotted line in the figure on the
left represents the maximum achievable average SNR with
perfect knowledge of Rh at the Tx. The solid line represents
the average received SNR at each time t. It takes approxi-
mately 80 time slots (or (80/(5(5 + 1)/2)) ≈ 6 feedback bits

Fig. 3. Evolution of average link SNR (left) and ‖Rh − R̂h‖F (right) for
ACCPM, N = 10.

Fig. 4. Monte Carlo simulation for evolution of average link SNR in isolated
MISO link, N = 5.

per complex entry of Rh) for the algorithm to converge to
the maximum achievable SNR. Fig. 3 shows corresponding
results for N = 10 transmit antennas. The time taken by the
algorithm to converge to the maximum achievable SNR at the
Rx increases as N increases (approx 200 time slots for N = 10,
or 7 bits per complex entry of Rh). Furthermore, it can be
seen from the figures on the right that the channel correlation
matrix estimation error also decreases with t. Fig. 4 plots the
Monte-Carlo simulation of the average link SNR for N = 5 by
averaging over 100 random realizations of Rh.

Fig. 5 compares the average SNR performance of the a)
proposed ACCPM algorithm with b) the distributed beamform-
ing algorithm in [12], b) the gradient sign algorithm in [13],
and the one-bit null space learning algorithm in [16], for an
isolated MISO link with N = 5 transmit antennas. The figure
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Fig. 5. Performance comparison of average link SNR in isolated MISO
link for a) proposed ACCPM algorithm, b) distributed beamforming from 1-
bit feedback, c) gradient sign algorithm, and d) one-bit null space learning
algorithm, N = 5.

report results averaged over 100 Monte Carlo draws of Rh. It
can be seen that the proposed algorithm converges much faster
to the maximum SNR than the other algorithms (100 versus
500, 500 and 150). The performance of the proposed algorithm
is superior to algorithms b) and c) because it uses a better
exploration technique. The performance gain of algorithm a)
over d) can be attributed to the faster convergence of the
ACCPM in comparison to the Cyclic-Jacobi algorithm (O(N2)
versus O(N2 logN) [16]). Furthermore, it can also be seen that
there is a slight gap in the maximum SNR and the maximum
value attained by the algorithms in [12] and [13], even after
500 iterations.

The average received SNR and the estimation error for Rh

using the MLE formulation is plotted in Fig. 6 for N = 5 and
σn = 0.01. As mentioned in the captions, there were 86 bit flips
among the 500 feedback bits (17%). It can be seen that even in
the presence of bit flips, R̂MLE

h (t) approaches Rh, resulting
in the average received SNR at the user’s side approaching
the maximum achievable SNR with perfect knowledge of Rh.
However, the time taken for convergence of R̂MLE

h (t) to Rh

is higher than in the case without errors (Fig. 2), i.e., 250
with errors versus 80 without errors. One reason for the slower
convergence rate of the MLE is the bit flips occurring as a result
of the noise. Another reason is that, unlike the ACCPM, the
MLE is not explicitly designed to quickly cut down the feasible
region. Fig. 7 shows the average SNR obtained using the MLE
update for different σn values. The performance of the ACCPM
algorithm assuming perfect data (no bit flips) is also plotted as
a baseline for comparison. The plots have been averaged over
100 Monte Carlo runs. It can be seen that as σn increases, the
time taken for convergence also increases. This is because of
the increased number of bit flips due to higher noise variance.
However, it is interesting to note that even with a small number
of bit flips (i.e., when σn = 10−4, average bit-flips = 4), the

Fig. 6. Evolution of average link SNR (left) and ‖Rh − R̂h‖F (right) for
MLE, N = 5.

Fig. 7. Performance comparison of average SNR using MLE update for
different σn, N = 5.

convergence of the MLE algorithm is slower compared to the
ACCPM algorithm. On the other hand, it should also be noted
that the noise can render the set of inequalities infeasible—in
which case the ACCPM is no longer applicable, but MLE still
works and manages to approach the optimum solution, without
explicitly rejecting the conflicting inequalities. This is pretty
remarkable, as it addresses an important practical concern in
our context.

Fig. 8 plots a Monte-Carlo average link SNR using the MLE
for N = 5, averaging over multiple random realizations of Rh.

Fig. 9 shows the average SNR performance for N = 3 when
Rh changes with time and the discounted MLE formulation
is used. For simulation purposes, Rh is changed to a new
correlation matrix at t = 400. The channel correlation matrices
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Fig. 8. Monte Carlo simulation for evolution of average link SNR using MLE
formulation in isolated MISO link, N = 5.

Fig. 9. Channel correlation tracking performance using the discounted MLE,
N = 3.

for the simulation were generated in the same fashion as in the
point to point MISO case. For the plots shown in Fig. 9, the
value of β = 0.95. It can be seen from Fig. 9 that the discounted
MLE formulation is able to track the changes in Rh and adapt
the beamforming vectors to achieve the maximum SNR at the
receiver.

B. Cognitive Radio Underlay Simulations

Fig. 10 shows the simulation results for the case when τp is
known to the sTx. The top plot shows the average received SNR
at the sRx and the bottom plot shows the average interference
power at the pRx for N = 5, λt =

5
	0.1t
 , τp = 0.5 and Pw = 5.

For simulation purposes, hij ∼ CN (0,Rij), i, j ∈ {1, 2}. R22

and R21 were obtained by generating random orthonormal

Fig. 10. τp is known at sTx—Avg. SNR at sRx (top) and avg. interference
power at pRx (bottom), N = 5, τp = 0.5.

Fig. 11. τp is known at sTx—Monte Carlo simulation for Avg. SNR at sRx
(top) and avg. interference power at pRx (bottom), N = 5, τp = 0.1.

matrices U22 and U21, random diagonal matrices D22 and
D21 with positive diagonals, and setting R22 = U22D22U

H
22,

R21 = U21D21U
H
21. The dotted horizontal line in the top plot

is the maximum achievable average received SNR at the sRx
(with perfect knowledge of R22, R21 and τp at the sTx). The
horizontal line in the bottom in Fig. 10 represents the primary
interference power threshold τp. It can be seen that the average
SNR at sRx converges to the maximum achievable SNR value
(obtained with perfect knowledge of R22 and R21 at sTx) and
the average interference power at the pRx converges to τp.
Fig. 11 plots the Monte-Carlo simulation of the average SNR
at sRx for N = 5, τp = 0.1 by averaging over multiple random
realizations of R22 and R21. It can be seen from Fig. 11 that
the average SNR at the sRx attains the maximum average SNR
and the average interference power at the pRx is limited to τp
for every random realization of R22 and R21.
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Fig. 12. τp is unknown at sTx—Avg. SNR at sRx (top) and interference power
at pRx for two candidate back-off schemes, N = 5, τp = 0.5.

Fig. 12 shows simulation results for the average received
SNR at the sRx and the average interference power at the pRx
when τp is unknown to the sTx with N = 5, λt =

5
	0.1t
 , τp =

0.5, Pw = 5, and back-off parameters α = 0.8 and δ = 2. The
dotted straight line in the top plot is the maximum achievable
average received SNR at sRx (with perfect knowledge of R22,
R21 and τp at the sTx). The solid horizontal line in the two
lower plots in Fig. 12 represents the primary interference power
threshold which is not known to the sTx. It is very pleasing and
intriguing to see that the proposed power back-off mechanism
(a) approaches optimal performance in terms of sRx SNR,
while the interference it causes to the pRx converges to the
primary interference threshold τp, which is unknown! At the
same time, the indirect back-off mechanism (b) clearly fails
in this case—which speaks for the importance of choosing the
right back-off scheme. Fig. 13 plots the Monte-Carlo simulation
of average SNR at sRx and average interference power at pRx
using power back-off mechanism (a) for N = 5, τp = 0.1 by
averaging over multiple random realizations of R22 and R21.
Note that there is a small gap relative to optimal performance
in this case (32 versus 33.5 dBm).

Fig. 14 highlights the average SNR performance at the sec-
ondary Rx of a cognitive radio using interference management
scheme (a) for two extreme cases. For case 1, R22 has been
chosen proportional to R21. This can occur when the secondary
Rx and the primary Rx are aligned to each other when viewed
from the secondary Tx. In this case it is generally difficult
for the secondary Tx to design transmit beamforming vectors
for providing high average SNR at the secondary Rx without
causing excessive interference to the primary Rx. For case 2,
R22 and R21 have been designed such that the principal eigen-
vector of R22 is aligned with the minor eigenvector of R21, i.e.,
the direction of the eigenvector corresponding to the minimum
eigenvalue of R21. This is a very desirable scenario for the sec-

Fig. 13. τp is unknown at sTx—Monte Carlo simulation for Avg. SNR at sRx
(top) and avg. interference power at pRx (bottom), N = 5, τp = 0.1.

Fig. 14. Comparison of average SNR performance at sRx for τp = 5.10−4.

ondary Tx because if it aligns the transmit beamforming vector
along the principal eigenvector of R22, then it can achieve high
average SNR at the secondary Rx as well as cause the least
possible interference to the primary Rx simultaneously. For this
simulation, the correlation matrix R22 was generated in the
same fashion as mentioned in the previous paragraph and R21

was generated based on the conditions required for cases 1 and
2 mentioned here. It can be seen that there is approximately
30 dB difference in the maximum average SNR between these
two cases, and that the secondary Tx achieves the maximum
possible average SNR in both cases.

VI. CONCLUSION

In this paper, we have proposed an efficient way to accu-
rately estimate the channel correlation matrix at the Tx of a
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MISO link based on binary feedback from the Rx, obtained
by comparing the average received SNR with a threshold that
is varied adaptively by the Tx and communicated to the Rx.
This algorithm is used for designing transmit beamforming
vectors. The proposed technique is promising because the Tx
starts without any CSI, and as time progresses, not only does
it obtain an accurate estimate of the correlation matrix and the
maximum-SNR beamformer without dedicated training, but it
does so while transmitting payload in parallel with the learning
process. A maximum likelihood formulation was proposed
to accommodate measurement/feedback communication errors
that can produce inconsistent inequalities, in which case the
ACCPM is no longer applicable. A discounted maximum likeli-
hood formulation was also proposed for tracking changes in the
channel correlation matrix. Pertinent extensions to an underlay
cognitive radio network setup were proposed for designing
beamforming vectors at the secondary Tx to maximize the
average received SNR at the secondary Rx without causing
excessive interference to the primary Rx. Through relevant
simulations, it was shown that the proposed algorithms for
cognitive radio networks enable the secondary Tx to learn the
relevant channel correlation matrices, starting from no CSI, and
design beamformers to attain the maximum achievable SNR
value at the secondary Rx, obtained when the secondary Tx
has perfect knowledge of the primary interference threshold
and channel correlation matrices to the secondary Rx and the
primary Rx.
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