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Abstract—A 32-bit integer execution core containing a achieving: 1) high noise robustness; 2) low active leakage power
Han-Carlson arithmetic-logic unit (ALU), an 8-entry x2 ALU dissipation; 3) maximum low4 usage; 4) simplifie@® 50%
instruction scheduler loop and a 32-entry x 32-bit register file duty-cycle timing scheme with seamless scheduler/ALU
is described. In a 130 nm, six-metal, duaVy CMOS technology, . . L
the 2.3 mn? prototype contains 160 K transistors. Measurements interface time-borrowing; and 5) scalable performar_u_:e _up to
demonstrate capability for 5-GHz single-cycle integer execution 10 GHz, measured at 1.7 V, 2&. Stack node preconditioning
at 25 °C. Single-ended, leakage-tolerant dynamic scheme used inenables further ALU performance improvement. In addition,
ALU and scheduler enables up to 9-wideors with 23% critical  the RF employs semi-dynamic flip-flops for increased speed
path speed improvement and 40% active leakage power reduction g 5 static design for increased leakage tolerance. On-chip

when compared to a conventional Kogge—Stone implementation. . L .
On-chip body-bias circuits provide additional performance body-bias circuits are used to improve performance or reduce

improvement or leakage tolerance. Stack node preconditioning Standby leakage power. The chip also supports full at-speed
improves ALU performance by 10%. At 5 GHz, ALU power is  result capture and scan-out.
95 mW at 0.95 V and the register file consumes 172 mW at 1.37 V. |n the execution core, both the ALU and scheduler are
The ALU performance is scalable to 6.5 GHz at 1.1 V and to organized as a loop [3], enabling single-cycle latency and
10 GHz at 1.7 V, 25°C. . ..
. o o throughput both for ALU operations and for resolving instruc-
_Index Terms—CMOS integrated circuits, integrated circuit de-  tion dependencies and priorities (Fig. 1). The scheduler updates
sign, logic design, microprocessors, very-high-speed integrated Cir- e rinstruction dependency information each cycle, choosing
eurs the highest priority from among those instructions ready to
execute. The chosen instruction controls ALU input selection
|. INTRODUCTION as well as RF address. The 32-bit ALU executes add/subtract

UT-OF-ORDER execution engines of superscalé)rperations each cycle, allowing the previous results to be used

processors require: 1) wide instruction schedulers Cgi_rectly in the following cycle. This architecture enables fast

pable of scheduling back-to-back instructions into muItipIBara”el out-of-order execution in superscalar microprocessors.

arithmetic-logic units (ALUSs) in the execution core; 2) fast
ALUs capable of executing these instructions with single-cycle II. PROTOTYPEARCHITECTURE

latency and throughput; and 3) leakage-tolerant register file . o T
capable of feeding the ALU units. A high-speed execution co eSThe core architecture contains: 1) three firstin first out (FIFO)

) . o uffers, one FIFO for instructions and two FIFOs for data; 2)
is therefore essential to maximize processor performance m'a'}i htly coupled RF-ALU-Scheduler loop: 3) a FIFO to cap-
this paper, we describe key components of a integer execut{ong y P P P

core: a 32-bit ALU, an 8-entrk 2-ALU instruction scheduler sﬂg?e%uitr?l:rgerzszu-ll;?t S/v'ilc?e 23{_52;3”:;;32 fr:]ﬁfuuéﬁ;:n;tégafn_s
and a 32-entryx 32-bit register file (RF), fabricated in 130 ’ P » OP

L . i rating at core speed. Data FIFOs (D0-D1) provide the desired
nm dual¥y CMOS technology [2]. High-speed single ende@)@erands. A central block forwards data and control signals

dynamic circuit techniques enable the evaluation of complri)

(Up to 2x 9-way OR) logic operations while simultaneousl 0 all units. RF-ALU instructions are single-cycle and can be
P y gic op Yscheduled back to back. A 416-bit long input scan chain feeds

the data and control words. Results are captured at speed by
Manuscript received March 15, 2002; revised June 10, 2002. a 32-bit wide, 4-deep result FIFO. Capture timing and interval
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and low¥ devices can be controlled separately. On-chip FBB Sched<ts © — Readyi<0>
can be disabled; and forward, zero, or reverse body bias can be E<t:0> _—
applied externally to all nMOS and pMOS devices to improve X8
performance or reduce standby leakage power. The chip organi- Priority Encoder
zation provides flexibility to characterize individual units or the P<gio> Sched<0>
complete core. Ready<7:1> . —| BAND
— Sched#<0>
Ready#<0>
I1l. 8-ENTRY X 2 INSTRUCTION SCHEDULER X8

The instruction scheduler is capable of scheduling dependeiat 4. Scheduler hitslice logic.
instructions to two 32-bit ALUs, choosing one of eight poten-
tially ready instructions to execute in each ALU per cycle. Abit slices, with one ready logic evaluation and one priority en-
instruction is ready for execution if it is not dependent upon reoder operation per bit slice (Fig. 3). The 15 dependencies for
sults of any other pending instructions and has not been schfgk 16 instructions currently in the pod(14 : 0), are evalu-
uled in the previous cycle. The scheduler is organized into &6ed and stored in a 1-bit 240-entry dependency matrix during
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Fig. 7. Scheduler priority encoder CSG circuit.

Fig. 6. Schedul dy logic CSG circuit. . . - .
9 chedulerready fogie eired! wide AND paths and realizes the complete critical path with

single-ended R 9-way (Fig. 6) and 8-way (Fig. 7) dynam@R

the previous cycle. The ready logic resolves dependencies bieeuits, respectively. The CSG circuit enables domino-com-
tween the 16 instructions in the pool and two external depegpatible dual-rail outputs but requires only a single-rail input.
dency signalsE(1 : 0)), essentially requiring an 18-waanD It contains two dynamic nodes, a traditional complementary
operation (Fig. 4). An 8-waxND priority encoder then choosesdynamic node and a true dynamic node. Both nodes precharge
from among the ready instructions using dynamically controllagsing the same clock. During evaluation, one of these two nodes
priorities (P(6 : 0)) and drives a 14Qsm loopback bus into the transitions low, causing the nonswitching node to be actively
ready logic and the shared ALU tri-state bus. The ready logiteld by a pMOS device turned on by the evaluating node. These
using the priority encoder outputs from all other bit slices, deross-coupled pMOS transistors provide additional noise immu-
termines if its instruction is dependent on any other instructionity, allowing wideror-gates than those possible when leakage
The priority encoder, then, using the ready logic outputs oniy compensated only by a normal half-keeper. Didalopti-
from the other 7 bit slices in its portion of the instruction queuenization is conducted for high performance and to meet target
indicates if its instruction is the highest priority. noise margin constraints. Highr is used on the 9- and 8-way

A domino implementation of the scheduler logic requiredomino-orRNMOS pull down transistors and loW is used for
a fully dual-rail design, since both true and complementasll other transistors. The complete scheduler path requires only
domino-compatible inputs are required for both the ready logicgate-stages, improving critical path performance by 23% over
as well as the priority encoder. An optimal dual-rail dominthe corresponding dual-rail implementation. Furthermore, the
design requires 8 gate stages due to decreasing performancarage-ended design achieves 67% layout area reduction and
evaluation stack heights are increased on the complement2896 loopback interconnect length reduction due to eliminating
path [Fig. 5(a)]. Fig. 5(b) shows the single-ended to domin&0% of the scheduler logic transistors, enabling a dense layout
compatible complementary signal generator (CSG) based readgupying 210um x 210 um. Total active leakage power
logic and priority encoder implementation, that eliminates thaissipation is 50% lower than the dual-rail domino design.
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W =
1 Sum initial P-G generation occurring in the first stage, followed by
L Do— 5 stages of carry-merge logic. This implementation enables a
Psum; Sumi # 4-way carry-merge operation to be effected in two logic stages.
1 [t Worst-case domino nMOS pull down is only 2-wide, allowing

Sum generation Carryi usage of performance-setting |dviy- transistors throughout the

core while meeting noise immunity and active leakage power
constraints. All dynamic nodes are fully shielded to minimize
capacitive coupling noise. The Han-Carlson carry-merge tree
skips odd carries({,Cs,..., C31) and generates 16 even

Fig. 10. ALU even-bit CSG carry merge.

IV. 32-BIT INTEGERALU

The 32-bit ALU consists of a 5:1 source multiplexercarries Cy,Cs,...,C3p) in 5 stages. An extra carry-merge
single-ended 32-bit dynamic adder core and anBdéifferen- logic stage is required to generate the missing odd carries at the
tial ALU loopback bus (Fig. 8). The source multiplexer selectsnd of the carry-merge tree. This logic is folded into a CSG and
single-rail ALU operands from the true and complementary outie output sunxors to produce the dual-rail sum/sum# outputs
puts of ALU loopback bus, 32-bit RF entries and external debdigr the odd bits in a single gate-stage, achieving a 10% delay
FIFO inputs. The sum/sum# adder outputs are driven onto tleeluction over the reference design in [5] (see Figs. 9 and 10).
ALU loopback bus via a tristated bus driver. This organizatiodnlike the scheduler, the CSG in the adder does not result in
enables single-cycle execution of add, subtract and accunaLgate stage reduction since the true and complementary paths
late instructions. The adder employs a radix-2 Han-Carlserere well balanced. Therefore this performance improvement
architecture with carry-merge operation performed in both tliee primarily due to wire length reductions throughout the carry
dynamic and static stages of the domino gates. This results imarge tree from the elimination of the dual-rail path. The
worst-case evaluation path of 3N-2P-2N-2P-2N-2P stacks, wiingle-ended even carries also feed into a CSG with the output
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sumxoRs folded-in to produce the dual-rail sum/sum# outputs 7
for the even bits.

The P-G stage of the adder produces not only single-rail prop- @ Ef flk—«d-
agate and generate signals for the carry-merge tree, but also the Logic \[ I<t0omv
partial sum, which is used in the final sum generation stage and
therefore is not critical [Fig. 11(a)]. A dynamic pass-transistor -\ J<tw0omv
XOR is used for the partial sum to reduce input loading. The "&Tg 14. CSG noise sensitivity
puts are set up before tidel clock. Both sides of the pass-tran- = = '
sistors in the XOR are precharged for robust glitch-free opera-_

tion. T 150 Clock

In addition to the above improvements, all intermediateTg ¢— variation —y
stack nodes of the dynamic carry-merge stages are pre-di2 100
charged during precharge phase to minimize body effec
enabling best-case evaluate performance [6]. This stack no(& 50 -

e . . . 5 10ps - nominal

preconditioning is accomplished by adding small transistors t & data to clock time
“precondition” the stack nodes of the gate during the prechargd , , ) f : ¢ ”

phase [Fig. 11(b)]. An nMOS transistor is added to the dynami

gate so that the stack node is pre-discharged to ground. A pMC 5 10 5 0 5 10 15 20 25 30

transistor is added to the static gate so that the stack node Clock-Data Arrival Skew (ps)

prgchgrged td_/cc. I_n order. to minimize thg charge_-sharinghg 15. CSG clock skew sensitivity.

noise inherent in this technique, the evaluation transistor stacks

are split into two halves and transposed [6]. The techniqg

provides a delay improvement of 10% in the ALU carry tree.
The Han-Carlson architecture with CSG usage enabledg

|egnal memory array. A static design was chosen to reduce
ower and provide adequate robustness in the presence of large

inale-rail ALU impl tati ith 5006 f fhounts of leakage. The RF design is organized in four iden-
single-ral Impiementation wi o Tewer carry-merge;. 8-entry, 32-bit banks. For fast, single-cycle read operation,

0, I I _
gates and 40% less active leakage energy compared to a di §i four banks are simultaneously accessed and multiplexed

er_mal domino Kogge—Ston_e implementation [5]. quthermor?o obtain the desired data. An 11-transistor, leakage-tolerant,
with the Han-Carlson architecture, only alternate bits are pro

: Proftalv, optimized RF cell with 2-read/1-write ports is used.
agated between consecutive carry-merge stages, resulting ReAds and writes to two different locations in the RF occur
50% reduction in inter-stage interconnect routing complexi

Eylmultaneously in a single clock cycle. To reduce the routing

compared to Kogge-Stone..Thls allowed a compact Ia_yogrgd area cost, the circuits for reading and writing registers
occupying 336:m x 84 um, with a worst-case inter-stage wire

L . are implemented in a single-ended fashion. Local bit lines are
length of 168.m, contributing to further speed improvement. segmented to reduce bit-line capacitive loading and leakage.

As a result, address decoding time, read access time, as well

as robustness improve. RF read and write paths are ldual-
The RF unit is 32-entry by 32-bit with dual read ports andptimized for best performance with minimum leakage. The

single write port (Fig. 12). The design is implemented as a larg RAM latch and access devices in the write path are made

V. 32-BENTRY x32-BIT REGISTERFILE
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— : 76 Local Bias
high-V to reduce Igakage power. LoW devices are used Generators (LBG)
everywhere else to improve critical read delay by 21% over a Central T_g D « —
fully high-Vz design. For added noise immunity when reading G Bias | o '§ Reference %’ §
a logic “1”, a half latch pulls the bit-line to rail. Using low; fenerator O 8, translation @ @ o
allows reduced device sizes, providing a compact layout of Vceca Local Vcc
150 um x 340 um, where 83% of the total transistors in the T T I—|
des_|gn are lowr. A sparse body bias grid is routed over the Scaled : d Il] L “_Ilp_
entire unit. bandgap| ¥
circuit Current HH
i mirror it
VI. EXECUTION CORE TIMING T - » T
The execution core operates on a 50% duty-cyde@mino " Veca - 450mV Local Vec - 450mV

timing scheme, resulting in reduced circuit design and validg— 16. Bodv bias generation and distribution
tion complexity (Fig. 13). Since the RF unit is implemented in g- 28 y g '

static CMOS, it uses only th@1 clock, while both the ALU

and scheduler also use intermediate clocks. #belock is lo- Veea | ——

. . . . . cca - 450mV == —p
cally generated by inverting the incomidg clock and triggers Veea |l 100 To LBGs
the CSG stages. Inputs to the CSG are setup bd&fdrelock’s
rising edge to minimize noise on the nonswitching output. This Unit LBG | % Area

noise results because the true node of the CSG is poised to Count | Overhead

. L s . ALU 30 2.7
switch, with its input transitioning from high to low. In the case Reaister file| 36 56

when the complementary node switches, the true node will have
a glitch (Fig. 14). Peak output noise is limited to 100 mV for up;q 17,
to 30 ps of®2 clock skewijitter across process and tempera-
ture variations, meeting output noise constraints (Fig. 15). The
dependence of the output noise glitch on clock skew, with pos-
itive clock-data arrival skew numbers indicating arrival of data |
before the clock, indicates the inherent robustness and leakage
tolerance of the CSG. Even with simultaneous arrival of data
and clock signals, the worst-case glitch is limited to 25 mV. * |
The scheduler’s ready logic CSG clockl(;) is a delayed
version of @1 clock, produced by an on-die programmable D—| —|
switched-capacitance delay cell to enable clock stretching for
slow frequency debug. Alb1 clock boundaries use footed CK —+o oo
domino structures with embedded logic, enabling seamless
time borrowing between the ALU, scheduler and register file
interfaces without incurring an explicit skew/jitter penalty.  Fig. 18. Basic semi-dynamic flip-flop.

Global body bias signal routing and biasing overhead.

Ol

VII. BoDY BIAS GENERATION AND DISTRIBUTION imize body bias variations induced by local coupling dnd
noise.

On-chip body bias is used for the pMOS devices in the dig- . . . : :
ital core of the chip. Fig. 16 shows the body bias generati?_n Routing details of the global body bias signals are shown in

and distribution details. A distributed bias generator architeC-J" 17. Global routing includes the PVT insensitive 45.0 mv
o L reference voltage routed along witlyca tracks on both sides
ture [7] was used to minimize variation of the body-to-sour

C o . .
voltage due to global coupling arid.. noise. A Central Bias 1%r proper shielding and adequate common-mode noise rejec-

Generator (CBG) uses a scaled bandgap circuit to generattéog' A digital control configures the LBG to apply forward or

Process Voltage Temperature (PVT) insensitive 450-mV volta§g 2 body bias the pMOS devices. An additional global control

with reference tovec.. This differential reference voltage iScsllgnal is used to disable the LBG for external body bias control.

. - The ALU unit instantiates 30 LBGs with a 2.7% area overhead,
routed to 76 Local Bias Generators (LBG) distributed arounvé;"e the RF unit uses 36 LBGs with a 5.6% area overhead. The

the RF and ALU units in the execution core. Each LBG hasa%nse layout of the register file results in increased area penalt
reference translation circuit that converts the 450 mV referencé y 9 P Y.

voltage to a voltage 450 mV below the lod4l.. This voltage is
driven by a buffer stage and routed locally to the pMOS devices
in the core to provide 450 mV of FBB during active operation. To enable 5-GHz operation, semi-dynamic flip-flops [8] are
Local body bias routing tracks are placed adjacent to the loeaeed for sequentials in the core. SDFF offers better clock-to-Q
V.. tracks to improve common-mode noise rejection and thdglay and clock skew tolerance than conventional static master—
reduce noise-induced variations in the target 450 mV body bigiave flops. SDFF (Fig. 18) has a dynamic master stage coupled
to the pMOS devices. The voltage buffer and the local decowr-a pseudo-static slave stage. For best performance, all SDFFs
pling capacitor at the buffer output have been designed to mimere designed using 100% loW- devices. As is shown in the

VIII. FLip-FLOPS
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Fig. 20. At-speed capture logic.
Fig. 19. FIFO cell and organization.

schematic, the flip-flops are implicitly pulsed. Pulsed flip-flops 1 2 3 4 ] FF
have several advantages over nonpulsed designs. One main bpap IS q& & [S
efit is that they allow time borrowing across cycle boundaries ; p

due to the fact that data can arrive coincident with, or even afte 1 1 1

the clock edge. Thus negative setup time can be taken advantee 5 buffer stages

of in .the logic. Another benefit .qf negqtlve setup time is that | 8ps total skew 3 2 410u
the flip-flop becomes less sensitive to jitter on the clock wher

the data arrives after clock. However, pulsed flip-flops have Kgri

several important disadvantages. The worst-case hold time < 1 - PAD output t 1d 500
this flip-flop can exceed clock-to-output delay because of puls: < 2 - Balanced H-tree © —>5

width variations across PVT conditions. Therefore, careful de  « 3 - Global 3x3 Grid I 1

sign is needed to avoid failures due to min-delay violations. All  « 4 - Unit Grid g

flip-flops used in the execution core were designed for an op  « 5- | ocal buffer = =
timal energy-delay product. Metal 6+> |pAD

IX. TESTCIRCUITS AND MEASUREMENTS Fig. 21.  Clock distribution.
A. FIFO Design

Feeding the core at more than 5-GHz data rates and sm']j’p-
porting at-speed results capture requires high-performancéhe core clock distribution is shown in Fig. 21. There are a
FIFOs. Hence, the core flip-flop in the FIFO cell is built usindotal of 5 stages of clock buffering from the pads to the clock
fast SDFF flops. The same cell is used in both the input aimputs of the flip-flops in the execution core. First, there are
output FIFOs. Fig. 19 shows one column of the FIFO. Thevo stages of buffering local to the pads used to drive the core
FIFO cell was designed to support both a low speed scan manligck to the center of the die. From the center, one more stage of
and a high-speed parallel FIFO mode. The output FIFO céliffering is added to drive a balanced H-tree to the four corners
captures the 32-bit wide core data at-speed. The design allafishe die. From the corners, another buffer stage is added to
easy transfer of this data between the core flop, operatingdasive a symmetric, balanced 33 global grid. Finally, the last
full speed and the scan flop, operating at a much lower spesthge of local buffering is added to all units. This last stage is
The scan clock can be run at arbitrary speeds and is only actieed according to the clock load of the particular unit. All clock
during scan operations to save power. buffers are composed of two CMOS inverters to minimize varia-

The logic that enables at-speed capture is detailed in Fig. #0ns and use local decoupling capacitors to minimize jitter. The
First, the start and stop capture values are serially scannedeintire clock distribution uses upper-level metals (M6/M5) with
The logic compares the start capture value to an internal 20-bjt. / V. shielding for noise isolation and for symmetric current
counter value and when equal, enables the start of result cegiurn paths. The core clock distribution network was simulated
ture sequence. The logic then disables result capture sequencdeave a maximum of 8 ps of total inter-unit skew and 2-ps
once the stop capture value is reached. The waveforms summarst-case skew between directly communicating units. Fig. 22
rize the at-speed capture timing sequence. Once core execusibows the core clock input circuit. An operational amplifier, lo-
starts, the logic asserts enable exactly aftecore cycles and cated in the pads, converts differential sinusoidal clock inputs
de-asserts enable exactlycore cycles past the assertion edgeo a single-ended clock and forward it to buffers located at the
The resulting enable signal is routed to the capture flip-flops genter of the chip. The differential clocks are externally biased
the output FIFO. for duty cycle control, a feature needed for optimal operation of

On-Die Clock Distribution
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from the output of a final clock buffer is also shown in Fig. 22.

C. Prototype Characteristics :
Fig. 24. Measurement setup.

Die micrograph and summary of chip characteristics are in

Fig. 23. The blocks identified include the central clock drivers, ) o
register file, ALUs and instruction scheduler units, input angi€mprane probe card used to characterize the design is shown

output FIFOs and the scan controller. The central bias generdfbf 19- 25- The membrane probe consists of probe metalliza-
circuits are part of the body bias control block. The 2.34nnfiOns on a polyamide dielectric. Several &0microstrips on
fully custom design contains 160 000 transistors. There are ¢ Polyamide connect the probe metallizations to semi-rigid
/O pads along the die periphery, of which 30 are signal pag8@xial lines for high-speed signals and to a supporting FR-4
and 42 are power pads. Decoupling capacitors occupy apprd¥ioPe card for lower speed signals.
mately 20% of the total chip area.

X. MEASUREMENTRESULTS

D. Measurement Setup Body bias improvement measurements showing frequency

The die was characterized on the wafer using a membrare supply voltage measurements of the ALU and RF are shown
probe card [9], length-matched to support differential clocka Fig. 26. The domino ALU has better sensitivity in response
at speeds beyond 10 GHz (Fig. 24). A signal generator andoapower supply increase when compared to the static register
pulse inverting balun generated the differential clocks. An efite design. Atroom temperature, 1.25V and zero body bias, the
ternal power supply provides the DC bias for clock duty cyclaLU operates at 6.8 GHz. The RF frequency is 5.1 GHz at 1.43
control. A semiconductor parameter analyzer provides the ex-Applying 450-mV FBB to both nMOS and pMOS transistors
ternal body bias supplies that individually control the biasingllows the target 5-GHz core frequency to be achieved at lower
of NMOS and pMOS as well as high and Id# devices for V¢ values for both ALU and RR/¢¢ for 5-GHz operation is
each unit. A PC running custom software is used to apply testuced from 1.05 to 0.95 V for the ALU, a 9.5% reduction and
vectors and observe results through the on-chip scan chain. Titwen 1.43 to 1.37 V for RF, a 4.2% reduction.
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Fig. 25. Membrane probe card.
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Fig. 26. ALU and register file frequency versus supply voltage.

200

150 -

Power (mW)
)
o

Vee=1.43V —.|

Zero .
body bias

| _Forward
body bias
Vce=0.89V
50
£
0 1 T
2 3 4 5 6
Frequency (GHz)

5GHz| V.(V) |Power (mW)

ZBB| 1.43 165

FBB | 1.37 154

Fig. 27. Register file power versus frequency.

1429

ALU Scheduler
Area 50% 67%
Performance
(Delay) 10% 23%
Active Leakage 40% 50%
Robustness equal equal

Fig. 28. Percentage improvement of single-rail CSG over dual-rail domino.

9.0 " 450 450
8.0425°C 400 { 25°C 400 £
7.0 350 350 £
N 6.0 1 = 300 1 . - 300 3
& 504 £ ,50 { Design target L 250 %
% 4.0 3 200 - 200 &
i 3.0 1 3 150 - 150 D
2.0 4 100 4 100 &
1.0 1 50 50 §
0.0 0 ko

0.8 09 1.0 1.1 1.2 1.3 14 15
Supply Voltage (V)

08 09 1.0 1.1 1.2 13 1.4 15
Supply Voltage (V)

Fig. 29. ALU and instruction scheduler loop shmoo measurements.

to 1.43 V. At a target frequency of 5 GHz, with zero body bias
and 1.43V, the RF consumes 165 mW. The power consumption
of the register file reduces by 6% to 154 mW on application of
450 mV of forward body bias.

At 5 GHz, the ALU dissipates 95 mW (1.05 V, 2&). At
6.5-GHz operation, the measured ALU and scheduler loop
power increases to 120 mW with 15 mW of active leakage
power. By increasing the voltage to 1.7 V, the ALU and sched-
uler loop frequency increases to 10 GHz. The advantages of
the single-ended scheduler and ALU over dual rail schemes are
summarized in Fig. 28. Area savings are 50% in the ALU since
the dual-rail domino path has been eliminated. The scheduler
savings are larger because the eliminated path consumed more
than half the area. Both the ALU and instruction scheduler
benefit from these area reductions as delay improvements,
while the scheduler’'s 23% delay improvement is also due to
the reduction in gate stages. Active leakage is simultaneously
reduced, as fewer transistors are needed to implement the logic.
Fig. 29 shows the maximum frequency¥,(.x), switching
power and active leakage versus supply voltage measurements.

Xl. SUMMARY

The integer execution core consists of a 5-GHz 32-bit ALU,
an 8-entry x 2-ALU instruction scheduler and a 32-entry
x 32-bit leakage-tolerant register file, all fabricated in a
130-nm dualVy CMOS process. At 5 GHz, the execution core
dissipates 370 mW. The circuit innovations described enable
simultaneous performance, area and leakage improvements in
out-of-order execution engines of superscalar processors. The
ALU and scheduler loop achieves 10-GHz operation at 1.7 V
and 25°C.
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