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Matrix Theory

Symmetric Matrices

For a matrixM = MT, we haveM = nglAieiqT where); andeg are the eigen-
values and eigenvectors M such thatg'e = 1 ande'e; = 0 with i # j. With
P=[ee,...,en andA = diag{A1,A2,...,An}, it follows thatM = PAPT, where
PP = PTP =1, and, in addition, foM nonsingular, thamM 1 = PA~1PT,

For M = MT > 0, we defineM¥2 = 51 | \/Ajge’ = PAY2PT and express
M = MY2MY2 where(M¥2)T = MY/2, |t also follows that forM nonsingular,
(M¥2)"t =73, ~-ee =PA~/?PT. Onthe other hand, fd = PAY/Z, we have

M = QQ' (as compared witM = MY2M¥/2 for (MY2)T = M1/2 = pAL/2PT),

Singular Values and Eigenvalues of A Matrix

Let the singular values of a square matkxe R™" beo; > 0, > --- > 0py > 0
and the absolute eigenvalues\bbe|A1| > [Az| > --- > |Apg| > 0. Then, from page
347 of Horn and Johnson (2013) (Horn, R. A. and C. R. Johndartrix Analysis
2nd Ed., Cambridge University Press, 2013), we have|atk o1, and that ifM
is nonsingular, thef\,| > o, > 0.
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Radial Unboundedness Condition orV (x) for Asymp-
totic Stability

One can draw the surface plots\bfx) = c, for different values o€, with

2

X
V(X)= —L1 _ 1 x2 1
() 1—|—X%+2 ()

For thisV (x), such surface plots are closed curvesdfer 1 but are open curves for
c> 1, asV(x) is not radially unbounded.

One can draw the phase-plane plokef f(x), by obtaining its numerical solu-
tions for some typical initial conditions, for

6x1 . 2(Xy+ X2
Do+ 2%~ (e @
1

%q = — .
(1+x2)2

For some initial conditions, the solution trajectories ad converge to the origin.
(Are there any trajectories going ¢g?)

. - 6x L 2(xg %)
One can draw the vector field &f = —(1—+X1%7 + 2X2, X0 = ~ 2
The solutionx = [xl,xz]T of this system on the hyperbaka = xl—z\/é satisfies
X 1
g1(x) = = (3)

X _1+2\/§x1+2x§’
while the slope of this hyperbola is
dxo 1

= 3. — 2" (4)
dx 1-2vV2x+ %

92(x)

It follows that 0> g;(X) > gz(X) for x; > /2 so that the trajectories to the right of
the hyperbola branch in the first quadrant cannot cross techr

This example shows that for asymptotic stability, the rbdrdooundedness of
V(x) is a crucial condition [179], [351], [426].
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Passivity of A Mass-Damper-Spring System
Consider a mass-damper-spring mechanical system withieguatmotion

MX+ Dx+Kx =F, (5)

whereM is the massD is the damping constank is the spring constank is the
mass position, anf is the force acting on the mass.
The system energy is

1 1
V(X X) = =M% + ZKx?
(X, X) >MX +2 X (6)
whose time derivative is q
GtV 00X) = Fx— Dx2. (7)

Over any time interval0, T], it follows that

T T
V(X(T),X(T)) = V(x(0),%(0)) + /O F (t)%(t) dt — /0 DR(t)dt.  (8)

SinceD > 0, we have

_/OTF(t))'((t)dt <V (x(0),%(0)), (9)

which means that the energy extracted from the system igHassor equal to the
initial system energy. From (7), the teifix clearly represents the system absorbed
power from the input forc&. For passivity analysis, the product of system input
and output is defined as such power. In this sense we conbelgelocityv = x as
system output. Then, the system admittance (the recipodaapedance) is

V(s) S
F(s) Ms?2+Ds+K’

G(s) = (10)
which is positively real (the mechanical-electric analggyrs are “force vs. volt-
age” and “velocity vs. current”).

If we considelx as system output, the terfix does not represents system power
(i.e., foT F (t)x(t) dt does not represents system energy) so that the passiviysana
is not applicable. In other words, the system transfer fondbr passivity analysis
in terms of positive realness is defined in terms of systermeaapce (or admit-
tance) relating current (velocity) to voltage (force) (aitage (force) to current
(velocity)).

Without the passivity property, the transfer function fréme input force to the
output positionM—szﬁjT, cannot be positive real.
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Positive Real Functions

A popular definition of positive real (PR) functions is thatumétionh(s) of the
complex variables = 0 + jw is positive real if (i)h(s) is real for reals, and (ii)
Reh(s)] > 0 for all ssuch that Rgs| > 0.

One may “induce” a definition of strictly positive real (SPRinEtions as: a
functionh(s) of the complex variable= 0+ jwis strictly positive real if (i)h(s) is
real for reals, and (ii) Rgh(s)] > 0 for all ssuch that Res| > 0. This definition was
once used in the early literature for SPR functions. It twuisthat, like some other
definitions of SPR functions, this definition does not captine physical meaning
of strictly positive realness, as indicated by the follogvegxample.

Itis well-understood that a proper definition of strictlysptove functions, which
captures the physical meaning of strictly positive reanés thath(s) is strictly
positive real ifh(s— €) is positive real for some > 0. Based on this definition,

s+1

"= (1)
is only positive real but not strictly positive real. Fronetexpressions
o+ jw+1
h(s) = - -
(s) (0+jw)?+0+jw+1l
B o+1+jw
02— +0+ 1+ j(w+20w)
_(04+1+jw)(0®— P+ 0+1— j(w+20w)) 12)
B (02 — 2+ 0+ 1)2+ (w+ 20w)2
2 _
Relh(s)] = (04 1)(0° -’ +0+1) + w(w+ 200)
(02— P +0+1)2+ (w+20w)?
3 2
03 +20% + 0w’ +20+1 13)

T (02— WP+ 0+1)2+ (w+ 20w)2’

we see thah(s) satisfies the above “induced” definition of SPR functionsh(s)
is real for reals, and (ii) Rgh(s)] > 0 for all s such that Res| = 0 > 0. Hence, the
conclusion is that this “induced” definition for SPR functsis not proper.

Note that thish(s) is not SPR, because

Reh(jw)] = (1_0)2]52_‘_(02

does not satisfy the necessary condition for SPRnessp limw? Relh(jw)] > 0,
or because for any chosen- 0,

(14)

. 4 2e?—eP—2e+1
Reh(jw—g)] = - e 121 (0250 0 (15)
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whenevero? > (—€3 4+ 2e? — 2e + 1) /g, that is,h(s— €) cannot be positive real
foranye > 0. (P(e) = —e3+262 -2 +1=(e—1)(—€?+e—-1)>0forec
(0,1) andP(g) < O for e > 1. Forh(s—¢) to be stableg € [0,0.5) is needed as
(s—€)2+s—e+1=5+(1—-2¢)s+1—e+e?and 1—e+£2 > 0 for anye.)
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Parameter Projection Properties

The property (3.183) follows from the observationdjft) = 83 andgj(t) <0, then
fj(t) = —gj(t) > 0 and6j(t) — 6] = 67 — 6] <0, so that(6j(t) — 6) f;(t) < 0; and
if 8;(t) = 6 andgj(t) > 0, thenf;(t) = —g;j(t) < 0 and®;(t) — 65 = 8> — 6} >0,

so that(8j(t) — 67) f;(t) < 0.

Similarly, the property (3.214) follows from the obsereati if 6;(t) + g;(t) >
6%, then f;(t) = 6% — 6;(t) — gj(t) < 0 and®;(t) — 87+ gi(1) + fi(t) = e —6r >
0, so thatf;(t)(6;(t) — 6] +gj(t) + f;(t)) < O; and if if 6;(t) + g;(t) < 6F, then
fj(t) =8 —8;(t) —gj(t) > 0 and;(t) — 6; +g;(t) + f;(t) = 62— 6] < 0, so that
fj(©)(0;(t) —8j +9;(t) + fj(t)) <O.

In the case when a parameter compor@ri‘s known, we havé)'fl = e?. This
means that we can simply séf = e]-k if e]-k is known, but still with the use of a
diagonall > 0 or I = diag{I1,yj,M2} =" >0 with [, € RI“U*0-D y; € R
andr, € R"e=1)*(Ne—1) 'if @; is the only component to be projected.
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Explicit Swapping Lemma

The swapping lemma (5.331) was an important lemma in theloeweent of a
stable model reference adaptive control system. It statg$dr a stable and proper
rational functionh(s) with a minimal realizatiorn(s) = ¢(sl — A)~'b+d and two
vector signal®(t) andw(t), it follows that

0" (t)h(s)[w](t) —h(s)[87 w](t) = he(s)[n(3) [0 ]6 (1), (16)

wherehg(s) = c(sl — A)~t andhy(s) = (sl — A)~1b. Here we derive an alternative
form of this lemma, explicitly in terms of the parametersta# functionh(s).

DenotingPy(s) =" +an-_ 18" 1+ --- +a;s+ ag, for vector signald(t) and
w(t), from (5.138) and witta,- = 1, we have

1 Tes

_ Z(ZJ oan*—1§" - ') {QT%@]} (t). (17)

IntroducingF (s) = fre_18" 14 ... 4 fis+ fg, we express

o' (t)

€

1
Pm(s)

+ (fn*_1§*‘3+---+fz) {GT

(fn* 1872 +f1) [eT [w]} (t)

Pm(s)
fi1s+ fo
Pm(s)

n*—1 /n*—i o . i—1
-3 (Zl fnws”*”> oo S0l Suo e
i= i= m

+6(t) w](t) =

Pm(s)

and use it to derive
F(S) 970 0)— o7 (1) =S
Ao © O VR g

Pm
(e el
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(t)

S ST

—F(s) [; = Pm(s)

]

Pu(d
s ['eT f,; = [w]] ®
-5 1 g :né) ol 0 [eT =E [“’]] - 49

Hence, we obtain thexplicit swapping lemma

F(S) .1 (s) [o7 s71
6Tl - -5 2 s w0, @
where
ntifn*_@"—‘—i—F 5 il =12, n =1, (21
(S)gl j (S)J;)an j I n (21)

are polynomials of degrees — 1 or less, andi,-(S) 2 —F(s).

For a proper transfer functidm(s) = f+ + ,fnf(ss)), it follows that

m

1
n9lETwl -0 e - 5 M3 oS ] 0. @)
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Discrete-Time Swapping Lemma

Let a stable and proper rational functibfz) have a minimal realizatioh(z) =
c(zl—A)~tb+d and6(t) andw(t) be two vector signals, and dendtgz) = c(zl —
A)~1andhy(z) = (zI — A)~1b. Then,

8" (Hh(2)[w](t) —h(2)[87 W] (t) = he(2) [(Mo(2)2) [ ] (z— 1)[B]1(1).  (23)
Proof: Using the discrete-time convolutiony(t) = C3I_5 A= =1Bu(i) for y(t) =
C(zl—A)~1B[u](t), and its modificationw(t) = C 5t_, A= 1Bu(i) for w(t) = C(zl —
A)~1BZu|(t) = C(zl — A)~1B[u](t + 1), we express

he(2)[(ho(2)2)[w"](z— 1)[B])(t)

= cti)At‘T‘l_iAT‘ibwT (i) (B(T+1) —8(1))
t—1

= C_Z}At_i_lbwT(i)e(t)

+ Cti)At‘T‘lijAT_ibwT (B(T+1)— CtZ;At‘T_li}AT_ibooT(i)O(T)
= 8" (t)h(2)[w](t) +cti1 At"ci: A1 (1)8(0)
o=1 i=
- czA”lbwT (1)8(1) — cz A”le“bwT(i +1)8(1)
= 0" (Hh(z)[w](t) —h(Z)[BT (1), (24)
where, by definition,
t—-1
C_Z)At—i-lbwa) = h(2)[w|(t) (25)
ctil)At‘T‘lbooT (1)8(1) = h(z)[8" W] (t). (26)

This is the discrete-time version of the swapping lemma3®b)3whose explicit
version can also be derived, similar to the continuous-tase above.
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Additional Lemmas

A Small Gain Lemma
Lemma 1 For ||W||; = SUy<r<¢ |W(T)], if

w(t)] < B(t)[wlle +y(t) (27)

for somefB(t) such thatim;_.. B(t) = 0 and somey(t) € L™, then wt) is bounded,
that is, w(t) € L. If, in addition,lim;_.., y(t) = 0, thenlim;_.w(t) = 0.

Proof: Assume thatv(t) is not bounded. Then there exists a subsequéii¢esuch
that limy, e |W(th)| = c0 and|w(t)| < |w(tn)| fort <t,, thatis,||w|t, < |w(tn)|, and
it follows that

W(tn)| < B(tn) Wt + Y(tn) < B(tn)[W(tn)| + Y(tn)- (28)

Since lim, . B(tn) = 0 andy(t) € L*, the above inequality implies thai(t,) is
bounded, a contradiction to the assumption that limw(t,) = o or w(t) is un-
bounded. Hencey(t) is bounded, and so gn/[s.

If lim_Y(t) = 0 also holds, then from (27), the boundednesw/(@j and the
condition that lim_.., B(t) = 0, it follows that lim_c, [W(t)| = lim¢_e(B(t)||W||; +
y(t)) = 0. 0

This result can be generalized to the vector signal case.
Lemma 2 For ||w||t = sug< ||[W(T)|| with ||w(t)|| being a vector norm of W) €
R", if
[Iw(t)[] < B(t)lwlle 4 v(t) (29)

for somef(t) such thatim;_.. B(t) = 0 and somey(t) € L*, then wt) is bounded,
that is, w(t) € L. If, in addition,lim;_.., y(t) = 0, thenlim;_.w(t) = 0.
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A Signal Convergence Lemma
Lemma 3 If &(t) € L* andlim;_.. e(t) = 0, thenlim¢_,. &(t) = 0.

Proof: We need to show that for any given> 0, there exists & > 0 such that
|&(t)| < n foranyt >T.

The proof makes use of two related fictitious filters with auat parameter
a>0: H(s) = S%a andK(s) = g%; such that 1= sH(s) + K(s). Operating this
identity one(t), we have

e(t) = H(s)s[e](t) + sK(s)[e](t) = H(s)[E(t) +sK(s)[€](t).

Under the condition thag(t) € L™, for any givenn > 0, H(s)[é](t) can be made
smaller than% by a choice of a sufficiently large and finiie Under the condition
that lim_. e(t) = 0, for the chosen value &, there exists & > 0 such that for
anyt > T, [sK(s)[€](t)| < 3.

This derivation means that for any givern> 0, there exists & > 0 such that
|&(t)] < n for anyt > T, which is equivalent to the convergenceegf) to O as

t — oo, U

Remark 1 There are three possible situations:

(i) The signale(t) converges to a constant: such a constant must be 0, otherwise
e(t) does not converge to 0 (leading to a contradiction t_lige(t) = 0); (i) &(t)
does not converge whegit) is bounded:e(t) does not converge either (leading
to a contradiction to lim.. e(t) = 0); and (iii) €(t) does not converge wheaft)

. int2 . int2 2
is unboundede(t) may converge to 0 (e.ge(t) = 377, &(t) = —(tsﬂ)z +2g

. int2 2 2 2sint2 - C
8(t) = (thr'gt)s -~ 2(301?2 + %t‘fﬁz — A5 (but this is not the case, @&t) € L™ by
assumption).

Hence, ife(t) € L* and lim_ e(t) = 0, then lim_.. &(t) = 0. O

Remark 2 This result also follows from the Barbalat Lemma: If a scalardtion

f (t) is uniformly continuous such that lim., [3 f (1) dt exists and is finite, then e
lim¢ e f(t) = 0. In this casef (t) = &(t), limi o f§ F(T)dT = lim¢_o [5&(T) dT =
lim{_o(e(t) —e(0)) = —e(0) exists and is finite, andl(t) is uniformly continuous,
asf(t) = &(t) is bounded. O

Lemma (Barbalat): If a scalar functiorf (t) is uniformly continuous such that
lim; . /¢ f (1) dt exists and is finite, then lim.. f (t) = 0.

o Convergence ad(t) (which can be a tracking error sigregt) = y(t) — ym(t)):
With f(t) = €(t), we have thaf (t) = 2e(t)&(t) is bounded, i.e.f (t) is uniformly
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continuous, so that, witb(t) € L? (that is, lim_.« f§ f (1) dt exists and is finite),
limi{_ f(t) =0, thatis, lim_.et) =0.

Proposition 1: If lim{_.e(t) = ey being a constant an€(t} is bounded, then
limt_ &) =0.

e Barbalat lemma based proof

o Convergence od(t) with lim;_.. e(t) = 0: For f(t) = €&(t), é(t) being bounded
meansf (t) being uniformly continuous, and lime f§ f (1) dt = () — €(0) =
—e(0) exists and is finite, so that lim. f (t) = 0, that is, lim_... &(t) = 0.

o Convergence oé(t) with limi_.e(t) = e € R For f(t) = &(t), &(t) being
bounded means$(t) being uniformly continuous, and lim., 3 f (1) dT = e(e) —
e(0) = eg — e(0) exists and is finite, so that lim. &(t) = 0.

e Direct proof
o Convergence oé(t) with lim¢_.. e(t) = 0: ForH(s) = S%a andK(s) = &
such that 1= sH(s) + K(s), we have
e(t) = sH(s)[€](t) + K(9)[€](t) = H()[E](t) +sK(s)[e](t)
whose first term can be virtually made arbitrarily small byidually largea > 0

and the second term converges to zero, that is, for any gjver0, there exists a
T > 0 such thaté(t)| < n for anyt > T. This implies thag(t) converges to zero.

o Convergence oé(t) with lim¢_. &(t) = e for any constanty: For f(t) =
e(t) —ep, lim; o f(t) =0, which, withf (t) = &(t) bounded, implies thait(t) = &(t)
goes to zero.

Proposition 2 (the general case): For anjy> 0, if lim{_.e(t) = 0 and d' () are

boundedj =2,...,j+1, then lim_ djd‘i() =0.

J
o Proof based on Proposition 1

To use the induction method to prove this result, from Prajoosl, we first
have that the result is true fgr= 1, that is, lim_.e(t) = 0 and boundedness of

i e() imply that lim . 959 — 0.

Suppose it is true for] =k, that is, Ilm_mﬂg = 0 (with lim;_.et) =0

and d;(,) boundedj = 2,...,k+1). Then, fOI’j = k+ 1, with the conditions that

lim; .o S0 — 0 (or, Ilmt_mf(t):Oforf(t)_ ey and that!

dt

i=k+2 (or, dt§> Is bounded), we have from Proposition 1 (or the resulit-efl)
that lim . —5 () = 0 (that is, Ilmﬁm%ll—l 0). This shows that the induction

process goes through that is, the proposition is true fprjan
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Plant Zeros and Controller Order for MRAC

Consider a LTI system
X = Ax+Bu, y=Cx (30)

whereA ¢ R™" B c R™M C ¢ R"*" whose transfer matrig(s) = C(sl —A) 1B
is anM x M strictly proper rational matrix.

For SISO systems witM = 1, we haveG(s) = % for some nominal polyno-
mialsZ(s) andP(s) with dP(s) = np < n (if P(s) is taken a$(s) = defsl — A], then
np = n). If we taken as the system order for MRAC design, that is, the controller
order isn— 1 = 0A(s), then we need to assume that all zeroZ @) (which are
the system zeros) are stable, for a stable MRAC system. With auull-order
representatiorP(s) = defsl — A], the condition that all zeros df(s) are stable
implies that the realizatio(A, B,C) is stabilizable and detectable. The choice of
the controller orden— 1 has another interpretation in the SISO case: the output
feedback controller structure is a reparametrization aagegeedback control law
u= ijXJr K5r, using a reduced-order (with order- 1) state observer (see Section
4.4.2).

For SISO systems, if, due to pole-zero cancellations cabgeslnonminimal
realization(A, B,C), the degree,, of P(s) is less tham: np < n, and the controller
order isnp — 1, we need to assume that, in addition to all zeroZ(sj being sta-
ble, the pole-zero cancellations leadi@¢s) = C(sl — A) !B to % should be also
stable ones, that is, the nonminimal realizatidnB, C) should be stabilizable and
detectable. In this case, the system zeros include the pé#(s) and those (ca;n-

(s

celed zeros ir55(s), while the transfer function zeros are thagevhich make@

zero and they can be a subset of the zeroZ(sf, as there may be some more

zero-pole cancellations betweg(s) andP(s) in %.

In the SISO case, a state feedback control desigh= K/ x(t) -+ Kor(t) re-
quires that all zeros aZ(s) are stable (in this cas®(s) = defsl — A]) which is
necessary and sufficient for stable plant-model matchiregfsid- A — BK;T] =
Pm(S)Z(s)/zm (not needed for just pole placement control). An output feed

control design is based on a nominal transfer funcé@ with ordernp = dP(s),

and all zeros oZ(s) need to be stable for stable plant-model matching basé%@})n
If n<np, astableZ(s) implies that(A, B,C) is stabilizable and detectable.nf> np,

then there are zero-pole cancellation<isl — A) !B = %, and(A,C) needs to
be detectable, otherwise those undetectable modes (elgesvofA) cannot be
stabilized (output feedback does not change unobservaidies); (A, B) needs to
be stabilizable, otherwise those unstabilizable modeg(@alues of) cannot be

stabilized (output or state feedback does not change urdiatiie modes).
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For MIMO systems, there are also different ways to expressylstem transfer
matrix G(s) = C(sl — A) 1B (we first assume tha(s) has full rankmfor anM x M
G(s), that is, rankG(s)] < M only for a finite number of values aj.

The first (simple) form of5(s) is

G(s) =C(sl—A)"1B=—=, d(s) = defsl — A], ad(s) = n. (31)

If we use a controller of orden— 1 = dA(s), we need to assume that all zeros of
detN(s)] are stable, which may be thought as the system zeros (ndtthénzeros

of G(s), as defined in the literature, may be only a subset of thoses zifA, B,C)

is not a minimal realization). In fact, different from theS®) case, the controller
order can be reduced to- M in the MIMO case, because a reduced-order observer
has ordem — M, so that the state feedback control law= K;Tx+ K;r can be
reparametrized using the input and output signals, leatdiran (n — M)th order
output feedback controller.

Given that the observability index of a minimal realizat@nG(s) isv < n—
M+1, thatisy —1<n—M, the order of the usual MRAC structure, which has been
chosen as — 1, is the minimal order to meet the desired plant-model magcHf
for a system, the order of a reduced-order observer can beeohasy — 1, the
parametrization of the output feedback controller withesrd— 1 can then be seen
as a reparametrization of a state feedback controllergusput and output signals.

If not, the controller parametrization may be considereleisg one used for plant-
model matching. In MRAC for multivariable systems, we cathe observability

index of the system transfer matr(s), in the sense that is the observability

index of a minimal realization of the system transfer maBs).

The second form o6(s) is a left matrix-fraction description:

G(s) =C(sI-A) B=R *(9Z(9 (32)

whereR (s) andZ(s) areM x M polynomial matrices wittA (s) row reduced (a
polynomial matrixP (s) is row reduced if the elements in tit@ row of R (s) have
a largest degree; and the matriX; = lims_..diag{s V1,sV2,....s"M}R (D) is
nonsingular), and thith row degree 0¥, (s) is less than théth row degree o (s),
i =1,2,...,q(itis denoted thadP (s) = v, that is,y = max{V;}). A controller can
be designed wit@A(s) =v — 1. In this case, for stable MRAC, we need to as-
sume that the zeros of d&i(s)] are stable and also thé, B,C) is stabilizable and
detectable (as some pole-zero cancellations may occur wlitaming the system
modelP(s)Z(s) from (A, B,C)).

Note that a left matrix-fraction descriptidd(s) = P1(s)Z (s), can always be
made to have a row reducéﬂs), by using elementary row operations represented
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by a unimodular matri® (s) (such a matrix is defined to have a non-zero constant
determinant) on a non-reducéds):

G(s) =P (97 (s) = (M(9)A () "M(5)Z(s) =P 1)z (9), (33)

for A(s) = M(9)A(s) andZ, (s) = M(s)Z (s).
The third form ofG(s) is a left co-prime matrix-fraction description:

G(s) =C(sl-A)'B=RY(9Z(s) (34)

whereR (s) andZz (s) are left co-primeM x M polynomial matricesH| (s) andZ (s)

are left co-prime if anM x M polynomial matriXW(s) such tha¥, (s) = W(s)Z(s)
andR (s) = W(s)P(s) for some polynomial matriced(s) andP(s)—such aw(s)

is called a common left divisor df;(s) andR(s), is a unimodular matrix, that is,
defW(s)] is a non-zero constant), with (s) row reduced andP (s) =v <v. A
controller can be designed wiéli\(s) = v — 1. In this case, we also need to assume
that the zeros of dgf) (s)] are stable and thé&#\, B,C) is stabilizable and detectable.

The situation is similar fo6(s) in a right matrix-fraction description:

G(s)=C(sl-A)B=2z(s)P?! (35)

with P;(s) being column reduced (that iB/ (s) being row reduced) ang (s) and

P (s) being right co-prime (that iz (s) and P (s) being left co-prime). In par-
ticular, the column degrees & (s) are denoted ag; (or | for P (s) if G(s) =
C(sl — A)~1B = Z (s)P* with Z(s) andP; (s) not right co-prime)j = 1,2,...,m
and the column degreeszf(s) (Z; (s)) are less than that & (s) (P (s)). If (A,B,C)
is a minimal realization, thep;, i = 1,2,...,m, are the controllability indexes of
(A,B). If (A,B,C) is not a minimal reallzatlon then one can a controllabléizea
tion (Ac, Be, Ce) whose controllability indexes apg, Tor Z; (s)P1(s) (or (Ac, Be,Ce)
whose controllability indexes agg, for Z,(s)P1).

Note that if (A,B,C) is a minimal realization, them is the observability index
of (A,C) (we may also cal the observability index oB(s)). When(A, B,C) is not
minimal, for the second case (or the third case), we can finubaervable realiza-
tion (Ao, Bo,Co) Whose observability indexes arg forPI 1(8)Z,(s) (or (Ao, Bo, Co)
whose observability indexes arg for PI 1(5)z/(s)). In this sense, we may also call
v (or v) the observability of5(s) = PI Y()Z/(s) (or G(s) = Pl‘l(s)Z| (9)).

In summary, for MRAC of a systelf\, B,C), a basic assumption is thgk, B,C)
is stabilizable and detectable, in addition to the asswnphat all zeros of the sys-
tem transfer matrix(s) = C(sl — A) !B are stable; in other words, all system zeros
are required to be stable.

For more about the definitions of the zeros and pold3(gf, see Kailath (1980)
and Rugh (1996), and also see more notes.
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Parameter Convergence of MRAC

State Feedback State Tracking MRAC
Consider a linear time-invariant plant in the state-spaoafo
X(t) = Ax(t) +Bu(t), x(t) e R", u(t) e R, (36)

whereA € R™", B € R" are some unknown constant parameter matrix and param-

eter and vector, and assume that the state vetpis available for measurement.
The control objective is to design a state feedback conawl for u(t) such

that all signals in the closed-loop system are bounded amgldmt state vector

X(t) asymptotically tracks a reference state veatgft) generated from a chosen

reference model system

Xm(t) = AmXm(t) +Bmr (1), xm(t) e R", r(t) € R (37)

whereA,, € R™" s stable, and, € R", both are constant.

To meet such a state tracking control objective, we assumtetiiere exist a
constant vectok; € R" and a nonzero constant scakjre R to satisfy the plant-
model matching conditions:

A+BKT = An, BK> = B, (38)
The adaptive controller structure is chosen as
u(t) = ki ()X(t) +ka(t)r (1), (39)

wherek (t) andky(t) are the estimates & andks.
For the tracking errox(t) — xm(t) and the parameter errors

ka(t) = ka(t) — ki, ka(t) = ka(t) — K3, (40)
the tracking error equation can be derived as
&(t) = Ame(t) + B (k] (t)x(t) +ka(t)r (1)) . (41)
The adaptive laws fok; (t) andky(t) are chosen as
ke (t) = —signks]rx(t)e’ (t)PBy, (42)

ko(t) = —signks]yr (t)e" (t)PBm, (43)
wherel =TT > 0 andy > 0, andP € R™" such thaP = PT > 0 satisfying

PAn+ALP = —Q (44)
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for a chosen constant matixc R™" such thatQ = Q" > 0.
B Sincel = diag(T, Y} = [T > 0, there exists a nonsingular matfix such that
M= rTrl With such d" 1, we introduce the overall parameter error vector

~

8(t) = (M) ~*8(), 8(t) = [ (1), k()] € R, (45)
and the corresponding regressor vector
w(t) = F10(t), w(t) =[x (t),rt)]" e R*L (46)

SinceP = KP = Pl > 0, there is a nonsingular matrBi PT € R™" such that
P= PlPl 1 Wlth such a nonsmgula?l = PlT, we introduce the transformed tracking
error 3

e(t) = Pre(t). 47
Then, withAyn = P1ARP;  andB = P;B, we can express the tracking error equation
(41) as

&(t) = PLAne(t) + PiBw’ (1)B(t) = An@lt) + B’ (1)8(t) (48)
and, fork; > 0, write the adaptive laws (42)—(43) as
8(t) = —(t)BT ). (49)
In a compact form, we have
&) | [ An_ Ba'(t)|[ &Y
[ 50 ] - ave 0" [0 ] )

Here, the matridm = P1AWP; L with P = kP = PP, andP; = P] has the property:
Am-+ Ay = Py (PAn+ARP)P
= IGP {(PAn+ ARP) (P )T = —IgP IQ(PD)T <0 (51)

To study the convergence properties of the parameteré(ﬂr))im (41), or equiv-
alently, that o®(t) in (50), we first introduce the following definition:

Definition 1 A bounded vector signaly € RY, > 1, is persistently exciting (PE)
if there exis®d > 0 andag > 0 such that

o+d
/ x(t)xT () dt > dol, Yo > to. (52)

o

1In this case, there is a nonsingular maf@x R™" such thaQQ" = | andP = QAQT with A
being diagonal whose diagonal elements are the eigenvafugswhich are all real and positive.

Then,P = P,Py, whereP, = QA1Q" with A1 being diagonal such thai\l/\l N\, which leads to
PL=P[ >0andP ' = (P 1)T.
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We now present the following results.

Result (Morgan and Narendra 1977; Narendra and Annaswamy 1989)thieo

system

(207 [ foy BEO][20] 53)
o) ~Z(By 0 o) |

with z(t) € R, (t) € R, Zo(t) € R™1, Ag € R™" being stable (i.e., all its eigen-

values are in Rg| < 0) such thatAo+A(T) < 0, andBp € R" and (Ag, Bp) being

controllable, if¢p(t) is bounded and PE, then lim. @(t) = 0 and lim_. z(t) = 0,

both exponentially.

Result The MRAC system has been transformed to (50) (With= PiAnP; *
stable andAm + Al < 0 as shown in (51), ana(t) = I w(t)) which has the same
form as that in (53).

Remark: w(t) is PE iff andw(t) is PE, forw(t) = F10(t).

Result (Narendra and Annaswamy (1989); loannou and Sun (1996))thecsys-
tem

Xm(t) = AmXm(t) +Bmr (1), Xm(t) e R", r(t) € R (54)

whereAm € R™" is stable andAm, Bm) is controllable, if the input signal(t) has
n+ 1 or more frequencies, theom(t) = [x},(t),r(t)]" is PE.

Remark: r(t) = 1 has one frequency at 0, and) = sin2 has two frequencies at
2 and—-2, etc.

Result If (0(t) — wm(t)) € L? andw(t) is PE, therwny(t) is PE.

This results can be proved by using the PE fsignal definitions (conditions).

Result MRAC ensures that all closed-loop system signals are baliade(w(t) —
wm(t)) € L2.

Remark: (A B) is controllable iff (Am, Bm) is controllable iff (A, B) is control-
lable.

~ [

Remark: lim¢_..,8(t) = 0 and lim_., e(t) = 0, both exponentially iff linp. B(t) =
0 and lim_.. &(t) = 0, both exponentially, foB(t) = (F])~16(t) ande(t) = Pe(t).

In conclusion, with the application of the result for (53)tte MRAC system
equation (50), the state feedback state tracking MRAC systéth (A,B) con-
trollable andr(t) of n+1 or more frequencies, ensures thatlim8(t) = 0 and
lim{_e(t) = 0, both exponentially.
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Output Feedback Output Tracking MRAC

Consider a linear time-invariant plant of the form

Z(s)

y(t) = G(s)[u](t), G(s) = kp% (55)

with some unknown monic polynomialys) andZ(s) of degreesr andm respec-
tively, and some gail, known or unknown, and assume tiZgs) is a stable poly-
nomial for MRAC.

MRAC System with kp Known

For the case ok, known, the adaptive controller structure is

u(t) = 8T (t) + 8 on(t) + Baoy(t) + 851 (1), (56)

where
(1) = plult) welt) = 2. (57)
a(s)=[Ls,...,s" ", (58)

81 € R 1 8, ¢ R™ 1 andB, € Rare parameters to be adaptively update@) is
a monic stable polynomial of degree- 1, andf3 = kgl.

The control objective is to design the input signél) to ensure all closed-loop
signals bounded and the outpyft) asymptotically tracking the reference output
signalym(t) satisfying

P(S) [yml (t) =r(t), (59)
where Py(S) is a monic stable polynomial of degre® = n—m, andr(t) is a
bounded and piecewise continuous reference input signal.

The parameter8; € R"1, 8, ¢ R 1 andB,( € R are estimates of the nominal
parameter§; ¢ R, 6; € R-1 and®;, € Rsatisfying the matching equation

61" a(s)P(s) + (85" a(s) +B30/\(S) )kpZ(S) = A(S)(P(S) —kpB3Z(S)Pm(S)).  (60)
In this case, the regressor vector is defined as
wo(t) = [w] (t), w3 (), y(1)]" € R, (61)

the corresponding filtered regressor vector is

Co(t) =Wm(s)[oxo] (t), Win(s) =

Pn(S) (62)
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for a stable polynomialPy(s) of degreen®, the estimation error is defined as
e(t) = e(t) +kp (1), (63)

wheree(t) = y(t) —ym(t), and
1

&(t) =86 (120(t) ~ 55 Bo o] (1) (64)
Bo(t) = 67 (1), 03 (t),020(t)]" € R" . (65)

The adaptive law foBy(t) is chosen as
Bo(t) = ~sigrilglr 25 (66)

wherel =TT > 0, and

m(t) = /1+ 3 (0%(t) + E2(1). (67)

The tracking errog(t) satisfies

o) = s (Bt (69

where 8o(t) = Bo(t) — 85, with 85 = [8;7,05T,65,]T € R%"1 being the nominal
value ofBp(t) and depends on the parameter$(d) andZ(s) as the plant-model
matching parameter vector. The estimation egfby can be expressed as

g(t) = 84 (t)2ol(t), (69)
and the adaptive law witk, > 0 can be expressed as
" £)Z7 (t)Bg(t
Bo(t) = %l >rzr?2((t)) ot). (70)
Sincel’ =TT > 0, there exists a nonsingular matfix such thaf” = I’Il'l. Hence,
e have rZo O]
T\—14 __10tot1 T\—13
(F)™o(t) = =22 =) ~Bol) (72)
Letting go(t) = (F])180(t) andyo(t) = %ﬂgt) we arrive at
@(t) = —Wo(t)Wo ()G (t). (72)

MRAC ensures the desired system properties: the closeddmm@al bound-
edness (which implies that the abowg(t) is bounded), the asymptotic output
tracking: lim_«(y(t) —ym(t)) = 0, and thel.? tracking errore(t) = y(t) — ym(t):
5 €(t)dt < . To study the convergence properties of the parameter &sto,
or that ofgy(t), we recall the following definition:
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Definition 2 A bounded vector signaly € RY, g > 1, is persistently exciting (PE)
if there exis®® > 0 andag > 0 such that

o+9d
/ x(1)x" (t)dt > aol, Vo > to. (73)

o

From the definition ofo(t) andu(t) = G~1(s)[y|(t), we have

Y.yl (74)

whereWp(s) = #(S), In a similar structure, we introduce the signal

T T
Camlt) =W, 5/ G Syl (0, 5 5 i)y

s)Ho(s)[r](t) € R, (75)

= Wiy,

—~

where

2,
—
N2

al(s)

A(s)

G ()Win(S), S Win(S), Win(S)] - (76)

The following results are available in the literature.

Result(Anderson 1997): 1@p(t) in (72) is PE, then lim.,. @y(t) = 0 exponentially,
that is, lim_.«(8o(t) — 83) = 0 exponentially.

Result If the signallo(t) is PE, thenpp(t) is PE (which follows from the bound-
edness oMm(t)).

Result MRAC ensures thatlo(t) — {om(t)) € L? (which can be seen frop(t) —
Lom(t) = H(s)[€](t), whereH (s) is strictly proper and stable, amtt) € L?).

Result Given that({o(t) — {om(t)) € L?, o(t) is PE iff {om(t) is PE.

Result (Boyd and Satry 1983): If(t) has 21— 1 or more frequencies ar®(s) and
Z(s) are coprime, thefom(t) is PE.

In conclusion, for a MRAC system witR(s) andZ(s) coprime and, known, if
the reference signa(t) has 21— 1 or more frequencies, then lim.,(8(t) —63) =0
and lim_.(y(t) — ym(t)) = 0, both exponentially.
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MRAC System with k, Unknown

In this case, the adaptive controller structure is
u(t) = 8] wi (t) + B wa(t) + B20y(t) + ar (t), (77)
the regressor vector is defined as
w(t) = [w] (t), w3 (t),y(),r®)]" € R, (78)

the corresponding filtered regressor vector is

((t) = Win(S)[w](t), Win(s) =

Pn(S) (79)

the estimation error is defined as
g(t) =e(t) +p(t)&(t), (80)

wherep(t) is the estimate dk,, and

1
(1) =0" (121 ~ 58" l() (81)
B(t) = 6] (t),63 (t),B20(t),Ba(t)] " € R, (82)
and the adaptive laws f@(t) andp(t) are chosen as
B(t) = —sign[kp]rzr:[éz()t) 83)
__E(ED)
p(t) = 20N (84)
wherel =TT > 0,y> 0, and and
m(t) = /1+ LT (O2(0) +E2(1). (85)
In this case, the tracking erre(t) satisfies
o) = s a0, (86)

where(t) = 8(t) — 8%, with 8* = [6;T,05,85,,05T € R?" being the nominal pa-
rameter vector. The estimation erggt) can be expressed as

e(t) = "8 (1)L (1) +PL)E (1), (87)
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~ [ — —

wherep* = kp, B(t) = 8(t) — 6" andp(t) = p(t) — p*. Introducingd(t) = B(t) — 6*
with
B(t) =87 (1),p(t)]" e R™, 8" = 6T, p|T e RO (88)

and defining” = diag{T'k,,y} (for k, > 0), and

{(t) = [kl (1), E(1)]T € RO (89)
Then, the adaptive laws wil, > 0 can be expressed as

=L ©8(t)

o(t) = —T 20 (90)

While this expression has the same form as that in (70), it do¢sender the
same procedure for the convergence analys&f becausé(t) cannot be PE as
lim¢_,&(t) = 0 from MRAC.

In this case, we consider (83) and (87) wkgh> O:

~ T ~ 0
Bit) = —rkpZ(:Tzf(t)(t) B(t) r—Z(t)rflz(Et))E(t), (91)
express the signdl(t) as
_ a’(s) a’(s)
T T
Wn(9 o & OO, 3 S MOYOrO, (@

and introduce the signal

T T
) = W9 G 9 0, 5 0.0, O
= Win(S)H (9)[r](t) € R, (93)
where T -
H(s) = [3\((3 GH(9)Win(9), "j‘\((;)wm@),wm(s), 1. (94)

We have the following results.

Result If r(t) has 2y or more frequencies, arfé(s) andZ(s) are coprime, then
{m(t) is PE.

Result MRAC ensures thafZ (t) — {m(t)) € L%, and&(t) € L2 and lim . &(t) = 0.
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Result Given that({(t) — {m(t)) € L?, {(t) is PE iff {m(t) is PE.

Result If Z(t) is PE, then the solutioB(t) of the homogeneous part of (95@) =
T(t) % -
—ka%e(t), has the property: lim.« 0(t) = 0 exponentially.

Result If Z(t) is PE, then the solutiofi(t) of (91) has the property:

lim 8(t) =0, B(t) e L2 (95)

t—o0

This follows from the system signal boundedness and(thg PE condition,
which imply that
B LT () 5
B(t) = —Tkp P~y o(t) (96)
is an exponentially stable system, and from the properties: ... &(t) = 0 and
&(t) € L2

In conclusion, for a MRAC system witR(s) andZ(s) coprime andkp > 0 un-
known, if the reference signa(t) has 21 or more frequencies, then ljm« (8(t) —
8*) = 0 and(8(t) — 8*) € L?, in addition to the usual MRAC tracking error proper-
ties: lim o (y(t) — Ym(t)) = 0 and(y(t) — ym(t)) € L%
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Higher-Order Tracking Performance of MRAC

It has been shown that for a linear time-invariant plgft) = G(s)[u](t), where
G(s) = kp% with all zeros ofZ(s) stable and with relative degreé = degree of
P(s)— degree o(s), a model reference adaptive controller to generate the plan
putu(t) ensures that the tracking ereft) = y(t) — ym(t) has the desired asymptotic
convergence property: lime e(t) = 0, whereym(t) = Wy (s)[r](t) is the reference
output to be tracked by the plant outpit), for a bounded reference input signal
r(t) and a stable transfer functidfiy(s) = #s) with a stable polynomiaPy(s)

of degreen®. In this work, we show that the tracking erre(t) in a model refer-
ence adaptive control (MRAC) system has some stronger cagweggroperties as

stated in the following theorem.

Theorem 1 For a model reference adaptive control system with the plalative
degree i > 0, the tracking error é) = y(t) — ym(t) has the convergence property:

Iimt_m%zo, fori=0,1,...,n* —1.

Proof: The property: lim..€e(t) = O follows directly from the established prop-
erties: [5 €(t)dt < « and % is bounded. However, it is not clear whether
%(,t—) is square-integrable or not for- 0. To prove the convergence gﬁt) for
i=1,...,n"—1, we recall that for a functiof(t) defined ortg, ), lim;_» f(t) =0
if for everyn > 0, there exists & =T(n) > 0 such thatf(t)| <n, vVt > T. Hence,

our goal now is to show that in each caseief 1,...,n"* — 1, for any givenn,

there exists & > 0 such thald'det(lt)| < n, forallt > T. To reach this goal, we use

a method to decompose the sigﬂ'ﬁﬁ into two fictitious parts: one being small
enough and one converging to zero asymptotically with timi@gto infinity. To
this end, we first introduce two fictitious filtek§(s) andH (s) from

a”
(S+ a)n* Y

K(s) = sH(s) =1—-K(s) (97)

wherea > 0 is a generic constant to be specified. The fitiés) is given as

1 1(s+a)"” —a"
H(s)==(1-K(§)) = ——F—F—— 98
(= 1-KEO == g (98)
which is strictly proper (with relative degree 1) and stadahel whose impulse re-
sponse function is

.. -t (99)
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It can be verified that the! signal norm ofh(t) is
00 n*
h(-)||1 = h =—. 1
Gl = [ In)dt=" (100)

It has been established that the tracking eefoy = y(t) — ym(t) satisfies
Kp
Pr(s)

wherePn(s) is a stable polynomial of degre#, and8(t) is the parameter error
vector andw(t) is the controller regressor vector, and both are boundedngUs

(97): 1= sH(s) + K(s), we express(t) = 29U as

e(t) = 07 w(t), (101)

(67wl (t)

koS ko
Pm(s) Pm(s)

=H(s) F‘)‘r:i ) 07 ] (t) + SK(s)[€e](t). (102)

ét) = Pn(9)

=H(9)

(BTl (t) +sK(s) BT awl(t)

To demonstrate the new technique for proving the new resultheorem 1:
liM¢_ e d;"t() =0, fori=1,. — 1, under the previously proved properties of
MRAC: all closed-loop S|gnals are bounded and the trackingres(t) = y(t) —
ym(t) satisfies lim.. e(t) = 0, we first consider the case wf = 2, where

a? s+2a
sra "9 T rap

K(s) = (103)

SincedT (t)w(t) is bounded ané(— is stable and prope’f‘ﬁ 8T w|(t) is bounded.
It follows from the above.* signal norm expression ¢f(s) that

Bruw(t)| <= (104)

Pm( s) a

for anyt > 0 and some constanog > 0 independent c > 0. Since lim_.. e(t) =0
as established areK(s) is stable and strictly proper (with relative degrée-1=1
in this case ofi* = 2), it follows, for anya > 0 in K(s), that

|H()

lim sK(s)[e](t) = 0.2 (105)

2For a stable and strictly proper transfer functidf(s) and a systene(t) = W(s)[V|(t), if
lim; . Vv(t) =0, then lim_. z(t) = 0 (see p. 68 of Narandra and Annaswamy (1989) and and p.
263 of Tao (2003).
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To show that, for every > 0, there exists & > 0 such thaté(t)| <n, vt > T,
we seta>a(n) = ZCO for the fictitious filterH (s) in (98) so that® < 1 in (104),

and letT = Ta(a(n), r]) 2 T(n) > 0 such thatsK(s)[€](t)| < 2 for allt > T (which
is ensured by the property that lim, sK(s)[g](t) = O for any finitea > 0 in the
other related fictitious filteK(s) in (97)) (the peak value dEK(s)[€](t)| depends
on the parametas, so that the above time instaht= Ty(a(n),n) also depends on
atoo). Then, it follows from (102) and (104) that

SOl < 3+3=nvt>T, (106)

which implies that linp.., &(t) = 0. In other words, if ling_. &(t) # 0, then there
exist anng > 0 and a sequence of time instamtsvith lim;_.tj = c such that
|&(ti)| > noforalli=1,2,..., which, from the above analysis, is impossible.

Similarly, for the case when* = 3 with

ad 2+ 3as+ 3a?

(s-|—a)3’H(S): (s+a)p® ’ (107)

K(s) =

we see that in (102)|,|§p—SZ is stable and strictly proper, and sosK(s), so that
lim{_€&(t) =0. To show lim_. dtg) =0, from (102), we expres%— as

dt2
kpS®
Pm(s)

d%e(t)
gz —He

BT wl(t) +s’K(9)[€] (1), (108)

in which %[GTQ)] (t) is bounded (a% is stable and proper arf (t)w(t) is
bounded) andH (s) satisfies (100), and lim.. s?’K(s)[€](t) = 0. Hence, similar to

(106), now withdZﬁg) replacinge(t) in (106), it also follows that lim.. dtQ =0.

In general, for a MRAC system with an arbitrary relative degre> 0, from

(102), we express théh-order time denvatwé’w of e(t

die(t) B kps*tt 1 i
qi = H( )Pm(s) 6" w](t) +sK(s)[e](t)- (109)
Since8T (t)w(t) is bounded, and for eadh=1,2,...,n* — 1, kpg( 5 is stable and
strictly proper (proper for=n* — 1), we have
kps +1 G
H(s)———[8"w(t)| < = 110
\()Pm()[ wl(t)] = - (110)
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for somec; > 0 independent o&. For each = 1,2,...,n" — 1, sK(s) is stable and
strictly proper, so that, with lim.. e(t) = 0, we have

JmléK@nqa):o. (111)

Hence, with the use of the fictitious parameter 0 in H(s) andK(s), similar to
(106) it can be shown that for eveny> 0, there exists & = T(n) > 0 such that

e _ o, fori=1,2,...,n" —1. 0

dt'

For a general MRAC system, the reference input sigftalis only required to
be bounded (which is sufficient for the result of Theorem fi)he time-derivative
of r(t) is also bounded, we have the following additional property.

Corollary 1 For a MRAC system with relative degree x 0, if both r(t) andr(t)
are bounded, then the tracking erro{’te— y(t) — ym(t) has the convergence prop-

erty: lim¢_ e ddet(l) =0,fori=0,1,.

Proof: We just need to show the additional convergence propénty:.b, d:t‘j,ﬁt) —
0. To this end, we consider (109) with= n*:

dvet) kps" <1 .

= H(s) Bn(S) s[0' w](t) +s" K(s)[€](t). (112)

In this cases[7w|(t) = $(BT (w(t)) = éT(t) w(t) + BT cu(t) is bounded, because
B(t) andw(t) (Whose last component igt) which is bounded by assumption) are
bounded. Hencé—s BT w|(t) is bounded. Since”K(s) in (112) is stable and
proper andH (s) satlsfles (100), we have, with the property:im e(t) = 0 and an
inequality similar to (106) W|thddT replacinge(t), that lim_c % =0. [

Remark 3 As a comparison, in the ideal case of nominal model refereno&ol
when@(t) = 6% in the controller structure, it can be shown that

Pn(S)Y — Ym](t) = —kp€a(t) (113)

for some exponentially decaying and initial condition tethterme;(t), where
Pm(s) is a stable polynomial of degre®. It follows from this equation that the

tracking errore(t) = y(t) — ym(t) dt(. )~ o,

fori =0,1,...,n* (under the condition that(t) is bounded). The difference be-
tween the nominal control and adaptive control cases idnhae adaptive control

case the additional condition thdt) is bounded was used to show Jim, -84 —

T

0, which is not needed for the nominal control case. O
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Remark 4 For the case whewy(t) = 0, it follows that lim_« % =0, fori =
0,1,...,n*—1, an output regulation result of MRAC.

For a state-space system modet= Ax+ Bu,y = Cxwith x(t) € R", if n* =n,
then lim_ o %(,t—) =0, fori=0,1,...,n—1, as established above, andim x(t) =
0, as(A,C) is observable implied by the condition that= n (the system transfer
function does not have any finite zeros as its numerator issjesnstankp). This
is the adaptive asymptotic state regulation result, guaeahby a MRAC design.

In particular, for amth order system witl{A, B) in the controllable canonical
form andy(t) = x4(t), the system transfer function explicitly has no finite zeros
as its numerator is a constant, leadingito= n and an observableA,C), so that
lim{_»X(t) = 0, an inherent property of a MRAC system. a

This new higher-order tracking error convergence propdimyt_,m% =0,

fori =1,...,n*, of MRAC, is extendable to adaptive nonlinear tracking cdntro
systems in which the controlled nonlinear plant has a defiakadive degrea®.
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Convergence oB" (t)w(t)

For a MRAC system, we have defined

0 = (857,657 ,050,05) T € R2" (114)
B(t) = (6] (t),0] (1), B20(t),83(t))T € R" (115)
w(t) = (W] (t), wj (1), y(t),r (1) € R (116)
B(t) = 0(t) — 67, e(t) = y(t) —ym(t), (117)

and derived the tracking error equation

ell) = 5 5 BTl
= k(07 ) — s B (118)

wherePy(s) is a monic and stable polynomial of degree
We also defined the estimation error

e(t) = e(t) +p()&(t) (119)

wherep(t) is the estimate op* = kp, and

&(t) =8T(OL(t) — 550" wl(t) (120)

o [ (121)

This estimation errog(t), which is in its implementable (calculable) form, is in-
spired by the second equality of the tracking error equgtid®):

o) = eit) - ( (0T 5 S0~ 5 T0) ) lomope  (122)

that is,e(t) = e(t)— the estimate of-ky(6*T 5> g @) — #(S)[GTO\)] ().
The estimation errcg(t) can be expressed as its theoretical form

e(t) = kpBT ()2 (1) +P(VE(L), B(t) = p(t) —p". (123)

In the MRAC literature, it was shown that ljm. € ( =0, and lim_e(t) =0,
that is, lim_.. kp8" (1)Z(t) +p(t)E(t) = 0, and lim_. Bis )[BT w|(t) = 0.

How about lim .« kp8T (t)ao(t) = 0?
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Recently, some higher-order tracking properties of modigremce adaptive
control systems have been established in

G. Tao and G. Song, “Higher-order tracking properties of eloeference adap-
tive control systems,IJEEE Transactions on Automatic Contralol. 63, no. 11,
pp. 3912-3918, 2018.

Itis shown in this paper that a MRAC system ensures that tiekitrg errore(t)

satisfies: Iim_,oo %et(.t—) =0, fori=0,1,...,n* — 1. If, in addition,r{(t) is bounded,

then lim_e 2 gt ni ) — 0 also holds.

Hence, for a MRAC system witl(t) =

[ Tl (t), wherer( ) IS a monic

and stable polynomial of degreé if r(t)is bounded then Infmoo () =0, for
i=0,1,...,n% thatis, liMm_« kpe (t)o(t) = lim¢_.. Pm(s)[€](t) = 0.
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Higher-Order Convergence ofe(t) = 87 (t)@(t)

From a linear model
y(t) =0T q(t), (124)

where®* € R is an unknown parameter vector ap) € R™ is a known vec-
tor signal, we can use the normalized gradient algorithnagide update law) to
generate an estima@gt) of 6*:

o(t) = —M, B(0) =6y (125)

wherel =TT > 0 is a gain matrixg(t) is the estimation error defined as

g(t) =07 ()e(t) —y(t), (126)

m(t) is the normalization signal defined as

m(t) = /14 a@’ (t)e(t), (127)

with a > 0 being a design parameter, ais an initial estimate o8*.

This adaptive algorithm guarantees:€), 6(t), % € L®; and (i) 6(t), rf](—(tt) €
L2,

~—|

If, in addition, @(t) € L*(= m(t) € L*) and @(t) € L®(= &(t) € L®), then
lim{_.€(t)=0.

From the expressions eft):

~

g(t) = 87 ()o(t) —y(t) = 8" (t)o(t), B(t) = B(t) - 6, (128)

we can show that if, in addition, some order derivativegbfandg(t) are bounded,
then certain order derivatives &ft) also converge to 0, using the following lemma.

Lemma: If lim o, f(t) = fo has a constant limify and () is bounded, then
Mt f(t) = 0.

For example, with lim_. £(t) = 0, if £(t) is bounded, then lim... £(t) = 0.
To specify the conditions fai(t) to be bounded, froma(t) = 87 (t)@(t) — y(t),
we have
E(t) = 0" (t)a(t) + 0" (e(t) —y(t) (129)

&(t) =8 (t)o(t) + 6" (H)o(t) + 6T ()a(t) + 8T ()o(t) —y(t).  (130)
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From (125), we have

¢(t)(1+0(<PT(t)<P(t))—2G¢T(t)¢(t)¢(t)s(t)+ @)

(1400 (t)@(t))? 1+ag (t)w(t)é) '
| (131)

Hence, if@(t), @(t), @(t),y(t),y(t),¥(t) are bounded, theé(t) is bounded, leading
to limy_. £(t) = 0.

B(t) = —r<
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Higher-Order Convergence of Indirect MRAC

Higher-Order Tracking of Indirect MRAC

For an indirect MRAC system, the tracking erggt) = y(t) — ym(t) also satisfies

0T w(t), (132)

wherek, is the plant high frequency gaiRy(s) is a monic and stable polynomial
of degreen* (the plant relative degree), and

B(t) = 6(t) — 6" (133)

0" = (0;7,85",650,05)" € R*" (134)

B(t) = (81 (), 83 (t),820(t), B3(t))" € R*" (135)
w(t) = (@] (t), 0} (1), ¥(t),r(t)" € R, (136)

Hence, it can also be shown that an indirect MRAC system easdhed the
tracking errore(t) satisfies: lin_.. delt) _ 0, fori=0,1,...,n*— 1. If, in addition,

dt
n*
ddtﬁgt) = 0 also holds.

f(t) is bounded, then lim,c

Higher-Order Convergence of Signal Estimation

Consider a linear time-invariant plant described by theedétial equation

P(s)](t) = kpZ(s)[uUl (1), (137)
wherey(t) € Randu(t) € Rare the measured plant input and output,

P(s) ="+ pn_18" 1 + - - - + p1S+ Po, (138)
Z(s) ="+ zn 18" 1+ 4 715+ 20 (139)

are polynomials irswith sbeing the time differentiation operatsix|(t) = x(t), and
pi, i =0,1,...,n—1,kp, andz, i =0,1,...,m— 1, with n > m, are the unknown
constant parameters.

Choosing a stable polynomiak(s) = s"+A&_;s"" 1+ -+ Afs+A§ and defin-
ing the parameter and regressor vectors

e;; = [kpZOa kpzlv R kpzm—17 kp7
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—P0o;—P1,- s —Pn-2,—Pn-1]" € R
1
00 = | 75 0. g 0 g MO, 5 )
1 s -2 -1 T

A g YO A g MO A gM O A g MO
we express the plant (137) as

v(0) = " ) = 85700,

whereAn_1(s) =A8_;s" 1+ +Afs+AL.
DenotingBy(t) as the estimate d&,, we define the estimation error

o(1) = 8} 00) - y(0) + ")

which can be expressed as

From (142), we have

y(t) =

It follows that

so that

From (145), we have

_ S/\n_]_(S)

v Ne(S)

[Y](t) + 65T olt),

and define the estimate gft) as

. S/\n_l (S)
A9

y(t) YI(t) +8p ().

35

(140)

(141)

(142)

(143)

(144)

(145)

(146)

(147)

(148)

(149)

(150)
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It follows that N N _
y(t) = y(t) —y(t) = 6} (H)(t). (151)

Frome(t) = 6] (t)@(t), we have

~

&(t) = Bp(H)o(t) + B} () e(t) (152)

. =T AT . AT ~T
E(t) = B, (t)@(t) + B (1)e(t) + B, (D) P(t) + B (1) (t). (153)

If an adaptive law without parameter projection 6(t):
rowet)
1+ag"(et)

can achieve the objectives of the asymptotic tracking agnbsboundedness of the
MRAC system, then it can be verified th&t) is bounded anép(t) is bounded, so
that, with lim_«£(t) = 0, we have lim_«£(t) = 0. Then, since lin.. 6,(t) =0,

it follows that lim .. 8], (t)@(t) = 0, that is, lim_«(¥(t) — y(t)) = 0.

Bp(t) = — T>0,a>0 (154)

However, if the parameter projection applied to the adagaw (154) (for the
estimate ofk,, the (m+ 1)th element offp(t)) is in action, then thgm+ 1)th
element ofép(t) may be discontinuous at the parameter boundaik, ¢its lower
bound), so that thém-+ 1)th element oBp(t) may not be bounded. In this case,
€(t) may not be bounded, and lim. &(t) = 0 may not hold. Hence, frore(t) =

ég ()e(t) +6F (He(t), we may not conclude lign. O (t)@(t) = 0 for y(t) —y(t) =
B} ()@(t), even if lim ... Bp(t) = 0 (as M« £(t) = 0).
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Analysis of “Bursting Phenomenon” in Robust Adap-
tive Control

As illustrated in [134] that adaptive control systems witlfix@d o-modification
may show some bursting phenomenon. Consider the adaptitesrsgsalyzed on
page 232 (for Theorem 5.8) withy (t) = op being a constant in (5.198):

B(t) = —signkp]Fw(t)e(t) — Moy (t)8(t), t >0

(that is, with a fixeds-modification). FolV given in (5.43):V = € + |kp|87 18,
we have from (5.204) that

V < —amé?(t) + % — 2|kp|o08T (1)6(t)

—_anez(t)+@—2]k\oéTtét 2|kp| 008 (t)6"
= o plooB” (1)6(t) + 2kp|o0B” (1)

12
< —ame?(t) + %(t) — |kp| 0BT (1)B(t) + |kp|00B*TO". (155)

Forl =yl anday, > yop (that is, with a smalbp), we have

V < —yogV + A + |Kp|000"' 6 (156)

which, for|d(t)| < do, leads to

2
imv(t) <% KolgTg: (157)
t—oo amYOo Y

This implies that the upper bound for the tracking eredrn = y(t) — ym(t), for

d(t) = dp = O (in the absence of disturbana#d)), may be as large a'E&‘e*Te*,

independent ofyp. We already knew that fod(t) = 0 andoy(t) = gp = O, the

adaptive control system ensures thatlime(t) = 0. Now from the above analysis

we know that for a smalbp # 0, the error bound ofe(t)| can be up td"Tp‘e*Te*.
On the other hand, from

- d*(t) 5T
V < —ane(t) + S — 2[kplooB” (1)8(t) (158)

and the adaptive control system signal boundedness, simi(&.204), we have

to _
/t €(t) dt < yo + Ko(tz — t1)d2 + Co(tr — t1)00 (159)
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for some constanty > 0, where theog related term is due to using a fixed
modificationo1(t) = gy, instead of the switching-modification which leads to
(5.205) and in turn to (5.204). The inequality (159) implikat, whendy = O (in
the absence of disturbances), we have the mean error

! t2ez(t)dt < Y00 (160)
to—11J/y th—11

which is of the magnitude ofyop, but the absolute errde(t)|, as from (157),

could be as large a'%’—'@*Te*, independent 06p. This is the so-called “bursting

phenomenon” of robust adaptive control with a fix@dnodification: the tracking

error e(t) may go to a large value independentayf for a small interval of time

but in the mean sense the erggr) is of the order ofbg. This analytically explains

what was observed in the simulation results [134].
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Robust MRAC with A Switching o-Modification
To derive (5.224), foW (8,p) = |p*|6"T ~18+y 12, using

g(t) = p*8T (L (1) +P(L)E() + (), n(t) = A(S)[u(t) (161)

we have

= m2(t)t — 204(t)[*[B7 (1)6(t) — 202(1)B(1)p(1)

L2 (&) )2, .n)
(m(t) “m()) My

)[BT (1)8(t) — 202()p(t)p(t)
t)) —201(1)|p*(87 (1)8(t) —202()B(t)p(t)  (162)

which is (5.224). Sinc 8' < bg for some constartip > 0, we haveV < 0 if

201(t)|p*(87 (1)8(t) + 202(1)P(t)p(t) > Kb}, (163)

For6=06-6* andp = p — p*, by definition, we have

a1(t)[p*[8" (1)8(t) > 0, o2(t)p(t)p(t) > 0, t >0 (164)

lim 8'6=c, lim pp= . (165)
[[6]|2—c0 p|—eo
This implies that there exist constar#$ > 0 andp® > 0 such that|6(t)[|2 > 6°
or/and|p(t)| > p implies thatv < 0. Hence, the boundednessagt) andp(t) is
ensured. One choice of sudP(p°) is

1 1
0 __ 2h2 x[|2 *2 ~1e*
6 = max(2Ms | 10— (2P 18713 +°2)+ 51671}

1 1
0_ 2h2 *||2 *2 Zp*
P —maX{ZMz,\/4GZO(2u b5+ 118715+ p72) + 5 [P} (166)
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A Discrete-time MRAC System Example
Consider the first-order plant

y(t+1) = apy(t) + bpu(t) (167)
with two unknown parametees, andbp and choose the reference model

Ym(t+1) = —amym(t) + bmr(t) (168)

with |am| < 1 for stability. We use the adaptive controller structure

u(t) = ke (Oy(t) +ka(Or (1), (169)

wherek; (t) andkz(t) are estimates of the unknown parameters

* _ap —am x %
1= ", ko = oo’ (170)
In this case the tracking error equation becomes
e(t+ 1) = —ame(t) + bpka (t)y(t) + bpka(t)r (1), (171)
wherekq (t) = kq (t) — ki andka(t) = ka(t) — k.
Definingp* = by and
0% = ki, k3] T, 8= [ki, ko], (172)
w(t) = [y(t),r(v)]" (173)
and introducing the filtered vector signal
(0 - w0 - [ yo L mo] - ro.eor an
_Z—|—am _Z+amy 7Z+am = 161(Y), 62 ’
where, as a notatiody (t) = 5 +lam ly](t) denotes the output of the system with trans-
fer function Z+1am and inputy(t) (it satisfies the equatiorfy(t + 1) = —aml1(t) +

y(t), for generatind/1(t) fromy(t)), we rewrite (171) as

et) = Zf;m[eTw—e*Tw](t)

o (Zfam o wl(t) - e*sz) . (175)
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The design task is to find adaptive laws to update the pararestienate®(t) and
p(t) (which is an estimate g&*) such that the estimation error

1
Z+am

£(t) = eft) — p(t) ( [eTw1<t>—eT<t>z<t>) (176)

is small in some sense. With (175), this error can be expdesse

g(t) = p*8T ()Z(t) +PLE(), (177)

where 1
&) =0 (M) — -0 l(t) (178)
6(t) = 0(t) — 6", p(t) = p(t) — p". (179)

We choose the gradient adaptive laws@@r) andp(t):

B(t+1) = B(t) Sig”[bﬂzr(;(t)m), 0<r=rT< b%lz, (180)
p(t+1) :p(t)—%é)(t), O<y<2, (181)

where sigfbyp] is the sign o, b% > |bp| is a known upper bound dbp|, and

m(t) =/ 1+ LT (O4(0) + E2(0). (182)

The stability analysis of this MRAC system is given in Secito8.1.
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Indirect Observer Based Adaptive Control
Consider a continuous-time linear multivariable time-at plant
y(t) = G(9)[u](t), ut) e RY, y(t) e R, M > 1, (183)

whereG(s) is anM x M strictly proper rational transfer matrix which can be ex-
pressed as

G(s) = D 1(5)N(s) = Cy(sl — Ag) ~*By, (184)
where, for the observability indexof G(s) (its minimal realization),
D(s) =" Im+A, 18" 14+ Ais+ Ao, (185)
N(s) = BpS™+ - + B1S+ By, (186)
[ A, 1 Iy O - -~ 0]
-Ay2 0 Iy O -~ O
Ag=| + i i oi i | eRMW (187)
AL 0 - -~ 0 Iy
| A 0 - o 0 0|
0 Bm
B, — c RMVXM B, — c RM(m+1)><M (188)
¢} y PP )
0 B
Cg=[Im O --- 0 0] eRMM (189)

for the M x M identity matrix Iy and someM x M parameter matrice8;, | =
0,1,...,v—1,andBj, j=0,1,.... mm<v-—1.
In view of (184), the plant (183) can be expressed as

KO = A0+ A0+ | o U, Y = Cox(), (190)

whereA € RM*MV andA, € RMV>*M gre

0Ilyw 0 - 0 ~Av1
0 0 Iy O -+ O ~Av_2
A=1:1 t 1 1 L A= : : (191)
00 0 Iy A1
(00 0 0 | | A |
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Control objective. The control objective is to design an adaptive feedback con
trol signalu(t) to make the plant outpytt) tracks the outpugn(t) of the reference
model system

ym(t) =Win(S)[r](t), Win(s) = &,1(s), (192)

wheregm(s) is the modified left interactor matrix @&(s): liMs_.. Em(S)G(s) = Kp
is finite and nonsingular.

Adaptive parameter estimation Based on the input-output model of the plant:
D(9)[y|(t) = N(s)[u](t), we can deS|gn an adaptive parameter estimation scheme
to generate adaptive estimat&sandB; of the coefficient matrice#y andB; of

D(s) andN(s). From the parameter estlmatesandB,, we can obtain the adaptive
estimated\, andB,, of the parameter matricég, andBy,, and the adaptive estimates
Aq andBy of the parameter matricé, andBy.

Adaptive state observer With adaptive estimates, andBp, we construct an
adaptive state observer for the plant (190) as

O = A+ A0+ | 5 U+ LI ~5(0), 90 = Goft),  (199)

whereL € RMV>M is such thatA — LCy is a desired stable matrix. For the state
estimation errok(t) = X(t) — x(t), it follows that

KO = (A~ LG +Aty(0) + | % |u0. 90 =Gt 199)

wherey(t) = J(t) —y(t), Ap(t) = Ap(t) — Ap andBp(t) = Bp(t) — Bp.

Adaptive control law. The adaptive control law is an indirect-design (that is,
its parameters are calculated from plant parameter egghand explicit-observer
(that is, it uses the state estimate) Tor feedback control) based control law:

u(t) = K{ (OK(t) +Ka(t)r (1), (195)
whereKj (t) € RMY*M andK;(t) € RM* are parameter matrices which satisfy
Cg(Al — Ag— BgK{ ) 1BgKz = Win(A), (196)

point-wise in the time variablg WhereAg(t) andBy(t) are the on-line estimates
of Ay andBg. It can be shown that such solutioks andK; exist if the estimated
plant(Ag, By,Cq) hasém(s) as its modified left interactor matrix point-wise, that is,
lim .o Em(A)Cg(AI IA‘9> 1By = K, is finite and non-singular, for each timeas
Aq = Ap(t) andBy = By(t) (note thatK, may be a function of time).
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In the single-input single-output case with= 1, such a condition becomes:
Bm(t) = Bm(t) # 0 for anyt, which can be easily ensured by using a parameter
projection based adaptive parameter estimator. In this,&gA) = AV"™ and
Kp = bim(t), for v = n being the plant order.
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Adaptive Control of x(t) = Ax(t) + BAu(t) + BO*@(x)
Consider arM-input linear time-invariant plant
X(t) = AX(t) + BAu(t) + BO*@(x), x(t) € R, u(t) € RM, (197)

where @, B) is a known and controllable paify = diag{A1,A2,...,Am} is an un-
known and diagonal matrix with; # 0 fori =1,2,...,M, ©@* is an unknown matrix,
and@(x) is a known vector.

With (A, B) known and controllable, we can find known constant maticgs
R™M andKag € RY*M such that

Am = A+ BK{y, Bm=BKyg (198)
are known withA,, being stable, for constructing a good reference model syste
Xm(t) = AmXm(t) 4+ Brr (1), xm(t) € R, r(t) e RM, (199)

wherer (t) is a bounded and piecewise continuous reference input.
We first introduce the parameter matrices

KiT = A7IK], K5 = A"1Kp, K = —A1O". (200)

Then, forKy, Kz andK3 being the estimates &f;, K5 andK3, we use the adaptive
controller
u(t) = K{ ()xX(t) + Ka(t)r (t) + Ka(t) @(x). (201)

From the definitions oK], K5 andK3, we have
BA(KITX(t) +K3r (t) + K5@(x)) = B(K{ox(t) + Kaor (t) - ©0(x)).  (202)
Introducing the parameter errors
Ki=Ki—Kj, Ka=Ko— K3, K3 =Kz —K} (203)
we express the control signal from (201) as
u(t) = K (x(t) +Ra(t)r (t) + Ks(t)(x) + KiTx(t) + K3r(t) + Kie(x)  (204)
and, in view of (198) and (202), the closed-loop system as

X(t) = AX(t) + BA(K] ()x(t) +Ka(t)r (t) + Ka(t)9(x))
+BAK;TX(t) + K3 (t) + K3o(x)) + BO*@(x)
= AnX(t) 4 B (1) + BA(K] (1)x(t) + Ka(t)r (1) + Ks(t)@(x)).  (205)
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Then, in view of this equation and (199), the tracking emn = X(t) — xm(t)
satisfies

&(t) = Ame(t) + BA(K] (t)x(t) + Ka(t)r (t) + Ks(t)@(x)). (206)
Introducing6; such tha®;T is theith row of [K;T,K3,K3],i=1,2,...,M, letting
0i be the estimate d and®;(t) = 6;(t) — 6;,i =1,2,...,M, and defining

w(t) = X" (t),r" (1), 9" ()], (207)
we express (206) as
[ Bl(Hw(t) ]
6] (t)u(t)
é(t) = Ame(t) + BA : . (208)
By (Hw(t)
Oy (t)a(t)

Letting P = PT > 0 satisfy
PAnL+ALP=-Q (209)

for a chosen constant matr@ € R™" such thaiQ = Q" > 0, andg(t) be theith
component o&' (t)PB, i = 1,2,...,M, we design the adaptive law f6y(t) as

6i(t) = —signAiIrig (t)w(t), (210)

wherel; = I'T > 0 is a chosen constant adaptation gain matrix, andsigis the
sign ofAj,i=1,2,...,M.

To analyze the adaptive control system performance, weid@nthe positive
definite function

M
V(e6,i=12,....M)=ePe+ le\i\e?rilei (211)
i=
and derive its time derivative along the trajectory of (288) (210) as

V = 2e' (t)Pé(t) +2_§1\>\i 687 (1) 16;(t)

= 2e" (t)PAne(t) + Z_ié(t))\iéf (t)oo(t) + 2_% N[BT ()T 26 (t)

= —e' (1) Qe(t). (212)

From this result, it follows thax(t) and;(t) are bounded and(t) € L?, and in
turn, thatu(t) is bounded, and so &t), so that lim_... e(t) = 0.
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Parameters ofu(t) = ©;Twy(t) + O wy(t) + Osgy(t) +
O¢(2)y(t)

For multivariable MRAC, the paramete®y, ©5, ©5, and©; of the matching equa-
tion
u(t) = Of' (1) + @3 (1) + O3a¥(t) + O3E(2)¥(t) (213)

are the nominal controller parameters. For discrete-tinRAR where/\(z) = Z
for generatingo; (t) andwy(t), such parameters can be calculated from the follow-
ing procedure.

For a given system transfer mati(z) = A~1(z })B(z ) and an interactor
matrix &(z) such that rlim_.. &(2)G(z) = K, finite and nonsingular, where

AZYH=1+AZ 4 +AZ™ Bz ) =Bz 4Bz ™  (214)

E2) =808 +& A+ 48417 (215)

we can solve the equation
E2=F@AZYH+H(EZY (216)
for some matrix functions
F(2) =R+ R+ +FRy1z (217)
H(z Y =Ho+Hiz 1+ +Hpz ™ (218)
for someny, > 0 to be determined, that is,

S0+ 84+ 48z
= (R +FA R+ Az + Az ™)
+H0+H12_1—|—"'+thz_nh- (219)

The solutionds andHj are from the iterative procedure
Fo=¢&o, FL+FoAL=¢&q, ... (220)

whereng depends om, andnp,.

Then, we define

azhH=H(EzH=ao+a1z '+ -+opz " (221)
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with a; = H;, and

Bz =F(@@B(z™). (222)
From&(z) = F(2A(z 1) +H(z 1), we have
(2)-HEZYH=F@Bz Bz HAz H =Bz )G 2 (223
that is,
G(2)=(E@—az ) B (224)
Since lim—.«» &(2)G(z) = K, finite and nonsingular, we have
lim B(z %) =Kp (225)
which implies that
Bz ) =Bo+Prz -+ Bz ™ (226)

with Bo = Kp andng determined fronB(z 1) = F(2)B(z ).

FromA(z 1)y(t) = B(z 1)u(t), we haveF (2)A(z 1)y(t) = F(2)B(z Y)u(t), and
from&(z) = F(2A(z 1) +H(z™ 1), we have

E(2)y(t) = F(@AZ Yy(t) +H(z Hy(t) = F(2B(z Hu(t) + H(z Hy(t)
— a(z Hy(t)+ Bz Hu(t). (227)

Comparing this equation with
E(2)y(t) = 05 'u(t) — 037 01 wi(t) — O3 @3 un(t) — O3 TOy(t)  (228)
with A(2) = 2%, we can obtaii®}, ©3, @5, and®; =K1, froma(z1) andp(z ).

Example 1 Consider the system transfer matrix

73 3z3

1 1

God = | & L& . (229)
1+z1 14371

Its interactor matrix and high frequency gain matrix are

E(Z)leo3 32}250234‘5122, Kp:H g’} (230)

It can be found that

1+zYH(1+4zY) 0 }

1y | (
Az )_[ 0 (1471 (1+32° Y (231)
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73144z 3z31+zY)
z2(1+3zY) 27?1+ |
Henceny =2,n, = 4,d = 3, andF (2) = FoZ> + F1Z2 + Fozin (217) withF, € R?*2,

For this exampleB; = 0 and&, = 0 are 2 by 2 zero matrices. Since the lowest
order in(RZ +F1Z + Fz2)(l + Aiz 1 + Az ?) is 71, we haven, = 1, so that
(219) becomes

B(z L) = (232)

802+ 817 = (R +F1Z2+F2)(l + Az 1+ Az ?) +Ho+Hiz t.  (233)

From this equation, we can fine, F1, F, Ho,H1. Then, we define

a(zH)=H@Ez Y =ap+0z? (234)
B(z 1) =F(2B(z ) = (RZ +F1Z + F22)(Biz ' +Boz *+Bsz °+Byz %).
(235)
It should turn out that
FoB1 = FoB, = F1B1 =0 (236)
FoB3 + F1B2 + F2B1 = Kp = o (237)

SinceB; = 0, we haveB; = 0 andRyBz + F1B = Kp,. It can be seen from (235)
that

B(z ") =Bo+ Pz 1+ Bz 2 +Baz (238)
that is,ng = 3. The termB(z H)u(t) has the form
B(z 1)u(t) = Bo-+ Bau(t — 1) + Bou(t — 2) + Bau(t — 3). (239)

For G(2) in this example, it can be found the system ordenis 5 and its
observability index < n—1=4, so thatthe order d%(z) in (227) isnc=v—1=3,
which meansw; (t) depends omi(t — 1), u(t — 2) andu(t — 3), as contained in the
termB(z Hu(t).

Finally, with a(z™%) andB(z 1) specified, from the matching equations (227)
and (228):

E(2)y(t) = a(z Hy(t) +B(z Hu(t) (240)

E(2)y(t) = 05 'u(t) — O3 O1 wi(t) — O3 @3 wp(t) — O3 TOy(t)  (241)

we can find the paramete®; € R6*?, @5 € R®*2, 05, € R?*2 and©} = By
©f = [B3,B2,B1]", ©; = [a3,a2,01]", O20= dlo. (242)

Since the termu(z 1)y(t) does not contaity(—2) andy(—3), az = a, = 0 (the
2 x 2 zero matrix), the first 4 2 part of®; R6*2 js the 4x 2 zero matrix. O
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Parametrization of (9.102)
To define the paramete®y, i = 1,2, 20, 3, to satisfy (9.105):
©1" A(D)Po(D) + (03" A(D) +©30A\(D))Zo(D)
= A(D)(Po(D) — ©3&m(D)Zo(D)), (243)

for the nominal version of the multivariable MRAC control{®:102), we consider
an equivalent version (see (244) below) of (9.105) by digdi from the right by
P, (D) and use the left matrix-fraction description@§(D) = Pfl(D)Z| (D) such
thatGo(D) = P~ 1(D)Z (D) = Zo(D)P; *(D) (as used in the proof of Lemma 9.3),
to obtain
;' A(D) + (03" A(D) + O30A(D))R(D)Zi(D)

= A(D)(I —©%m(D)P1(D)Z (D)). (244)

Expressing\(D)©3&m(D)P (D) with ©3 =K1 as
A(D)®3Em(D)P (D) = Q(D) +R(D)R (D) (245)

for someM x M polynomial matricesQ;(D) and R (D) such thatd.i[R (D)] <
0:i[R(D)] <v. Then, we defin®j, ©5 and©3, from

©3"A(D) + ©30A(D) = —R (D), (246)
©;"A(D) = A(D)Im — Qi(D)Z (D) (247)

(recall that[A(D)] =v —1 andd[A(D)| = v —2 for the controller structure (9.102)).
With this definition of@3, ©5, and©], (244) is satisfied, and so is (9.105).
From (9.105) (that is, (244)), we have the plant-model matchquation

I — ©1" F (D) — (O3 F (D) +©30)Go(D) = ©3Wp, (D) Go(D) (248)

whereWm(D) = &,1(D). From this equation with lif_.. O3Wi5,1(D)Go(D) = Im
as from the definition of (D), we have

lim ©;TF(D) =0, (249)

D—o

which implies thaB[@;T A(D)] < v — 2, that is, (247) is solvable.
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Plant Signal Identities for MIMO Cases

It has been shown that there ex®, ©5 and©j to satisfy the matching equation
©;TA(D)Py(D) + @3 A(D)Zo(D) = A(D)(Po(D) — @5&m(D)Zo(D)),  (250)
which is nominally (mathematically) equivalent to
I —©1'F(D) — ©5"F(D)Go(D) = ©5W,,*(D)Go(D). (251)
Operating this identity on(t), we may get the plant signal identity:
u(t) — 1T wi(t) — 3" wa(t) = O H(D) Iy (1) (252)

(This identity was used in deriving (9.119), and its simNarsion with©5, was
used in deriving (9.365).)

As an alternative procedure to obtain the plant parametsignal identity (sim-
ilar to that in (5.30) for the SISO case wikh = 1), we start by considering (9.84)
and (9.85):

©5"A(D) = Q(D)R (D) ~ A(D)Kj, *&m(D) (253)
©;"A(D) = A(D)Iy — Q(D)Z (D). (254)
and obtain the signal identities:

+AD) 1

Ao MO = Ap QRO K &I (255)
o ﬁig; u(t) = u(t) - %D)Q (D)Z/(D)[u(t). (256)

Using the open-loop plant signal identity® (D)[y](t) = Z(D)[u](t), and from
(255)—(256), we finally have the parametrized plant sigtkahtity (252):

u(t) = O R oI Ul + O R DM+ K D)) (@57)

This identity holds for any input signailt), in a feedback structure.
Similarly, for the controller structure (9.102) with noralrparameters:

u(t) = O1" wi(t) + ©37 wa(t) + O3ay(t) + O5r (1), (258)
in whichd[A(D)] =v — 1, we have the polynomial matching equation

©iTA(D)Po(D) + (@37 A(D) + O3 (D)) Zo(D)
= A(D)(Po(D) — ©%Em(D)Zo(D)) (259)
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and the transfer matrix matching equation
Im —©iTF (D) — (93"F (D) + ©@30)Go(D) = @5W; }(D)Go(D).  (260)
The nominal paramete;, 03, ©5, andO3; are defined from
(©5TA(D) +©30A(D)) = —Ri(D) = Q(D)R (D) ~ A(D)K "&m(D) (261)
©;"A(D) = A(D)Im — Q(D)z (D), (262)

that is, dividing/\(D)Kglém(D) on the right byR (D) to getR (D) and Q(D).
From these equations, we obtain the signal identities:

(©57 Ny + CI(0) = 5 5 QDIADIN - Ky (D)) (269
O 7B (0 = Ut - £ QDA (264)

Using the open-loop plant signal identit@ (D)[y|(t) = Z(D)[u](t), we have the
plant signal identity in a feedback form:

_ o:TAD) .7AD) i -
U(t)—GlTW[U](t)Jr@T A(D )M()+ezoy(t)+Kp1€m(D)[y](t) (265)

which also holds for any input signalt), similar to that in (257).
Both parametrized plant signal identities (257) and (268 )useful for adaptive
control: either verify the nominal controller structure

u(t) = O { oI ul0) + O3 1 M0+ 051 (266)

for the matching equation (250), or

u(t) = O R o3l + O 1 o)

A(D)
for the matching equation (259), whe®gr (t) = Em(D)[ym)(t) for the reference

outputym(t) = &-1(D)[r](t), leading to€m,(D)[y ym]( ) = 0 exponentially, or they
motivate the adaptive controller structure

YI(t) +©2y(t) +O5r (1) (267)

u(t) = © 3 B3 Ul0) + BF 5 () + Oar(t) (268)
for the matching equation (250), or

u(t) = O] R I+ GF R SIHI(0) +Oyit) + Our(t)  (269)
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for the matching equation (259), leading to the desirecktrgcerror equation:
e(t) = y(t) — ym(t) = &' (D)Kp[O (1) (270)
for ©(t) = O(t) — ©* with
o) =01 (), (1),05(1)]", ©" = [0]", 03", 04" (271)
w(t) = [0o] (t), w3 (t),rT (1) (272)
for the matching equation (250), or
O(t) = [O1(1).02(1),O20(1),O3(t)]", ©* = [077,037,05,03]"  (273)

w(t) = [0 (t), w3 (1),y" (1),r T ()] (274)

for the matching equation (259). Both tracking error equegtioan be used to de-
rive some desired estimation errors for designing stald@tace laws to update the
controller parameter®(t).
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Proof of lim;_..e(t) =0in (9.187C)

To show lim_.. e(t) = 0, we just need to prove that for any giv@n- O, there exists
aT =T(d) > 0suchthafle(t)|| < o, forallt > T. For such a proof, we only require
the existence of for each chosed which may be set to be arbitrarily small but do
not consider the limit 0d going to zero, that i > 0 such tha% is finite.

In view of (9.187C) (for the continuous-time case), for anyegid > 0, we can
choose (think of) a pair oKz(s) andHz(s) to make;—g < 523 (that is,ag > 2_g4 IS
finite) (recall thats(s) andHs(s) are not real but fictitious filters, and they are not
employed in the control design but only used in the expres@ecomposition) of
e(t) in (9.185C)), and leT > 0 such thafz ()| < 3 for anyt > T (such aT = T (&)
exists, because lim. z1(t) = O; also note that; (t) depends ofK3(s)). It follows
that||e(t)|| < & for anyt > T, which implies that lin,.. e(t) = 0.
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Adaptive Robot Control for Time-Varying Parameters

Consider the manipulator dynamic equation (9.586):

. aD(q,t) . .
D(qg,t)4+ %q%(q,q,t)qw(q,t) =u. (275)

With (9.590):v=gq —Ao(d—dq4), S= g—V, €= gq— qq, We have (9.592):

D(q,t)s+C(q,q,t)s

: . aD(q,t) .
=u—D(q,t)v—C(a,q,t)v—@(a,t) — é? )q
A L . oD(q,t) .
= u—Y(q,dd, 9, d, G, )07 (t) — %q, (276)

for some known function matriX (g, qq,q, G4, tg,t) € R™" and unknown param-
eter vecto9*(t) € R" which may be time-varying.
In this study, we consider the case when

0" () = 85+ 36" (1) (277)

where@( is a constant vector andb*(t) is the variation of6*(t) with respect to
85 (note that botl®; andd6*(t) are unknown). We will develop and analyze some
alternative adaptive control schemes to that presentei®97)—(9.608).

Adaptive Control Scheme |

As an alternative scheme to (9.607)—(9.608), we use theadaitv
u(t) =Y (d, 0, G, da, G, t)Bo(t) — m(t)Y(t) — mu(t)Pa(t) — Kps(t), (278)
m(t) = kollq(t) +v(B)[|f(q), ko > 0, Y(t) = m(t)s(t), (279)
my (t) = Ka[[Y (9, Ad, 9, A, G, O, ke > 0, Pa(t) = mu(t)s(t), (280)
and the update law for the estim#&igt) of 6;:
Bo(t) = —T (Y7 (d, 0, G, G, G, )s+0(1)80(1) ,, T =TT >0 (281)

wherea(t) is a switching signal similar to that in (9.610), using a degparameter
oo > 0 and the knowledge of the upper bouvig on |85
0 if [|8o(t)]| < Mo,
oft) = ao(1%UL 1) if Mo < ||Bo(t)]| < 2Mo, (282)
Jo if 18o(t)|| > 2Mo.
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This adaptive control scheme has the properties: all ssgnahe closed-loop
system are bounded, and the tracking eefby = q(t) — qq(t) satisfies

/ |le(t) ||2dt<0( (yz yz) (t2—t1) + Bo (283)
ko

for some constantsg > 0, Bo > 0 and anyt, > t; > 0, wherey; > 0 is the upper

bound on sup( [|38*(t)||. Moreoverg(t) € L? and lim_.. e(t) = 0 in the absence

of parameter time variations, that is, wha#i (t) = 0 and% =0.
The proof of these properties is based on the positive definitction

~ 1 ~ . .
Vo(s,80) = E(ST Ds+ 80T 18p), Bo(t) = Bo(t) — 85, D=D(q(t),t), (284)
which has the following time derivation:

Vo = —s" (t)Kps(t) —mP(t)s’ (t)s(t) —mi(t)s' (t)s(t) — o (t)85 (t)o(t)

35O (4(0) +vit)) 5 (0¥ (0,00, o, 6. 050" (1)
2
< ST 0Kos() - (OISO - ) + 15
2
-~ (meotso- 22 )+ 2 -, (285)

With this adaptive control scheme, as indicated by (283,tthcking perfor-
mance can be influenced by the design paramé&geasdk; in the feedback control
law (278)—(280) (one may increakgandk; to reduce the tracking errext)).

Adaptive Control Scheme Il

A different adaptive control scheme can be developed, eyimia switching con-
trol law which uses adaptive estimates of parameter vanaincertainty bounds,
to improve system tracking performance.

To derive such a scheme, we denote the parameter variatgantaimties as

10D(q,
9(9,9,9d,Yq,t) = > é?)(qw) 01,92, ---,0n]" (286)

h(a, 4, da, G, Ga.t) = Y (0, Ga, G, Gg, Ga, 1)367 (t) = [y, G2,....ha] T (287)

and make use of the bounding relationship
16i(01, G, 0, 6o, t)| < &0t (9, 6,0, Ga,t), i =1,2,....n (288)
|hi(Q, 9, dd, G, Ga, )| < b Bi(9, 4, 0d, Ga, G, ), i =1,2,...,n  (289)



Notes on Adaptive Systems and ControlGang Tao (Copyright 2023) 57

for some unknown constan$ andb* and known functionsij(q,§,qq,9q,t) and
Bl(qvq Qdanana ) I - 1 2
If the parameters; andbi* were known, one could use the control law

u(t) =Y(9,0d, 9, 4, G, )Bo(t) — ¢ (t) — @i (t) — Kps(t), (290)
@'(t) = [sgrisu(t)]agas, sgrisz(t)]azoz, ..., sgrisa(t)lanan] ', (291)

@i (t) = [sgr(si(t)]biB1, sgr{se(t)]b5Bz, .., SYNsn(t)]BBn] (292)
whereBy(t) is updated from (281), and the sgn function is defined as

1 ifw>0,
sgnwj=<¢ 0 ifw=0, (293)
-1 ifw<O.

Form\Vjy defined in (284), this control law leads to

Vo = —sT (1)Kps(t) — ' (1)@ (t) — ST ()@ (t) — (1) (t)Bo(t)
1 T aD(qat)

_ES (t)—at (4(t) +v(t)) — s" (t)Y(9, qg, G, Ga. G, ) 30" (1)

= —s' (t)Kps(t) Zl!s ()| o — Zl\s (t)]b5 Bi — o (t)B{ (1)Bo(t)
3,808 -3 atn

< —sT (t)Kps(t). (294)

The last equality follows from the facts that! ; [si(t)|a"a; — 3 ;s(t)g > 0,
S Is(®)|biBi — S, s(th > 0 anda(t)8] (t)8g(t) > 0. From (294), one may
conclude that all signals in the closed-loop system are tbedinand the tracking
errore(t) = q(t) — gqq(t) converges to zero agyoes tow.

When the parametess andb; are unknown, one can use the control law
u(t) =Y(9, d, 4, da tid, 1) Bo(t) — G(t) — @u(t) — Kos(t), (295)
@(t) = [sgriss(t)]as(t)az, sgrisz(t)]az(t)otz, .., sgrisn(t) an(t)an] ", (296)
@u(t) = [sgrisy(t)]ba(t)Be, sgrisz(t)]b2(t)Bz; - ., SrIsn(t) bn(t) ], (297)

wherefy(t) is updated from (281), and the parameig($) andbj(t) are estimates
of & andb; and updated from the adaptive laws:

a'i<t> = Kai|s(t)|a|(q’Q7qd7qd7t)7 Kal > 07 i - 1727"’7n7 (298)
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Consider the positive definite function
~ ~ 1 ~ ~ n n ~
V(s,B0,4,b;) = E(s,TDs+ By 60+ .leailaﬁ .lebilb?), (300)
1= 1=

wherefy(t) = Bo(t) — 85, D = D(q(t),t), &(t) = a(t) —af, bi(t) = bi(t) — by, i =
1,2,...,n. Using (276), (295), (281), (298) and (299), we have

V=5 (0Kostt) — 5 (D0tt) - (B0x(t) - VB ()8o(0)
35O (40) -+ v(t) — 57 (0¥ (00,6000 150" (1)

+ .Zlé‘ Kqiai+ 'ZLBiKl;ilbi

= —s (H)Kps(t) les )|ai(t) ZIS ) bi(t)B; — 0(t)85 (t)Bo(t)

—i;s Zs (t)h + Zaka, a4+ Zb.Kb, bi

< —s' (1)Kps(t) le )ai(t) le )|bi (t)Bi — o(t)8] (t)6o(t)

+Z!s a1a.+Z\ !b*B.+Zla|K a**Zb'Kb'

~

= —s' (t)Kps(t) — o(t)85 (t)8o(t)
< —s' (H)Kps(t). (301)

This result also implies that all signals in the closed-lsgptem are bounded, and
the tracking erroe(t) = q(t) — gq(t) converges to zero agoes tow.

However, since the adaptive control scheme (295) uses thiziagtions ing(t)
and @ (t) and such switching signals are discontinuous whén passes through
zero, it may lead to chattering of system response.

Remark 5 The adaptive control scheme (295) may have certain advanbager-
formance even if when the parametefsandb; are known. This is because the
parametersy” andb; are only the upper bounds for the parameter variation uncer-
taintiesg; andh; in (286) and (287), and some smaller (and unknown) bounds may
exist and can be estimated by the adaptive laws (298) and.(Z86 use of smaller
bounds is desirable because it leads to smaller controblsigrin this case, the
adaptive laws (298) and (299) can be modified by setting

&(t)=0,t>1 if a(1) = &, (302)
bi(t) =0, t > 1 if bi(T) = b (303)
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With this modification, we also hawé < —s' (t)Kps(t), as desired. O

Adaptive Control Scheme Il

As mentioned above the use of the discontinuous sgn furectio(t) and @ (t)
in the adaptive control scheme (295) may cause chatterisgstém response. To
overcome possible chattering, we can modify the control(2®b) as

u(t) = Y(d,0g, G b, ta,t)Bo(t) — (t) — @ (t) — Kpsit), (304)
o(t) = [safs;(t);e1]ar(t)ay, . .., safs(t); en)an(t)an] T, (305)
(u(t) = [safsi(t);na]br(t)By,. . Safs(t);Nalbn(t)Br] T, (306)
where the sat function is defined as
1 ifs>x,
safs;x]=q 5 if[s[<x, (307)
-1 ifs < —X

for some chosew; > 0 (for x; = & or x; = n; in (305) and (306))i = 1,2,...,n,
with the associated indicator functions

5% 1 if|s] > x, (308)
S;X] =
e 0 if [s| <x.

Such functions have the property]s;xi|(1— X[s;x]) = 0 (that is,X[s;x] =0
whenever 1-x[s; x| = 1, andx|s; x| = 1 whenever X X[s; %] = 0).
The adaptive laws are also modified as

With this modification, we have

V = ST (OKos() ST (030 (00 - OB ()8(0)
25 0P (q1t) 4 v(t)) - (0¥(0, 00, 6.t )50 ()

+ Zléa Ky dy -+ ZlBiKgilbi

— t)Kps(t) le (t)safs;gi]ai(t)q; Z s(t)sats; nilbi(t)Bi
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—és le (t)hi + Zla.Ka, &+ Zlb'Kb' bi — o(t)8 (t)8o(t)

< —s' (t)Kps(t) le (t)sals; &i] Zs (t)safsi; ni]bi (t)Bi

+Zl|s )|a a.+Z!s Ib*B.+ZaK a+Zb.Kb. bi — o (t)8§ (t)8o(t)
= —s' (t)Kps(t) - Z(l X[s:&i])s (t)safs; &iai(t)a

—Z (1—Xx[s:nil)si(t)sats;nijbi(t B.+Z (1—x[s:&])s(t)[& ai

+Zl X[s;ni) s (t)[bf Bi — o(t)8G (£)Bo(t). (311)

This modified scheme would ensure the closed-loop signahdedness but not
the asymptotic convergence of the tracking es(oy = q(t) — gq(t) to zero (only a
bounded tracking errag(t) = q(t) — qq(t) of the orderg; andn);).
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Derivation of (10.152)

In this case, the expression (5.30) also holds

u(t) =i’ % [ul(t) + @' % YI(t) + @20y(t) + BzPm(S) Iyl (1) (312)

(with 67 replaced byg" as the new notation and the exponentially decaying term
€1(t) ignored). Recall (10.39):

u(t) = ug(t) + (8 —8")Tw(t) + dn(t) (313)
and (10.15) (withag(t) = O for simplicity):
Ua(t) = —8" (t)w(t) (314)

from which we have
u(t) = —8"To(t) 4 dn (t). (315)

Using (313) foru(t) in the left side of (312) and (315) far(t) in the right side of
(312), we obtain

ug(t) 4 (8 —6%)Two(t) + dn(t)

— 017 p o[0T ) 05T R 0+ G5t) + P9 ). (316)

Subtracting (316) from (10.151) and recalling (10.148) haee (10.152).
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Backstepping Design with Nonsmooth Inverse Signal

For an adaptive inverse control scheme using a backstefgauipack design for
the output-feedback nonlinear systems (see Section }(Behonlinearity inverse
signal w(t) in (10.280), defined in (10.21) or (10.35) for the case of aaptide
dead-zone inversBI (-) or an adaptive backlash inversé(-), is not smooth (it is
not even continuous; but it is well-defined). A backstepgiaged feedback control
design needs certain smoothness condition. Will the nonimess ofo(t) cause
any problem? The answer is “no”. It turns out that the use tdr8lin the state
observer helps to avoid the potential difficulty with nongithmess of such signals
in a backstepping design.

Starting from (10.277), (10.283) and (10.284), we see tltmhbnsmooth signal

w(t) passes the filter ”(S), where F/’i\i((s? are the components @bl — Ag) 1 for

Ag = A—kcwith k= [k, k, ..., ks T and @, c) in (10.272). This means that only
the signalswij (t) in (10.285) are associated with the nonsmooth sigiigl. In fact,
it is the signalxz(t) defined in (10.128) that plays a key role in the backstepping
design procedure, that is, only those of the signalst), fori =0,1,...,m and
j = 2, are crucial in the backstepping design.

From the canonical form o& andc, we can obtain

Po2(S) = S+ka, P12(s) = S(s+k1), Paz(s) = (s +k1), ...,
Pr—22(5) = S 2(s+k1), Pr-1.2(5) = —koS" 2 —kaS" 3 — -+ —Kn_15—kn(317)

This calculation can be verified by using the symbolic algeiperations in Matlab.
For example, fon =5, we can use

a=sym(’[s+k1l, -1, 0, O, O; k2, s, -1, O, O;

k3, 0, s, -1, O; k4, 0, O, s, -1; k5, 0, O, O, s])
b=inv(a)

c=symmul(det(a),b)

to get the numerator matrix ¢§l — Ag) ~* as

[s74, s73, s°2,
S, 1]
[-s"3 *k2-k3 *s"2-k4 +*s-k5, s"3  *(s+kl), s72  *(s+kl),
(stkl) =s, s+kl]
[-s *(k3 *s"2+k4 *»s+kb),-k3 *s2-k4 *s-k5,572 *(k2+s"2+s k1),
sx (k2+s"2+s k1), k2+s"2+s  * k1]
[-s"2 (k4 *s+kb), -s  * (k4 »s+k5), -k4  *s-K5,

s* (K2 *s+k3+5°3+5™2  xkl), k2 *s+k3+s°3+s°2 k1]
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[[kS *s73, -k5 %572, -k5  *s,
-k5, S4+kl *s"3+k2 *s"2+k3 *s+k4]

In the backstepping design procedure, the derivatd»,%é(t), i=0,1,...,m,
j=0,1,...,p—1, are needed, whep=n—m. Forthe casegb=n—m=1, no
derivative ofwiy(t) is used. Fop = n—m> 2, the highest degree ef~1pix(s),
i=0,1,....m-1,isp—14+m=n—1, and the degree & *pnp(s) is n, so that

%, I=0,1,...,m—1, are strictly proper, anﬁ% is proper. Therefore,

the signalsxqg)(t), 1=0,1,....m j=0,1,....,p—1, are well-defined, and so all
other signals related the inverse sigo#t) in the backstepping design procedure,
that is, the nonsmoothnesst) does not cause any problem for the backstepping-
based adaptive inverse control scheme.



