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Adaptive Control of ẋ(t) = Ax(t)+BΛu(t)+BΘ∗φ(x) 45

Parameters ofu(t) = Θ∗T
1 ω1(t)+Θ∗T

2 ω2(t)+Θ∗
20y(t)+Θ∗

3ξ(z)y(t) 47

Parametrization of (9.102) 50

Plant Signal Identities for MIMO Cases 51

Proof of limt→∞ e(t) = 0 in (9.187C) 54

Adaptive Robot Control for Time-Varying Parameters 55

Derivation of (10.152) 61

Backstepping Design with Nonsmooth Inverse Signal 62



Notes on Adaptive Systems and Control,Gang Tao (Copyright 2023) 1

Matrix Theory

Symmetric Matrices

For a matrixM = MT , we haveM = ∑n
i=1λieieT

i whereλi andei are the eigen-
values and eigenvectors ofM such thateT

i ei = 1 andeT
i ej = 0 with i 6= j. With

P = [e1,e2, . . . ,en] andΛ = diag{λ1,λ2, . . . ,λn}, it follows thatM = PΛPT , where
PPT = PTP = I , and, in addition, forM nonsingular, thatM−1 = PΛ−1PT .

For M = MT ≥ 0, we defineM1/2 = ∑n
i=1

√
λieieT

i = PΛ1/2PT and express
M = M1/2M1/2, where(M1/2)T = M1/2. It also follows that forM nonsingular,
(M1/2)−1 = ∑n

i=1
1√
λi

eieT
i = PΛ−1/2PT . On the other hand, forQ= PΛ1/2, we have

M = QQT (as compared withM = M1/2M1/2 for (M1/2)T = M1/2 = PΛ1/2PT).

Singular Values and Eigenvalues of A Matrix

Let the singular values of a square matrixM ∈ Rn×n be σ1 ≥ σ2 ≥ ·· · ≥ σnθ ≥ 0
and the absolute eigenvalues ofM be|λ1| ≥ |λ2| ≥ · · · ≥ |λnθ| ≥ 0. Then, from page
347 of Horn and Johnson (2013) (Horn, R. A. and C. R. Johnson,Matrix Analysis,
2nd Ed., Cambridge University Press, 2013), we have that|λ1| ≤ σ1, and that ifM
is nonsingular, then|λn| ≥ σn > 0.
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Radial Unboundedness Condition onV(x) for Asymp-
totic Stability

One can draw the surface plots ofV(x) = c, for different values ofc, with

V(x) =
x2

1

1+x2
1

+x2
2. (1)

For thisV(x), such surface plots are closed curves forc < 1 but are open curves for
c > 1, asV(x) is not radially unbounded.

One can draw the phase-plane plot of ˙x = f (x), by obtaining its numerical solu-
tions for some typical initial conditions, for

ẋ1 = − 6x1

(1+x2
1)

2
+2x2, ẋ2 = −2(x1 +x2)

(1+x2
1)

2
. (2)

For some initial conditions, the solution trajectories do not converge to the origin.
(Are there any trajectories going to∞?)

One can draw the vector field of ˙x1 = − 6x1
(1+x2

1)
2 +2x2, ẋ2 = −2(x1+x2)

(1+x2
1)

2 .

The solutionx = [x1,x2]
T of this system on the hyperbolax2 = 2

x1−
√

2
satisfies

g1(x) =
ẋ2

ẋ1
= − 1

1+2
√

2x1 +2x2
1

, (3)

while the slope of this hyperbola is

g2(x) =
dx2

dx1
= − 1

1−2
√

2x1 +
x2

1
2

. (4)

It follows that 0> g1(x) > g2(x) for x1 >
√

2 so that the trajectories to the right of
the hyperbola branch in the first quadrant cannot cross the branch.

This example shows that for asymptotic stability, the radial unboundedness of
V(x) is a crucial condition [179], [351], [426].
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Passivity of A Mass-Damper-Spring System

Consider a mass-damper-spring mechanical system with equation of motion

Mẍ+Dẋ+Kx = F, (5)

whereM is the mass,D is the damping constant,K is the spring constant,x is the
mass position, andF is the force acting on the mass.

The system energy is

V(x, ẋ) =
1
2

Mẋ2 +
1
2

Kx2 (6)

whose time derivative is
d
dt

V(x, ẋ) = Fẋ−Dẋ2. (7)

Over any time interval[0,T], it follows that

V(x(T), ẋ(T)) = V(x(0), ẋ(0))+
Z T

0
F(t)ẋ(t)dt−

Z T

0
Dẋ2(t)dt. (8)

SinceD ≥ 0, we have

−
Z T

0
F(t)ẋ(t)dt ≤V(x(0), ẋ(0)), (9)

which means that the energy extracted from the system is lessthan or equal to the
initial system energy. From (7), the termFẋ clearly represents the system absorbed
power from the input forceF . For passivity analysis, the product of system input
and output is defined as such power. In this sense we consider the velocityv = ẋ as
system output. Then, the system admittance (the reciprocalof impedance) is

G(s) =
V(s)
F(s)

=
s

Ms2 +Ds+K
, (10)

which is positively real (the mechanical-electric analogypairs are “force vs. volt-
age” and “velocity vs. current”).

If we considerx as system output, the termFx does not represents system power
(i.e.,

R T
0 F(t)x(t)dt does not represents system energy) so that the passivity analysis

is not applicable. In other words, the system transfer function for passivity analysis
in terms of positive realness is defined in terms of system impedance (or admit-
tance) relating current (velocity) to voltage (force) (or voltage (force) to current
(velocity)).

Without the passivity property, the transfer function fromthe input force to the
output position, 1

Ms2+Ds+K
, cannot be positive real.
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Positive Real Functions

A popular definition of positive real (PR) functions is that a functionh(s) of the
complex variables = σ + jω is positive real if (i)h(s) is real for reals, and (ii)
Re[h(s)] ≥ 0 for all s such that Re[s] > 0.

One may “induce” a definition of strictly positive real (SPR) functions as: a
functionh(s) of the complex variables= σ+ jω is strictly positive real if (i)h(s) is
real for reals, and (ii)Re[h(s)] > 0 for all ssuch that Re[s] > 0. This definition was
once used in the early literature for SPR functions. It turnsout that, like some other
definitions of SPR functions, this definition does not capture the physical meaning
of strictly positive realness, as indicated by the following example.

It is well-understood that a proper definition of strictly positive functions, which
captures the physical meaning of strictly positive realness, is thath(s) is strictly
positive real ifh(s− ε) is positive real for someε > 0. Based on this definition,

h(s) =
s+1

s2 +s+1
(11)

is only positive real but not strictly positive real. From the expressions

h(s) =
σ+ jω+1

(σ+ jω)2 +σ+ jω+1

=
σ+1+ jω

σ2−ω2 +σ+1+ j(ω+2σω)

=
(σ+1+ jω)(σ2−ω2 +σ+1− j(ω+2σω))

(σ2−ω2 +σ+1)2 +(ω+2σω)2 (12)

Re[h(s)] =
(σ+1)(σ2−ω2 +σ+1)+ω(ω+2σω)

(σ2−ω2 +σ+1)2 +(ω+2σω)2

=
σ3 +2σ2 +σω2 +2σ+1

(σ2−ω2 +σ+1)2 +(ω+2σω)2 , (13)

we see thath(s) satisfies the above “induced” definition of SPR functions: (i) h(s)
is real for reals, and (ii)Re[h(s)] > 0 for all s such that Re[s] = σ > 0. Hence, the
conclusion is that this “induced” definition for SPR functions is not proper.

Note that thish(s) is not SPR, because

Re[h( jω)] =
1

(1−ω2)2 +ω2 (14)

does not satisfy the necessary condition for SPRness: limω2→∞ ω2Re[h( jω)] > 0,
or because for any chosenε > 0,

Re[h( jω− ε)] =
−ε3 +2ε2− εω2−2ε+1

(ε2−ω2− ε+1)2 +(ω−2εω)2 < 0 (15)
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wheneverω2 > (−ε3 + 2ε2 − 2ε + 1)/ε, that is,h(s− ε) cannot be positive real
for any ε > 0. (P(ε) = −ε3 + 2ε2 − 2ε + 1 = (ε − 1)(−ε2 + ε− 1) > 0 for ε ∈
(0,1) andP(ε) < 0 for ε > 1. Forh(s− ε) to be stable,ε ∈ [0,0.5) is needed as
(s− ε)2 +s− ε+1 = s2 +(1−2ε)s+1− ε+ ε2 and 1− ε+ ε2 > 0 for anyε.)
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Parameter Projection Properties

The property (3.183) follows from the observation: ifθ j(t) = θa
j andg j(t) < 0, then

f j(t) = −g j(t) > 0 andθ j(t)−θ∗j = θa
j −θ∗j ≤ 0, so that(θ j(t)−θ∗j ) f j(t) ≤ 0; and

if θ j(t) = θb
j andg j(t) > 0, then f j(t) = −g j(t) < 0 andθ j(t)−θ∗j = θb

j −θ∗j ≥ 0,
so that(θ j(t)−θ∗j ) f j(t) ≤ 0.

Similarly, the property (3.214) follows from the observation: if θ j(t)+g j(t) >

θb
j , then f j(t) = θb

j − θ j(t)−g j(t) < 0 andθ j(t)− θ∗j + g j(t)+ f j(t) = θb
j − θ∗j ≥

0, so thatf j(t)(θ j(t)− θ∗j + g j(t) + f j(t)) ≤ 0; and if if θ j(t) + g j(t) < θa
j , then

f j(t) = θb
j −θ j(t)−g j(t) > 0 andθ j(t)−θ∗j +g j(t)+ f j(t) = θa

j −θ∗j ≤ 0, so that
f j(t)(θ j(t)−θ∗j +g j(t)+ f j(t)) ≤ 0.

In the case when a parameter componentθ∗j is known, we haveθa
j = θb

j . This
means that we can simply setθ j = θ∗j if θ∗j is known, but still with the use of a

diagonalΓ > 0 or Γ = diag{Γ1,γ j ,Γ2} = ΓT > 0 with Γ1 ∈ R( j−1)×( j−1), γ j ∈ R
andΓ2 ∈ R(nθ− j)×(nθ− j), if θ j is the only component to be projected.
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Explicit Swapping Lemma

The swapping lemma (5.331) was an important lemma in the development of a
stable model reference adaptive control system. It states that for a stable and proper
rational functionh(s) with a minimal realizationh(s) = c(sI−A)−1b+ d and two
vector signalsθ(t) andω(t), it follows that

θT(t)h(s)[ω](t)−h(s)[θTω](t) = hc(s)[hb(s)[ωT ]θ̇](t), (16)

wherehc(s) = c(sI−A)−1 andhb(s) = (sI−A)−1b. Here we derive an alternative
form of this lemma, explicitly in terms of the parameters of the functionh(s).

DenotingPm(s) = sn∗ +an∗−1sn∗−1 + · · ·+a1s+a0, for vector signalsθ(t) and
ω(t), from (5.138) and withan∗ = 1, we have

θT(t)
1

Pm(s)
[ω](t)− 1

Pm(s)
[θTω](t)

=
n∗

∑
i=1

(
∑n∗−i

j=0 an∗− jsn∗−i− j

Pm(s)

)[
θ̇T si−1

Pm(s)
[ω]

]
(t). (17)

IntroducingF(s) = fn∗−1sn∗−1 + · · ·+ f1s+ f0, we express

F(s)

[
θT(t)

1
Pm(s)

[ω]

]
(t)

=
(

fn∗−1sn∗−2 + · · ·+ f1
)[

θ̇T 1
Pm(s)

[ω]+θT s
Pm(s)

[ω]

]
(t)+θT(t)

f0
Pm(s)

[ω](t)

=
(

fn∗−1sn∗−2 + · · ·+ f1
)[

θ̇T 1
Pm(s)

[ω]

]
(t)

+
(

fn∗−1sn∗−3 + · · ·+ f2
)[

θ̇T s
Pm(s)

[ω]+θT s2

Pm(s)
[ω]

]
(t)

+ θT(t)
f1s+ f0
Pm(s)

[ω](t) = · · ·

=
n∗−1

∑
i=1

(
n∗−i

∑
j=1

fn∗− js
n∗−i− j

)[
θ̇T si−1

Pm(s)
[ω]

]
(t)+θT(t)

F(s)
Pm(s)

[ω](t) (18)

and use it to derive

F(s)
Pm(s)

[θTω](t)−θT(t)
F(s)
Pm(s)

[ω](t)

=
n∗−1

∑
i=1

(
n∗−i

∑
j=1

fn∗− js
n∗−i− j

)[
θ̇T si−1

Pm(s)
[ω]

]
(t)



8 Notes on Adaptive Systems and Control,Gang Tao (Copyright 2023)

− F(s)

[
n∗

∑
i=1

∑n∗−i
j=0 an∗− jsn∗−i− j

Pm(s)

[
θ̇T si−1

Pm(s)
[ω]

]]
(t)

=
n∗−1

∑
i=1

(
n∗−i

∑
j=1

fn∗− js
n∗−i− j −

F(s)∑n∗−i
j=0 an∗− jsn∗−i− j

Pm(s)

)[
θ̇T si−1

Pm(s)
[ω]

]
(t)

− F(s)
Pm(s)

[
θ̇T sn∗−1

Pm(s)
[ω]

]
(t)

=
n∗−1

∑
i=1

αi(s)
Pm(s)

[
θ̇T si−1

Pm(s)
[ω]

]
(t)− F(s)

Pm(s)

[
θ̇T sn∗−1

Pm(s)
[ω]

]
(t). (19)

Hence, we obtain theexplicit swapping lemma:

F(s)
Pm(s)

[θTω](t)−θT(t)
F(s)
Pm(s)

[ω](t) =
n∗

∑
i=1

αi(s)
Pm(s)

[
θ̇T si−1

Pm(s)
[ω]

]
(t), (20)

where

αi(s) = Pm(s)
n∗−i

∑
j=1

fn∗− js
n∗−i− j −F(s)

n∗−i

∑
j=0

an∗− js
n∗−i− j , i = 1,2, . . . ,n∗−1, (21)

are polynomials of degreesn∗−1 or less, andαn∗(s)
△
= −F(s).

For a proper transfer functionh(s) = fn∗ + F(s)
Pm(s) , it follows that

h(s)[θTω](t)−θT(t)h(s)[ω](t) =
n∗

∑
i=1

αi(s)
Pm(s)

[
θ̇T si−1

Pm(s)
[ω]

]
(t). (22)
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Discrete-Time Swapping Lemma

Let a stable and proper rational functionh(z) have a minimal realizationh(z) =

c(zI−A)−1b+d andθ(t) andω(t) be two vector signals, and denotehc(z) = c(zI−
A)−1 andhb(z) = (zI−A)−1b. Then,

θT(t)h(z)[ω](t)−h(z)[θTω](t) = hc(z)[(hb(z)z)[ωT ](z−1)[θ]](t). (23)

Proof: Using the discrete-time convolution:y(t) = C∑t−1
i=0 At−i−1Bu(i) for y(t) =

C(zI−A)−1B[u](t), and its modification:w(t) =C∑t
i=0At−1Bu(i) for w(t) =C(zI−

A)−1Bz[u](t) = C(zI−A)−1B[u](t +1), we express

hc(z)[(hb(z)z)[ωT ](z−1)[θ]](t)

= c
t−1

∑
τ=0

At−τ−1
τ

∑
i=0

Aτ−ibωT(i)(θ(τ+1)−θ(τ))

= c
t−1

∑
i=0

At−i−1bωT(i)θ(t)

+ c
t−2

∑
τ=0

At−τ−1
τ

∑
i=0

Aτ−ibωT(i)θ(τ+1)−c
t−1

∑
τ=0

At−τ−1
τ

∑
i=0

Aτ−ibωT(i)θ(τ)

= θT(t)h(z)[ω](t)+c
t−1

∑
σ=1

At−σ
σ−1

∑
i=0

Aσ−i−1bωT(i)θ(σ)

− c
t−1

∑
τ=0

At−τ−1bωT(τ)θ(τ)−c
t−1

∑
τ=1

At−τ−1
τ−1

∑
i=0

Aτ−ibωT(i +1)θ(τ)

= θT(t)h(z)[ω](t)−h(z)[θTω](t), (24)

where, by definition,

c
t−1

∑
i=0

At−i−1bω(i) = h(z)[ω](t) (25)

c
t−1

∑
τ=0

At−τ−1bωT(τ)θ(τ) = h(z)[θTω](t). (26)

This is the discrete-time version of the swapping lemma (5.331), whose explicit
version can also be derived, similar to the continuous-timecase above.
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Additional Lemmas

A Small Gain Lemma

Lemma 1 For ‖w‖t = sup0≤τ≤t |w(τ)|, if

|w(t)| ≤ β(t)‖w‖t + γ(t) (27)

for someβ(t) such thatlimt→∞ β(t) = 0 and someγ(t) ∈ L∞, then w(t) is bounded,
that is, w(t) ∈ L∞. If, in addition,limt→∞ γ(t) = 0, thenlimt→∞ w(t) = 0.

Proof: Assume thatw(t) is not bounded. Then there exists a subsequence{tn} such
that limtn→∞ |w(tn)| = ∞ and|w(t)| ≤ |w(tn)| for t ≤ tn, that is,‖w‖tn ≤ |w(tn)|, and
it follows that

|w(tn)| ≤ β(tn)‖w‖tn + γ(tn) ≤ β(tn)|w(tn)|+ γ(tn). (28)

Since limtn→∞ β(tn) = 0 andγ(t) ∈ L∞, the above inequality implies thatw(tn) is
bounded, a contradiction to the assumption that limtn→∞ w(tn) = ∞ or w(t) is un-
bounded. Hence,w(t) is bounded, and so is‖w‖t .

If lim t→∞ γ(t) = 0 also holds, then from (27), the boundedness ofw(t) and the
condition that limt→∞ β(t) = 0, it follows that limt→∞ |w(t)| = limt→∞(β(t)‖w‖t +

γ(t)) = 0. ∇

This result can be generalized to the vector signal case.

Lemma 2 For ‖w‖t = sup0≤τ≤t ‖w(τ)‖ with ‖w(t)‖ being a vector norm of w(t) ∈
Rn, if

‖w(t)‖ ≤ β(t)‖w‖t + γ(t) (29)

for someβ(t) such thatlimt→∞ β(t) = 0 and someγ(t) ∈ L∞, then w(t) is bounded,
that is, w(t) ∈ L∞. If, in addition,limt→∞ γ(t) = 0, thenlimt→∞ w(t) = 0.
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A Signal Convergence Lemma

Lemma 3 If ë(t) ∈ L∞ and limt→∞ e(t) = 0, thenlimt→∞ ė(t) = 0.

Proof: We need to show that for any givenη > 0, there exists aT > 0 such that
|ė(t)| < η for anyt > T.

The proof makes use of two related fictitious filters with a virtual parameter
a > 0: H(s) = 1

s+a and K(s) = a
s+a such that 1= sH(s) + K(s). Operating this

identity onė(t), we have

ė(t) = H(s)s[ė](t)+sK(s)[e](t) = H(s)[ë](t)+sK(s)[e](t).

Under the condition that ¨e(t) ∈ L∞, for any givenη > 0, H(s)[ë](t) can be made
smaller thanη

2 by a choice of a sufficiently large and finitea. Under the condition
that limt→∞ e(t) = 0, for the chosen value ofa, there exists aT > 0 such that for
anyt > T, |sK(s)[e](t)| < η

2 .
This derivation means that for any givenη > 0, there exists aT > 0 such that

|ė(t)| < η for any t > T, which is equivalent to the convergence of ˙e(t) to 0 as
t → ∞. ∇

Remark 1 There are three possible situations:

(i) The signalė(t) converges to a constant: such a constant must be 0, otherwise
e(t) does not converge to 0 (leading to a contradiction to limt→∞ e(t) = 0); (ii) ė(t)
does not converge when ¨e(t) is bounded:e(t) does not converge either (leading
to a contradiction to limt→∞ e(t) = 0); and (iii) ė(t) does not converge when ¨e(t)

is unbounded:e(t) may converge to 0 (e.g.,e(t) = sint2

t+1 , ė(t) = − sint2

(t+1)2 + 2t cost2

t+1 ,

ë(t) = 2sint2

(t+1)3 − 2t cost2

(t+1)2 + 2cost2

(t+1)2 − 4t2sint2

t+1 ) (but this is not the case, as ¨e(t) ∈ L∞ by
assumption).

Hence, ifë(t) ∈ L∞ and limt→∞ e(t) = 0, then limt→∞ ė(t) = 0. 2

Remark 2 This result also follows from the Barbalat Lemma: If a scalar function
f (t) is uniformly continuous such that limt→∞

R t
0 f (τ)dτ exists and is finite, then e

limt→∞ f (t) = 0. In this case,f (t) = ė(t), limt→∞
R t

0 f (τ)dτ = limt→∞
R t

0 ė(τ)dτ =

limt→∞(e(t)−e(0)) = −e(0) exists and is finite, andf (t) is uniformly continuous,
as ḟ (t) = ë(t) is bounded. 2

Lemma (Barbalat): If a scalar functionf (t) is uniformly continuous such that
limt→∞

R t
0 f (τ)dτ exists and is finite, then limt→∞ f (t) = 0.

⋄ Convergence ofe(t) (which can be a tracking error signale(t) = y(t)−ym(t)):
With f (t) = e2(t), we have thaṫf (t) = 2e(t)ė(t) is bounded, i.e.,f (t) is uniformly
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continuous, so that, withe(t) ∈ L2 (that is, limt→∞
R t

0 f (τ)dτ exists and is finite),
limt→∞ f (t) = 0, that is, limt→∞ e(t) = 0.

Proposition 1: If lim t→∞ e(t) = e0 being a constant and ¨e(t) is bounded, then
limt→∞ ė(t) = 0.

• Barbalat lemma based proof

⋄ Convergence of ˙e(t) with limt→∞ e(t) = 0: For f (t) = ė(t), ë(t) being bounded
means f (t) being uniformly continuous, and limt→∞

R t
0 f (τ)dτ = e(∞)− e(0) =

−e(0) exists and is finite, so that limt→∞ f (t) = 0, that is, limt→∞ ė(t) = 0.

⋄ Convergence of ˙e(t) with limt→∞ e(t) = e0 ∈ R: For f (t) = ė(t), ë(t) being
bounded meansf (t) being uniformly continuous, and limt→∞

R t
0 f (τ)dτ = e(∞)−

e(0) = e0−e(0) exists and is finite, so that limt→∞ ė(t) = 0.

• Direct proof

⋄ Convergence of ˙e(t) with limt→∞ e(t) = 0: For H(s) = 1
s+a andK(s) = a

s+a
such that 1= sH(s)+K(s), we have

ė(t) = sH(s)[ė](t)+K(s)[ė](t) = H(s)[ë](t)+sK(s)[e](t)

whose first term can be virtually made arbitrarily small by a virtually largea > 0
and the second term converges to zero, that is, for any givenη > 0, there exists a
T > 0 such that|ė(t)| < η for anyt > T. This implies that ˙e(t) converges to zero.

⋄ Convergence of ˙e(t) with limt→∞ e(t) = e0 for any constante0: For f (t) =

e(t)−e0, limt→∞ f (t) = 0, which, with f̈ (t) = ë(t) bounded, implies thaṫf (t) = ė(t)
goes to zero.

Proposition 2 (the general case): For anyj > 0, if lim t→∞ e(t) = 0 and die(t)
dti are

bounded,i = 2, . . . , j +1, then limt→∞
d je(t)

dt j = 0.

⋄ Proof based on Proposition 1

To use the induction method to prove this result, from Proposition 1, we first
have that the result is true forj = 1, that is, limt→∞ e(t) = 0 and boundedness of
d2e(t)

dt2
imply that limt→∞

de(t)
dt = 0.

Suppose it is true forj = k, that is, limt→∞
dke(t)

dtk
= 0 (with limt→∞ e(t) = 0

and die(t)
dti bounded,i = 2, . . . ,k+ 1). Then, for j = k+ 1, with the conditions that

limt→∞
dke(t)

dtk
= 0 (or, limt→∞ f (t) = 0 for f (t) = dke(t)

dtk
) and thatd

ie(t)
dti is bounded for

i = k+2 (or, d2 f (t)
dt2

is bounded), we have from Proposition 1 (or the result ofj = 1)

that limt→∞
d f(t)

dt = 0 (that is, limt→∞
dk+1e(t)

dtk+1 = 0). This shows that the induction
process goes through, that is, the proposition is true for any j.
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Plant Zeros and Controller Order for MRAC

Consider a LTI system
ẋ = Ax+Bu, y = Cx (30)

whereA∈ Rn×n, B∈ Rn×M, C∈ RM×n, whose transfer matrixG(s) =C(sI−A)−1B
is anM×M strictly proper rational matrix.

For SISO systems withM = 1, we haveG(s) = Z(s)
P(s) for some nominal polyno-

mialsZ(s) andP(s) with ∂P(s) = np ≤ n (if P(s) is taken asP(s) = det[sI−A], then
np = n). If we taken as the system order for MRAC design, that is, the controller
order isn−1 = ∂Λ(s), then we need to assume that all zeros ofZ(s) (which are
the system zeros) are stable, for a stable MRAC system. With such a full-order
representationP(s) = det[sI−A], the condition that all zeros ofZ(s) are stable
implies that the realization(A,B,C) is stabilizable and detectable. The choice of
the controller ordern− 1 has another interpretation in the SISO case: the output
feedback controller structure is a reparametrization of a state feedback control law
u= k∗T

1 x+k∗2r, using a reduced-order (with ordern−1) state observer (see Section
4.4.2).

For SISO systems, if, due to pole-zero cancellations causedby a nonminimal
realization(A,B,C), the degreenp of P(s) is less thann: np < n, and the controller
order isnp−1, we need to assume that, in addition to all zeros ofZ(s) being sta-

ble, the pole-zero cancellations leadingG(s) = C(sI−A)−1B to Z(s)
P(s) should be also

stable ones, that is, the nonminimal realization(A,B,C) should be stabilizable and
detectable. In this case, the system zeros include the zerosof Z(s) and those can-
celed zeros inG(s), while the transfer function zeros are thosesz which makeZ(sz)

P(sz)

zero and they can be a subset of the zeros ofZ(s), as there may be some more
zero-pole cancellations betweenZ(s) andP(s) in Z(sz)

P(sz)
.

In the SISO case, a state feedback control designu(t) = KT
1 x(t) + K2r(t) re-

quires that all zeros ofZ(s) are stable (in this case,P(s) = det[sI−A]) which is
necessary and sufficient for stable plant-model matching: det[sI−A−BK∗T

1 ] =

Pm(s)Z(s)/zm (not needed for just pole placement control). An output feedback
control design is based on a nominal transfer functionZ(s)

P(s) with ordernp = ∂P(s),

and all zeros ofZ(s) need to be stable for stable plant-model matching based onZ(s)
P(s) .

If n≤ np, a stableZ(s) implies that(A,B,C) is stabilizable and detectable. Ifn> np,

then there are zero-pole cancellations inC(sI−A)−1B = Z(s)
P(s) , and(A,C) needs to

be detectable, otherwise those undetectable modes (eigenvalues ofA) cannot be
stabilized (output feedback does not change unobservable modes);(A,B) needs to
be stabilizable, otherwise those unstabilizable modes (eigenvalues ofA) cannot be
stabilized (output or state feedback does not change uncontrollable modes).



14 Notes on Adaptive Systems and Control,Gang Tao (Copyright 2023)

For MIMO systems, there are also different ways to express the system transfer
matrixG(s) =C(sI−A)−1B (we first assume thatG(s) has full rankm for anM×M
G(s), that is, rank[G(s)] < M only for a finite number of values ofs).

The first (simple) form ofG(s) is

G(s) = C(sI−A)−1B =
N(s)
d(s)

, d(s) = det[sI−A], ∂d(s) = n. (31)

If we use a controller of ordern−1 = ∂Λ(s), we need to assume that all zeros of
det[N(s)] are stable, which may be thought as the system zeros (note that the zeros
of G(s), as defined in the literature, may be only a subset of those zeros if (A,B,C)

is not a minimal realization). In fact, different from the SISO case, the controller
order can be reduced ton−M in the MIMO case, because a reduced-order observer
has ordern−M, so that the state feedback control lawu = K∗T

1 x+ K∗
2r can be

reparametrized using the input and output signals, leadingto an (n−M)th order
output feedback controller.

Given that the observability index of a minimal realizationof G(s) is ν ≤ n−
M+1, that is,ν−1≤ n−M, the order of the usual MRAC structure, which has been
chosen asν−1, is the minimal order to meet the desired plant-model matching. If
for a system, the order of a reduced-order observer can be chosen asν− 1, the
parametrization of the output feedback controller with order ν−1 can then be seen
as a reparametrization of a state feedback controller, using input and output signals.
If not, the controller parametrization may be considered asbeing one used for plant-
model matching. In MRAC for multivariable systems, we callν the observability
index of the system transfer matrixG(s), in the sense thatν is the observability
index of a minimal realization of the system transfer matrixG(s).

The second form ofG(s) is a left matrix-fraction description:

G(s) = C(sI−A)−1B = P̄−1
l (s)Z̄l (s) (32)

whereP̄l (s) and Z̄l (s) areM ×M polynomial matrices withP̄l (s) row reduced (a
polynomial matrixP̄l (s) is row reduced if the elements in theith row of P̄l (s) have
a largest degreēνi and the matrixΓr = lims→∞ diag{s−ν̄1,s−ν̄2, . . . ,s−ν̄M}P̄l (D) is
nonsingular), and theith row degree of̄Zl (s) is less than theith row degree of̄Pl (s),
i = 1,2, . . . ,q (it is denoted that∂P̄l (s) = ν̄, that is,ν̄ = max{ν̄i}). A controller can
be designed with∂Λ(s) = ν̄− 1. In this case, for stable MRAC, we need to as-
sume that the zeros of det[Z̄l (s)] are stable and also that(A,B,C) is stabilizable and
detectable (as some pole-zero cancellations may occur whenobtaining the system
modelP̄−1

l (s)Z̄l (s) from (A,B,C)).
Note that a left matrix-fraction descriptionG(s) = P̄−1

l (s)Z̄l (s), can always be
made to have a row reduced̄Pl (s), by using elementary row operations represented
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by a unimodular matrixM(s) (such a matrix is defined to have a non-zero constant
determinant) on a non-reducedP̃l (s):

G(s) = P̃−1
l (s)Z̃l (s) = (M(s)P̃l (s))

−1M(s)Z̃l (s) = P̄−1
l (s)Z̄l (s), (33)

for P̄l (s) = M(s)P̃l (s) andZ̄l (s) = M(s)Z̃l (s).
The third form ofG(s) is a left co-prime matrix-fraction description:

G(s) = C(sI−A)−1B = P−1
l (s)Zl (s) (34)

wherePl (s) andZl (s) are left co-primeM×M polynomial matrices (Pl (s) andZl (s)
are left co-prime if anyM×M polynomial matrixW(s) such thatZl (s) = W(s)Z(s)
andPl (s) = W(s)P(s) for some polynomial matricesZ(s) andP(s)—such aW(s)
is called a common left divisor ofZl (s) andPl (s), is a unimodular matrix, that is,
det[W(s)] is a non-zero constant), withPl (s) row reduced and∂Pl (s) = ν ≤ ν̄. A
controller can be designed with∂Λ(s) = ν−1. In this case, we also need to assume
that the zeros of det[Zl (s)] are stable and that(A,B,C) is stabilizable and detectable.

The situation is similar forG(s) in a right matrix-fraction description:

G(s) = C(sI−A)−1B = Zr(s)P
−1
r (35)

with Pr(s) being column reduced (that is,PT
r (s) being row reduced) andZr(s) and

Pr(s) being right co-prime (that is,ZT
r (s) andPT

r (s) being left co-prime). In par-
ticular, the column degrees ofPr(s) are denoted asµi (or µ̄i for P̄r(s) if G(s) =

C(sI−A)−1B = Z̄r(s)P̄−1
r with Z̄r(s) andP̄r(s) not right co-prime),i = 1,2, . . . ,m,

and the column degrees ofZr(s) (Z̄r(s)) are less than that ofPr(s) (P̄r(s)). If (A,B,C)

is a minimal realization, thenµi, i = 1,2, . . . ,m, are the controllability indexes of
(A,B). If (A,B,C) is not a minimal realization, then one can a controllable realiza-
tion (Āc, B̄c,C̄c) whose controllability indexes are ¯µi, for Z̄r(s)P̄−1

r (s) (or (Ac,Bc,Cc)

whose controllability indexes areµi, for Zr(s)P−1
r ).

Note that if(A,B,C) is a minimal realization, thenν is the observability index
of (A,C) (we may also callν the observability index ofG(s)). When(A,B,C) is not
minimal, for the second case (or the third case), we can find anobservable realiza-
tion (Āo, B̄o,C̄o) whose observability indexes arēνi , for P̄−1

l (s)Z̄l (s) (or (Ao,Bo,Co)

whose observability indexes areνi , for P−1
l (s)Zl (s)). In this sense, we may also call

ν̄ (or ν) the observability ofG(s) = P̄−1
l (s)Z̄l (s) (or G(s) = P−1

l (s)Zl (s)).
In summary, for MRAC of a system(A,B,C), a basic assumption is that(A,B,C)

is stabilizable and detectable, in addition to the assumption that all zeros of the sys-
tem transfer matrixG(s) =C(sI−A)−1B are stable; in other words, all system zeros
are required to be stable.

For more about the definitions of the zeros and poles ofG(s), see Kailath (1980)
and Rugh (1996), and also see more notes.
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Parameter Convergence of MRAC

State Feedback State Tracking MRAC

Consider a linear time-invariant plant in the state-space form:

ẋ(t) = Ax(t)+Bu(t), x(t) ∈ Rn, u(t) ∈ R, (36)

whereA∈ Rn×n, B∈ Rn are some unknown constant parameter matrix and param-
eter and vector, and assume that the state vectorx(t) is available for measurement.

The control objective is to design a state feedback control law for u(t) such
that all signals in the closed-loop system are bounded and the plant state vector
x(t) asymptotically tracks a reference state vectorxm(t) generated from a chosen
reference model system

ẋm(t) = Amxm(t)+Bmr(t), xm(t) ∈ Rn, r(t) ∈ R (37)

whereAm ∈ Rn×n is stable, andBm ∈ Rn, both are constant.
To meet such a state tracking control objective, we assume that there exist a

constant vectork∗1 ∈ Rn and a nonzero constant scalark∗2 ∈ R to satisfy the plant-
model matching conditions:

A+Bk∗T
1 = Am, Bk∗2 = Bm. (38)

The adaptive controller structure is chosen as

u(t) = kT
1 (t)x(t)+k2(t)r(t), (39)

wherek1(t) andk2(t) are the estimates ofk∗1 andk∗2.
For the tracking errorx(t)−xm(t) and the parameter errors

k̃1(t) = k1(t)−k∗1, k̃2(t) = k2(t)−k∗2, (40)

the tracking error equation can be derived as

ė(t) = Ame(t)+B
(
k̃T

1 (t)x(t)+ k̃2(t)r(t)
)
. (41)

The adaptive laws fork1(t) andk2(t) are chosen as

k̇1(t) = −sign[k∗2]Γx(t)eT(t)PBm, (42)

k̇2(t) = −sign[k∗2]γr(t)eT(t)PBm, (43)

whereΓ = ΓT > 0 andγ > 0, andP∈ Rn×n such thatP = PT > 0 satisfying

PAm+AT
mP = −Q (44)



Notes on Adaptive Systems and Control,Gang Tao (Copyright 2023) 17

for a chosen constant matrixQ∈ Rn×n such thatQ = QT > 0.
SinceΓ̄ = diag{Γ,γ} = Γ̄T > 0, there exists a nonsingular matrix̄Γ1 such that

Γ̄ = Γ̄T
1 Γ̄1. With such aΓ̄1, we introduce the overall parameter error vector

˜̄θ(t) = (Γ̄T
1 )−1θ̃(t), θ̃(t) = [k̃T

1 (t), k̃2(t)]
T ∈ Rn+1, (45)

and the corresponding regressor vector

ω̄(t) = Γ̄1ω(t), ω(t) = [xT(t), r(t)]T ∈ Rn+1. (46)

SinceP̄ = k∗2P = P̄T > 0, there is a nonsingular matrix̄P1 = P̄T
1 ∈ Rn×n such that

P̄= P̄1P̄1.1 With such a nonsingular̄P1 = P̄T
1 , we introduce the transformed tracking

error
ē(t) = P̄1e(t). (47)

Then, withĀm = P̄1AmP̄−1
1 andB̄= P̄1B, we can express the tracking error equation

(41) as
˙̄e(t) = P̄1Ame(t)+ P̄1BωT(t)θ̃(t) = Āmē(t)+ B̄ω̄T(t) ˜̄θ(t) (48)

and, fork∗2 > 0, write the adaptive laws (42)–(43) as

˙̃̄θ(t) = −ω̄(t)B̄T ē(t). (49)

In a compact form, we have
[

˙̄e(t)
˙̃̄θ(t)

]
=

[
Ām B̄ω̄T(t)

−ω̄(t)B̄T 0

][
ē(t)
˜̄θ(t)

]
. (50)

Here, the matrix̄Am = P̄1AmP̄−1
1 with P̄= k∗2P= P̄1P̄1 andP̄1 = P̄T

1 has the property:

Ām+ ĀT
m = P̄−1

1 (P̄Am+AT
mP̄)P̄−1

1

= k∗2P̄−1
1 (PAm+AT

mP)(P̄−1
1 )T = −k∗2P̄−1

1 Q(P̄−1
1 )T < 0. (51)

To study the convergence properties of the parameter errorθ̃(t) in (41), or equiv-
alently, that of˜̄θ(t) in (50), we first introduce the following definition:

Definition 1 A bounded vector signal x(t)∈ Rq, q≥ 1, is persistently exciting (PE)
if there existδ > 0 andα0 > 0 such that

Z σ+δ

σ
x(t)xT(t)dt ≥ α0I , ∀σ ≥ t0. (52)

1In this case, there is a nonsingular matrix̄Q∈ Rn×n such thatQ̄Q̄T = I andP̄ = Q̄Λ̄Q̄T with Λ̄
being diagonal whose diagonal elements are the eigenvaluesof P̄, which are all real and positive.
Then,P̄ = P̄1P̄1, whereP̄1 = Q̄Λ̄1Q̄T with Λ̄1 being diagonal such that̄Λ1Λ̄1 = Λ̄, which leads to
P̄1 = P̄T

1 > 0 andP̄−1
1 = (P̄−1

1 )T .
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We now present the following results.

Result (Morgan and Narendra 1977; Narendra and Annaswamy 1989): For the
system [

ż(t)
φ̇(t)

]
=

[
A0 B0ζT

0 (t)
−ζ0(t)BT

0 0

][
z(t)
φ(t)

]
, (53)

with z(t) ∈ Rn, φ(t) ∈ Rn+1, ζ0(t) ∈ Rn+1, A0 ∈ Rn×n being stable (i.e., all its eigen-
values are in Re[s] < 0) such thatA0 + AT

0 < 0, andB0 ∈ Rn and (A0,B0) being
controllable, ifζ0(t) is bounded and PE, then limt→∞ φ(t) = 0 and limt→∞ z(t) = 0,
both exponentially.

Result: The MRAC system has been transformed to (50) (withĀm = P̄1AmP̄−1
1

stable andĀm+ ĀT
m < 0 as shown in (51), and̄ω(t) = Γ̄1ω(t)) which has the same

form as that in (53).

Remark: ω(t) is PE iff andω̄(t) is PE, forω̄(t) = Γ̄1ω(t).

Result (Narendra and Annaswamy (1989); Ioannou and Sun (1996)): For the sys-
tem

ẋm(t) = Amxm(t)+Bmr(t), xm(t) ∈ Rn, r(t) ∈ R (54)

whereAm ∈ Rn×n is stable and(Am,Bm) is controllable, if the input signalr(t) has
n+1 or more frequencies, thenωm(t) = [xT

m(t), r(t)]T is PE.

Remark: r(t) = 1 has one frequency at 0, andr(t) = sin2t has two frequencies at
2 and−2, etc.

Result: If (ω(t)−ωm(t)) ∈ L2 andω(t) is PE, thenωm(t) is PE.

This results can be proved by using the PE andL2 signal definitions (conditions).

Result: MRAC ensures that all closed-loop system signals are bounded and(ω(t)−
ωm(t)) ∈ L2.

Remark: (A,B) is controllable iff(Am,Bm) is controllable iff(Ām, B̄) is control-
lable.

Remark: limt→∞ θ̃(t) = 0 and limt→∞ e(t) = 0, both exponentially iff limt→∞
˜̄θ(t) =

0 and limt→∞ ē(t) = 0, both exponentially, for̄̃θ(t) = (Γ̄T
1 )−1θ̃(t) andē(t) = P̄1e(t).

In conclusion, with the application of the result for (53) tothe MRAC system
equation (50), the state feedback state tracking MRAC system, with (A,B) con-
trollable andr(t) of n+ 1 or more frequencies, ensures that limt→∞ θ̃(t) = 0 and
limt→∞ e(t) = 0, both exponentially.
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Output Feedback Output Tracking MRAC

Consider a linear time-invariant plant of the form

y(t) = G(s)[u](t), G(s) = kp
Z(s)
P(s)

(55)

with some unknown monic polynomialsP(s) andZ(s) of degreesn andm respec-
tively, and some gainkp known or unknown, and assume thatZ(s) is a stable poly-
nomial for MRAC.

MRAC System with kp Known

For the case ofkp known, the adaptive controller structure is

u(t) = θT
1 ω1(t)+θT

2 ω2(t)+θ20y(t)+θ∗3r(t), (56)

where

ω1(t) =
a(s)
Λ(s)

[u](t), ω2(t) =
a(s)
Λ(s)

[y](t), (57)

a(s) = [1,s, . . . ,sn−2]T , (58)

θ1 ∈ Rn−1, θ2 ∈ Rn−1 andθ20 ∈ R are parameters to be adaptively updated,Λ(s) is
a monic stable polynomial of degreen−1, andθ∗3 = k−1

p .
The control objective is to design the input signalu(t) to ensure all closed-loop

signals bounded and the outputy(t) asymptotically tracking the reference output
signalym(t) satisfying

Pm(s)[ym](t) = r(t), (59)

wherePm(s) is a monic stable polynomial of degreen∗ = n− m, and r(t) is a
bounded and piecewise continuous reference input signal.

The parametersθ1 ∈ Rn−1, θ2 ∈ Rn−1 andθ20 ∈ R are estimates of the nominal
parametersθ∗1 ∈ Rn−1, θ∗2 ∈ Rn−1 andθ∗20 ∈ R satisfying the matching equation

θ∗T
1 a(s)P(s)+(θ∗T

2 a(s)+θ∗20Λ(s))kpZ(s) = Λ(s)(P(s)−kpθ∗3Z(s)Pm(s)). (60)

In this case, the regressor vector is defined as

ω0(t) = [ωT
1 (t),ωT

2 (t),y(t)]T ∈ R2n−1, (61)

the corresponding filtered regressor vector is

ζ0(t) = Wm(s)[ω0](t), Wm(s) =
1

Pm(s)
(62)
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for a stable polynomialPm(s) of degreen∗, the estimation error is defined as

ε(t) = e(t)+kpξ(t), (63)

wheree(t) = y(t)−ym(t), and

ξ(t) = θT
0 (t)ζ0(t)−

1
Pm(s)

[θT
0 ω0](t) (64)

θ0(t) = [θT
1 (t),θT

2 (t),θ20(t)]
T ∈ R2n−1. (65)

The adaptive law forθ0(t) is chosen as

θ̇0(t) = −sign[kp]Γ
ζ0(t)ε(t)

m2(t)
(66)

whereΓ = ΓT > 0, and

m(t) =
√

1+ζT
0 (t)ζ0(t)+ξ2(t). (67)

The tracking errore(t) satisfies

e(t) =
kp

Pm(s)
[θ̃T

0 ω0](t), (68)

where θ̃0(t) = θ0(t)− θ∗0, with θ∗0 = [θ∗T
1 ,θ∗T

2 ,θ∗20]
T ∈ R2n−1 being the nominal

value ofθ0(t) and depends on the parameters ofP(s) andZ(s) as the plant-model
matching parameter vector. The estimation errorε(t) can be expressed as

ε(t) = θ̃T
0 (t)ζ0(t), (69)

and the adaptive law withkp > 0 can be expressed as

˙̃θ0(t) = −Γ
ζ0(t)ζT

0 (t)θ̃0(t)

m2(t)
. (70)

SinceΓ = ΓT > 0, there exists a nonsingular matrixΓ1 such thatΓ = ΓT
1 Γ1. Hence,

we have

(ΓT
1 )−1 ˙̃θ0(t) = −Γ1ζ0(t)ζT

0 (t)ΓT
1

m2(t)
(ΓT

1 )−1θ̃0(t). (71)

Letting φ0(t) = (ΓT
1 )−1θ̃0(t) andψ0(t) = Γ1ζ0(t)

m(t) , we arrive at

φ̇0(t) = −ψ0(t)ψT
0 (t)φ0(t). (72)

MRAC ensures the desired system properties: the closed-loopsignal bound-
edness (which implies that the aboveψ0(t) is bounded), the asymptotic output
tracking: limt→∞(y(t)− ym(t)) = 0, and theL2 tracking errore(t) = y(t)− ym(t):
R ∞

0 e2(t)dt < ∞. To study the convergence properties of the parameter errorθ̃0(t),
or that ofφ0(t), we recall the following definition:
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Definition 2 A bounded vector signal x(t)∈ Rq, q≥ 1, is persistently exciting (PE)
if there existδ > 0 andα0 > 0 such that

Z σ+δ

σ
x(t)xT(t)dt ≥ α0I , ∀σ ≥ t0. (73)

From the definition ofζ0(t) andu(t) = G−1(s)[y](t), we have

ζ0(t) = Wm(s)[
aT(s)
Λ(s)

[u](t),
aT(s)
Λ(s)

[y](t),y(t)]T

= Wm(s)[
aT(s)
Λ(s)

G−1(s)[y](t),
aT(s)
Λ(s)

[y](t),y(t)]T , (74)

whereWm(s) = 1
Pm(s) , In a similar structure, we introduce the signal

ζ0m(t) = Wm(s)[
aT(s)
Λ(s)

G−1(s)[ym](t),
aT(s)
Λ(s)

[ym](t),ym(t)]T

= Wm(s)H0(s)[r](t) ∈ R2n−1, (75)

where

H0(s) = [
aT(s)
Λ(s)

G−1(s)Wm(s),
aT(s)
Λ(s)

Wm(s),Wm(s)]T . (76)

The following results are available in the literature.

Result(Anderson 1997): Ifψ0(t) in (72) is PE, then limt→∞ φ0(t) = 0 exponentially,
that is, limt→∞(θ0(t)−θ∗0) = 0 exponentially.

Result: If the signalζ0(t) is PE, thenψ0(t) is PE (which follows from the bound-
edness ofm(t)).

Result: MRAC ensures that(ζ0(t)−ζ0m(t)) ∈ L2 (which can be seen fromζ0(t)−
ζ0m(t) = H(s)[e](t), whereH(s) is strictly proper and stable, ande(t) ∈ L2).

Result: Given that(ζ0(t)−ζ0m(t)) ∈ L2, ζ0(t) is PE iff ζ0m(t) is PE.

Result (Boyd and Satry 1983): Ifr(t) has 2n−1 or more frequencies andP(s) and
Z(s) are coprime, thenζ0m(t) is PE.

In conclusion, for a MRAC system withP(s) andZ(s) coprime andkp known, if
the reference signalr(t) has 2n−1 or more frequencies, then limt→∞(θ(t)−θ∗0) = 0
and limt→∞(y(t)−ym(t)) = 0, both exponentially.
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MRAC System with kp Unknown

In this case, the adaptive controller structure is

u(t) = θT
1 ω1(t)+θT

2 ω2(t)+θ20y(t)+θ3r(t), (77)

the regressor vector is defined as

ω(t) = [ωT
1 (t),ωT

2 (t),y(t), r(t)]T ∈ R2n, (78)

the corresponding filtered regressor vector is

ζ(t) = Wm(s)[ω](t), Wm(s) =
1

Pm(s)
, (79)

the estimation error is defined as

ε(t) = e(t)+ρ(t)ξ(t), (80)

whereρ(t) is the estimate ofkp, and

ξ(t) = θT(t)ζ(t)− 1
Pm(s)

[θTω](t) (81)

θ(t) = [θT
1 (t),θT

2 (t),θ20(t),θ3(t)]
T ∈ R2n, (82)

and the adaptive laws forθ(t) andρ(t) are chosen as

θ̇(t) = −sign[kp]Γ
ζ(t)ε(t)
m2(t)

(83)

ρ̇(t) = −γε(t)ξ(t)
m2(t)

(84)

whereΓ = ΓT > 0, γ > 0, and and

m(t) =
√

1+ζT(t)ζ(t)+ξ2(t). (85)

In this case, the tracking errore(t) satisfies

e(t) =
kp

Pm(s)
[θ̃Tω](t), (86)

whereθ̃(t) = θ(t)−θ∗, with θ∗ = [θ∗T
1 ,θ∗T

2 ,θ∗20,θ
∗
3]

T ∈ R2n being the nominal pa-
rameter vector. The estimation errorε(t) can be expressed as

ε(t) = ρ∗θ̃T(t)ζ(t)+ ρ̃(t)ξ(t), (87)



Notes on Adaptive Systems and Control,Gang Tao (Copyright 2023) 23

whereρ∗ = kp, θ̃(t) = θ(t)−θ∗ andρ̃(t) = ρ(t)−ρ∗. Introducing˜̄θ(t) = θ̄(t)− θ̄∗

with
θ̄(t) = [θT(t),ρ(t)]T ∈ R2n+1, θ̄∗ = [θ∗T ,ρ∗]T ∈ R2n+1 (88)

and definingΓ̄ = diag{Γk−1
p ,γ} (for kp > 0), and

ζ̄(t) = [kpζT(t),ξ(t)]T ∈ R2n+1 (89)

Then, the adaptive laws withkp > 0 can be expressed as

˙̃̄θ(t) = −Γ̄
ζ̄(t)ζ̄T(t) ˜̄θ(t)

m2(t)
. (90)

While this expression has the same form as that in (70), it doesnot render the
same procedure for the convergence analysis of˜̄θ(t), becausēζ(t) cannot be PE as
limt→∞ ξ(t) = 0 from MRAC.

In this case, we consider (83) and (87) withkp > 0:

˙̃θ(t) = −Γkp
ζ(t)ζT(t)

m2(t)
θ̃(t)−Γ

ζ(t)ρ̃(t)ξ(t)
m2(t)

, (91)

express the signalζ(t) as

ζ(t) = Wm(s)[
aT(s)
Λ(s)

[u](t),
aT(s)
Λ(s)

[y](t),y(t), r(t)]T

= Wm(s)[
aT(s)
Λ(s)

G−1(s)[y](t),
aT(s)
Λ(s)

[y](t),y(t), r(t)]T , (92)

and introduce the signal

ζm(t) = Wm(s)[
aT(s)
Λ(s)

G−1(s)[ym](t),
aT(s)
Λ(s)

[ym](t),ym(t), r(t)]T

= Wm(s)H(s)[r](t) ∈ R2n, (93)

where

H(s) = [
aT(s)
Λ(s)

G−1(s)Wm(s),
aT(s)
Λ(s)

Wm(s),Wm(s),1]T . (94)

We have the following results.

Result: If r(t) has 2n or more frequencies, andP(s) andZ(s) are coprime, then
ζm(t) is PE.

Result: MRAC ensures that(ζ(t)−ζm(t))∈ L2, andξ(t)∈ L2 and limt→∞ ξ(t) = 0.
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Result: Given that(ζ(t)−ζm(t)) ∈ L2, ζ(t) is PE iff ζm(t) is PE.

Result: If ζ(t) is PE, then the solutioñθ(t) of the homogeneous part of (91):˙̃θ(t) =

−Γkp
ζ(t)ζT(t)

m2(t)
θ̃(t), has the property: limt→∞ θ̃(t) = 0 exponentially.

Result: If ζ(t) is PE, then the solutioñθ(t) of (91) has the property:

lim
t→∞

θ̃(t) = 0, θ̃(t) ∈ L2. (95)

This follows from the system signal boundedness and theζ(t) PE condition,
which imply that

˙̃θ(t) = −Γkp
ζ(t)ζT(t)

m2(t)
θ̃(t) (96)

is an exponentially stable system, and from the properties:limt→∞ ξ(t) = 0 and
ξ(t) ∈ L2.

In conclusion, for a MRAC system withP(s) andZ(s) coprime andkp > 0 un-
known, if the reference signalr(t) has 2n or more frequencies, then limt→∞(θ(t)−
θ∗) = 0 and(θ(t)−θ∗) ∈ L2, in addition to the usual MRAC tracking error proper-
ties: limt→∞(y(t)−ym(t)) = 0 and(y(t)−ym(t)) ∈ L2.
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Higher-Order Tracking Performance of MRAC

It has been shown that for a linear time-invariant planty(t) = G(s)[u](t), where
G(s) = kp

Z(s)
P(s) with all zeros ofZ(s) stable and with relative degreen∗ = degree of

P(s)− degree ofZ(s), a model reference adaptive controller to generate the plant in-
putu(t) ensures that the tracking errore(t) = y(t)−ym(t) has the desired asymptotic
convergence property: limt→∞ e(t) = 0, whereym(t) = Wm(s)[r](t) is the reference
output to be tracked by the plant outputy(t), for a bounded reference input signal
r(t) and a stable transfer functionWm(s) = 1

Pm(s) with a stable polynomialPm(s)

of degreen∗. In this work, we show that the tracking errore(t) in a model refer-
ence adaptive control (MRAC) system has some stronger convergence properties as
stated in the following theorem.

Theorem 1 For a model reference adaptive control system with the plant relative
degree n∗ > 0, the tracking error e(t) = y(t)−ym(t) has the convergence property:

limt→∞
die(t)

dti = 0, for i = 0,1, . . . ,n∗−1.

Proof: The property: limt→∞ e(t) = 0 follows directly from the established prop-
erties:

R ∞
0 e2(t)dt < ∞ and de(t)

dt is bounded. However, it is not clear whether
die(t)

dti is square-integrable or not fori > 0. To prove the convergence ofdie(t)
dti , for

i = 1, . . . ,n∗−1, we recall that for a functionf (t) defined on[t0,∞), limt→∞ f (t) = 0
if for everyη > 0, there exists aT = T(η) > 0 such that| f (t)|< η, ∀t > T. Hence,
our goal now is to show that in each case ofi = 1, . . . ,n∗ − 1, for any givenη,

there exists aT > 0 such that|d
ie(t)
dti | < η, for all t > T. To reach this goal, we use

a method to decompose the signaldie(t)
dti into two fictitious parts: one being small

enough and one converging to zero asymptotically with time going to infinity. To
this end, we first introduce two fictitious filtersK(s) andH(s) from

K(s) =
an∗

(s+a)n∗ , sH(s) = 1−K(s) (97)

wherea > 0 is a generic constant to be specified. The filterH(s) is given as

H(s) =
1
s
(1−K(s)) =

1
s
(s+a)n∗ −an∗

(s+a)n∗ (98)

which is strictly proper (with relative degree 1) and stableand whose impulse re-
sponse function is

h(t) = L
−1[H(s)] = e−at

n∗

∑
i=1

an∗−i

(n∗− i)!
tn∗−i. (99)
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It can be verified that theL1 signal norm ofh(t) is

‖h(·)‖1 =
Z ∞

0
|h(t)|dt =

n∗

a
. (100)

It has been established that the tracking errore(t) = y(t)−ym(t) satisfies

e(t) =
kp

Pm(s)
[θ̃Tω](t), (101)

wherePm(s) is a stable polynomial of degreen∗, and θ̃(t) is the parameter error
vector andω(t) is the controller regressor vector, and both are bounded. Using
(97): 1= sH(s)+K(s), we express ˙e(t) = de(t)

dt as

ė(t) =
kps

Pm(s)
[θ̃Tω](t)

= H(s)
kps2

Pm(s)
[θ̃Tω](t)+sK(s)

kp

Pm(s)
[θ̃Tω](t)

= H(s)
kps2

Pm(s)
[θ̃Tω](t)+sK(s)[e](t). (102)

To demonstrate the new technique for proving the new result in Theorem 1:

limt→∞
die(t)

dti = 0, for i = 1, . . . ,n∗− 1, under the previously proved properties of
MRAC: all closed-loop signals are bounded and the tracking error e(t) = y(t)−
ym(t) satisfies limt→∞ e(t) = 0, we first consider the case ofn∗ = 2, where

K(s) =
a2

(s+a)2 , H(s) =
s+2a

(s+a)2 . (103)

Sinceθ̃T(t)ω(t) is bounded andkps2

Pm(s) is stable and proper,kps2

Pm(s) [θ̃
Tω](t) is bounded.

It follows from the aboveL1 signal norm expression ofH(s) that

|H(s)
kps2

Pm(s)
[θ̃Tω](t)| ≤ c0

a
(104)

for anyt ≥ 0 and some constantc0 > 0 independent ofa> 0. Since limt→∞ e(t) = 0
as established andsK(s) is stable and strictly proper (with relative degreen∗−1= 1
in this case ofn∗ = 2), it follows, for anya > 0 in K(s), that

lim
t→∞

sK(s)[e](t) = 0.2 (105)

2For a stable and strictly proper transfer functionW(s) and a systemz(t) = W(s)[v](t), if
limt→∞ v(t) = 0, then limt→∞ z(t) = 0 (see p. 68 of Narandra and Annaswamy (1989) and and p.
263 of Tao (2003).
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To show that, for everyη > 0, there exists aT > 0 such that|ė(t)| < η, ∀t > T,
we seta > a(η) = 2c0

η for the fictitious filterH(s) in (98) so thatc0
a < η

2 in (104),

and letT = Ta(a(η),η)
△
= T(η) > 0 such that|sK(s)[e](t)|< η

2 for all t ≥ T (which
is ensured by the property that limt→∞ sK(s)[e](t) = 0 for any finitea > 0 in the
other related fictitious filterK(s) in (97)) (the peak value of|sK(s)[e](t)| depends
on the parametera, so that the above time instantT = Ta(a(η),η) also depends on
a too). Then, it follows from (102) and (104) that

|ė(t)| < η
2

+
η
2

= η, ∀t > T, (106)

which implies that limt→∞ ė(t) = 0. In other words, if limt→∞ ė(t) 6= 0, then there
exist anη0 > 0 and a sequence of time instantsti with lim i→∞ ti = ∞ such that
|ė(ti)| > η0 for all i = 1,2, . . ., which, from the above analysis, is impossible.

Similarly, for the case whenn∗ = 3 with

K(s) =
a3

(s+a)3 , H(s) =
s2 +3as+3a2

(s+a)3 , (107)

we see that in (102),kps2

Pm(s) is stable and strictly proper, and so issK(s), so that

limt→∞ ė(t) = 0. To show limt→∞
d2e(t)

dt2
= 0, from (102), we expressd

2e(t)
dt2

as

d2e(t)
dt2

= H(s)
kps3

Pm(s)
[θ̃Tω](t)+s2K(s)[e](t), (108)

in which kps3

Pm(s) [θ̃
Tω](t) is bounded (as s3

Pm(s) is stable and proper and̃θT(t)ω(t) is

bounded) andH(s) satisfies (100), and limt→∞ s2K(s)[e](t) = 0. Hence, similar to

(106), now withd2e(t)
dt2

replacingė(t) in (106), it also follows that limt→∞
d2e(t)

dt2
= 0.

In general, for a MRAC system with an arbitrary relative degree n∗ > 0, from

(102), we express theith-order time derivatived
ie(t)
dti of e(t) as

die(t)
dti

= H(s)
kpsi+1

Pm(s)
[θ̃Tω](t)+siK(s)[e](t). (109)

Sinceθ̃T(t)ω(t) is bounded, and for eachi = 1,2, . . . ,n∗− 1, kpsi+1

Pm(s) is stable and
strictly proper (proper fori = n∗−1), we have

|H(s)
kpsi+1

Pm(s)
[θ̃Tω](t)| ≤ ci

a
(110)
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for someci > 0 independent ofa. For eachi = 1,2, . . . ,n∗−1, siK(s) is stable and
strictly proper, so that, with limt→∞ e(t) = 0, we have

lim
t→∞

siK(s)[e](t) = 0. (111)

Hence, with the use of the fictitious parametera > 0 in H(s) andK(s), similar to
(106), it can be shown that for everyη > 0, there exists aT = T(η) > 0 such that

|d
ie(t)
dti | < η for all t > T, so that limt→∞

die(t)
dti = 0, for i = 1,2, . . . ,n∗−1. ∇

For a general MRAC system, the reference input signalr(t) is only required to
be bounded (which is sufficient for the result of Theorem 1). If the time-derivative
of r(t) is also bounded, we have the following additional property.

Corollary 1 For a MRAC system with relative degree n∗ > 0, if both r(t) and ṙ(t)
are bounded, then the tracking error e(t) = y(t)−ym(t) has the convergence prop-

erty: limt→∞
die(t)

dti = 0, for i = 0,1, . . . ,n∗.

Proof: We just need to show the additional convergence property: limt→∞
dn∗e(t)

dtn∗
=

0. To this end, we consider (109) withi = n∗:

dn∗e(t)
dtn∗

= H(s)
kpsn∗

Pm(s)
s[θ̃Tω](t)+sn∗K(s)[e](t). (112)

In this case,s[θ̃Tω](t) = d
dt(θ̃

T(t)ω(t)) = ˙̃θ
T
(t)ω(t)+ θ̃Tω̇(t) is bounded, because

˙̃θ(t) andω̇(t) (whose last component is ˙r(t) which is bounded by assumption) are

bounded. Hencekpsn∗

Pm(s)s[θ̃
Tω](t) is bounded. Sincesn∗K(s) in (112) is stable and

proper andH(s) satisfies (100), we have, with the property: limt→∞ e(t) = 0 and an

inequality similar to (106) withdn∗e(t)
dtn∗

replacingė(t), that limt→∞
dn∗e(t)

dtn∗
= 0. ∇

Remark 3 As a comparison, in the ideal case of nominal model referencecontrol
whenθ(t) = θ∗ in the controller structure, it can be shown that

Pm(s)[y−ym](t) = −kpε1(t) (113)

for some exponentially decaying and initial condition related termε1(t), where
Pm(s) is a stable polynomial of degreen∗. It follows from this equation that the

tracking errore(t) = y(t)− ym(t) has the convergence property: limt→∞
die(t)

dti = 0,
for i = 0,1, . . . ,n∗ (under the condition thatr(t) is bounded). The difference be-
tween the nominal control and adaptive control cases is thatin the adaptive control

case the additional condition that ˙r(t) is bounded was used to show limt→∞
dn∗e(t)

dtn∗
=

0, which is not needed for the nominal control case. 2
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Remark 4 For the case whenym(t) = 0, it follows that limt→∞
diy(t)

dti = 0, for i =

0,1, . . . ,n∗−1, an output regulation result of MRAC.
For a state-space system model: ˙x = Ax+Bu,y = Cx with x(t) ∈ Rn, if n∗ = n,

then limt→∞
diy(t)

dti = 0, for i = 0,1, . . . ,n−1, as established above, and limt→∞ x(t) =

0, as(A,C) is observable implied by the condition thatn∗ = n (the system transfer
function does not have any finite zeros as its numerator is just a constantkp). This
is the adaptive asymptotic state regulation result, guaranteed by a MRAC design.

In particular, for annth order system with(A,B) in the controllable canonical
form andy(t) = x1(t), the system transfer function explicitly has no finite zeros
as its numerator is a constant, leading ton∗ = n and an observable(A,C), so that
limt→∞ x(t) = 0, an inherent property of a MRAC system. 2

This new higher-order tracking error convergence property: limt→∞
die(t)

dti = 0,
for i = 1, . . . ,n∗, of MRAC, is extendable to adaptive nonlinear tracking control
systems in which the controlled nonlinear plant has a definedrelative degreen∗.
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Convergence of̃θT(t)ω(t)

For a MRAC system, we have defined

θ∗ = (θ∗T
1 ,θ∗T

2 ,θ∗20,θ
∗
3)

T ∈ R2n̄ (114)

θ(t) = (θT
1 (t),θT

2 (t),θ20(t),θ3(t))
T ∈ R2n̄ (115)

ω(t) = (ωT
1 (t),ωT

2 (t),y(t), r(t))T ∈ R2n̄ (116)

θ̃(t) = θ(t)−θ∗, e(t) = y(t)−ym(t), (117)

and derived the tracking error equation

e(t) =
kp

Pm(s)
[θ̃Tω](t)

= −kp(θ∗T 1
Pm(s)

[ω](t)− 1
Pm(s)

[θTω](t)), (118)

wherePm(s) is a monic and stable polynomial of degreen∗.
We also defined the estimation error

ε(t) = e(t)+ρ(t)ξ(t) (119)

whereρ(t) is the estimate ofρ∗ = kp, and

ξ(t) = θT(t)ζ(t)− 1
Pm(s)

[θTω](t) (120)

ζ(t) =
1

Pm(s)
[ω](t). (121)

This estimation errorε(t), which is in its implementable (calculable) form, is in-
spired by the second equality of the tracking error equation(118):

ε(t) = e(t)−
(
−kp(θ∗T 1

Pm(s)
[ω](t)− 1

Pm(s)
[θTω](t))

)
|θ∗=θ,ρ∗=ρ, (122)

that is,ε(t) = e(t)− the estimate of−kp(θ∗T 1
Pm(s) [ω](t)− 1

Pm(s) [θ
Tω](t)).

The estimation errorε(t) can be expressed as its theoretical form

ε(t) = kpθ̃T(t)ζ(t)+ ρ̃(t)ξ(t), ρ̃(t) = ρ(t)−ρ∗. (123)

In the MRAC literature, it was shown that limt→∞ ε(t) = 0, and limt→∞ e(t) = 0,
that is, limt→∞ kpθ̃T(t)ζ(t)+ ρ̃(t)ξ(t) = 0, and limt→∞

kp
Pm(s) [θ̃

Tω](t) = 0.

How about limt→∞ kpθ̃T(t)ω(t) = 0?
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Recently, some higher-order tracking properties of model reference adaptive
control systems have been established in

G. Tao and G. Song, “Higher-order tracking properties of model reference adap-
tive control systems,”IEEE Transactions on Automatic Control, vol. 63, no. 11,
pp. 3912–3918, 2018.

It is shown in this paper that a MRAC system ensures that the tracking errore(t)

satisfies: limt→∞
die(t)

dti = 0, for i = 0,1, . . . ,n∗−1. If, in addition, ˙r(t) is bounded,

then limt→∞
dn∗e(t)

dtn∗
= 0 also holds.

Hence, for a MRAC system withe(t) =
kp

Pm(s) [θ̃
Tω](t), wherePm(s) is a monic

and stable polynomial of degreen∗, if ṙ(t) is bounded, then limt→∞
die(t)

dti = 0, for
i = 0,1, . . . ,n∗, that is, limt→∞ kpθ̃T(t)ω(t) = limt→∞ Pm(s)[e](t) = 0.
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Higher-Order Convergence ofε(t) = θ̃T(t)φ(t)

From a linear model

y(t) = θ∗Tφ(t), (124)

whereθ∗ ∈ Rnθ is an unknown parameter vector andφ(t) ∈ Rnθ is a known vec-
tor signal, we can use the normalized gradient algorithm (adaptive update law) to
generate an estimateθ(t) of θ∗:

θ̇(t) = −Γφ(t)ε(t)
m2(t)

, θ(0) = θ0 (125)

whereΓ = ΓT > 0 is a gain matrix,ε(t) is the estimation error defined as

ε(t) = θT(t)φ(t)−y(t), (126)

m(t) is the normalization signal defined as

m(t) =
√

1+αφT(t)φ(t), (127)

with α > 0 being a design parameter, andθ0 is an initial estimate ofθ∗.

This adaptive algorithm guarantees: (i)θ(t), θ̇(t), ε(t)
m(t) ∈ L∞; and (ii) θ̇(t), ε(t)

m(t) ∈
L2.

If, in addition, φ(t) ∈ L∞(⇒ m(t) ∈ L∞) and φ̇(t) ∈ L∞(⇒ ε̇(t) ∈ L∞), then
limt→∞ ε(t) = 0.

From the expressions ofε(t):

ε(t) = θT(t)φ(t)−y(t) = θ̃T(t)φ(t), θ̃(t) = θ(t)−θ∗, (128)

we can show that if, in addition, some order derivatives ofy(t) andφ(t) are bounded,
then certain order derivatives ofε(t) also converge to 0, using the following lemma.

Lemma: If lim t→∞ f (t) = f0 has a constant limitf0 and f̈ (t) is bounded, then
limt→∞ ḟ (t) = 0.

For example, with limt→∞ ε(t) = 0, if ε̈(t) is bounded, then limt→∞ ε̇(t) = 0.
To specify the conditions for̈ε(t) to be bounded, fromε(t) = θT(t)φ(t)− y(t),

we have

ε̇(t) = θ̇T(t)φ(t)+θT(t)φ̇(t)− ẏ(t) (129)

ε̈(t) = θ̈T(t)φ(t)+ θ̇T(t)φ̇(t)+ θ̇T(t)φ̇(t)+θT(t)φ̈(t)− ÿ(t). (130)
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From (125), we have

θ̈(t) = −Γ
(

φ̇(t)(1+αφT(t)φ(t))−2αφT(t)φ̇(t)φ(t)
(1+αφT(t)φ(t))2 ε(t)+

φ(t)
1+αφT(t)φ(t)

ε̇
)

.

(131)
Hence, ifφ(t), φ̇(t), φ̈(t),y(t), ẏ(t), ÿ(t) are bounded, then̈ε(t) is bounded, leading
to limt→∞ ε̇(t) = 0.
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Higher-Order Convergence of Indirect MRAC

Higher-Order Tracking of Indirect MRAC

For an indirect MRAC system, the tracking errore(t) = y(t)−ym(t) also satisfies

e(t) =
kp

Pm(s)
[θ̃Tω](t), (132)

wherekp is the plant high frequency gain,Pm(s) is a monic and stable polynomial
of degreen∗ (the plant relative degree), and

θ̃(t) = θ(t)−θ∗ (133)

θ∗ = (θ∗T
1 ,θ∗T

2 ,θ∗20,θ
∗
3)

T ∈ R2n (134)

θ(t) = (θT
1 (t),θT

2 (t),θ20(t),θ3(t))
T ∈ R2n (135)

ω(t) = (ωT
1 (t),ωT

2 (t),y(t), r(t))T ∈ R2n. (136)

Hence, it can also be shown that an indirect MRAC system ensures that the

tracking errore(t) satisfies: limt→∞
die(t)

dti = 0, for i = 0,1, . . . ,n∗−1. If, in addition,

ṙ(t) is bounded, then limt→∞
dn∗e(t)

dtn∗
= 0 also holds.

Higher-Order Convergence of Signal Estimation

Consider a linear time-invariant plant described by the differential equation

P(s)[y](t) = kpZ(s)[u](t), (137)

wherey(t) ∈ R andu(t) ∈ R are the measured plant input and output,

P(s) = sn + pn−1sn−1 + · · ·+ p1s+ p0, (138)

Z(s) = sm+zm−1sm−1 + · · ·+z1s+z0 (139)

are polynomials inswith sbeing the time differentiation operators[x](t) = ẋ(t), and
pi, i = 0,1, . . . ,n−1, kp, andzi, i = 0,1, . . . ,m−1, with n > m, are the unknown
constant parameters.

Choosing a stable polynomialΛe(s) = sn+λe
n−1sn−1+ · · ·+λe

1s+λe
0 and defin-

ing the parameter and regressor vectors

θ∗p = [kpz0,kpz1, . . . ,kpzm−1,kp,
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−p0,−p1, . . . ,−pn−2,−pn−1]
T ∈ Rn+m+1, (140)

φ(t) =

[
1

Λ(s)
[u](t),

s
Λe(s)

[u](t), . . . ,
sm−1

Λe(s)
[u](t),

sm

Λe(s)
[u](t),

1
Λe(s)

[y](t),
s

Λe(s)
[y](t), . . . ,

sn−2

Λe(s)
[y](t),

sn−1

Λe(s)
[y](t)

]T

, (141)

we express the plant (137) as

y(t)− Λn−1(s)
Λe(s)

[y](t) = θ∗T
p φ(t), (142)

whereΛn−1(s) = λe
n−1sn−1 + · · ·+λe

1s+λe
0.

Denotingθp(t) as the estimate ofθ∗p, we define the estimation error

ε(t) = θT
p(t)φ(t)−y(t)+

Λn−1(s)
Λe(s)

[y](t), (143)

which can be expressed as

ε(t) = θ̃T
p(t)φ(t), θ̃p(t) = θp(t)−θ∗p. (144)

From (142), we have

y(t) =
Λn−1(s)
Λe(s)

[y](t)+θ∗T
p φ(t), (145)

and define the estimate ofy(t) as

ŷ(t) =
Λn−1(s)
Λe(s)

[y](t)+θT
p(t)φ(t). (146)

It follows that
ỹ(t)

△
= ŷ(t)−y(t) = θ̃p

T
(t)φ(t) = ε(t), (147)

so that
lim
t→∞

(ŷ(t)−y(t)) = 0. (148)

From (145), we have

ẏ(t) =
sΛn−1(s)

Λe(s)
[y](t)+θ∗T

p φ̇(t), (149)

and define the estimate of ˙y(t) as

ˆ̇y(t) =
sΛn−1(s)

Λe(s)
[y](t)+θT

p(t)φ̇(t). (150)
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It follows that
˜̇y(t)

△
= ˆ̇y(t)− ẏ(t) = θ̃T

p(t)φ̇(t). (151)

Fromε(t) = θ̃T
p(t)φ(t), we have

ε̇(t) = ˙̃θ
T
p(t)φ(t)+ θ̃T

p(t)φ̇(t) (152)

ε̈(t) = ¨̃θ
T
p(t)φ(t)+ ˙̃θ

T
p(t)φ̇(t)+ ˙̃θ

T
p(t)φ̇(t)+ θ̃T

p(t)φ̈(t). (153)

If an adaptive law without parameter projection forθp(t):

θ̇p(t) = − Γφ(t)ε(t)
1+αφT(t)φ(t)

, Γ = ΓT > 0, α > 0 (154)

can achieve the objectives of the asymptotic tracking and signal boundedness of the
MRAC system, then it can be verified thatε̈(t) is bounded and̃̈θp(t) is bounded, so

that, with limt→∞ ε(t) = 0, we have limt→∞ ε̇(t) = 0. Then, since limt→∞
˙̃θp(t) = 0,

it follows that limt→∞ θ̃T
p(t)φ̇(t) = 0, that is, limt→∞( ˆ̇y(t)− ẏ(t)) = 0.

However, if the parameter projection applied to the adaptive law (154) (for the
estimate ofkp, the (m+ 1)th element ofθp(t)) is in action, then the(m+ 1)th
element ofθ̇p(t) may be discontinuous at the parameter boundary ofkp (its lower
bound), so that the(m+ 1)th element ofθ̈p(t) may not be bounded. In this case,
ε̈(t) may not be bounded, and limt→∞ ε̇(t) = 0 may not hold. Hence, froṁε(t) =
˙̃θ

T
p(t)φ(t)+ θ̃T

p(t)φ̇(t), we may not conclude limt→∞ θ̃T
p(t)φ̇(t) = 0 for ˆ̇y(t)− ẏ(t) =

θ̃T
p(t)φ̇(t), even if limt→∞

˙̃θp(t) = 0 (as limt→∞ ε(t) = 0).
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Analysis of “Bursting Phenomenon” in Robust Adap-
tive Control

As illustrated in [134] that adaptive control systems with afixed σ-modification
may show some bursting phenomenon. Consider the adaptive system analyzed on
page 232 (for Theorem 5.8) withσ1(t) = σ0 being a constant in (5.198):

θ̇(t) = −sign[kp]Γω(t)e(t)−Γσ1(t)θ(t), t ≥ 0

(that is, with a fixedσ-modification). ForV given in (5.43):V = e2 + |kp|θ̃TΓ−1θ̃,
we have from (5.204) that

V̇ ≤−ame2(t)+
d̄2(t)
am

−2|kp|σ0θ̃T(t)θ(t)

= −ame2(t)+
d̄2(t)
am

−2|kp|σ0θ̃T(t)θ̃(t)+2|kp|σ0θ̃T(t)θ∗

≤−ame2(t)+
d̄2(t)
am

−|kp|σ0θ̃T(t)θ̃(t)+ |kp|σ0θ∗Tθ∗. (155)

For Γ = γI andam > γσ0 (that is, with a smallσ0), we have

V̇ ≤−γσ0V +
d̄2(t)
am

+ |kp|σ0θ∗Tθ∗ (156)

which, for |d̄(t)| ≤ d0, leads to

lim
t→∞

V(t) ≤ d2
0

amγσ0
+

|kp|
γ

θ∗Tθ∗. (157)

This implies that the upper bound for the tracking errore(t) = y(t)− ym(t), for

d(t) = d0 = 0 (in the absence of disturbancesd(t)), may be as large as|kp|
γ θ∗Tθ∗,

independent ofσ0. We already knew that ford(t) = 0 andσ1(t) = σ0 = 0, the
adaptive control system ensures that limt→∞ e(t) = 0. Now from the above analysis

we know that for a smallσ0 6= 0, the error bound on|e(t)| can be up to|kp|
γ θ∗Tθ∗.

On the other hand, from

V̇ ≤−ame2(t)+
d̄2(t)
am

−2|kp|σ0θ̃T(t)θ(t) (158)

and the adaptive control system signal boundedness, similar to (5.204), we have

Z t2

t1
e2(t)dt ≤ γ0 +k0(t2− t1)d̄

2
0 +c0(t2− t1)σ0 (159)



38 Notes on Adaptive Systems and Control,Gang Tao (Copyright 2023)

for some constantc0 > 0, where theσ0 related term is due to using a fixedσ-
modificationσ1(t) = σ0, instead of the switchingσ-modification which leads to
(5.205) and in turn to (5.204). The inequality (159) impliesthat, whend0 = 0 (in
the absence of disturbances), we have the mean error

1
t2− t1

Z t2

t1
e2(t)dt ≤ γ0

t2− t1
+c0σ0 (160)

which is of the magnitude ofc0σ0, but the absolute error|e(t)|, as from (157),

could be as large as|kp|
γ θ∗Tθ∗, independent ofσ0. This is the so-called “bursting

phenomenon” of robust adaptive control with a fixedσ-modification: the tracking
error e(t) may go to a large value independent ofσ0 for a small interval of time
but in the mean sense the errore(t) is of the order ofσ0. This analytically explains
what was observed in the simulation results [134].
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Robust MRAC with A Switching σ-Modification

To derive (5.224), forV(θ̃, ρ̃) = |ρ∗|θ̃TΓ−1θ̃+ γ−1ρ̃2, using

ε(t) = ρ∗θ̃T(t)ζ(t)+ ρ̃(t)ξ(t)+µη(t), η(t) = ∆(s)[u](t) (161)

we have

V̇ = −2
ε2(t)
m2(t)

+2
ε(t)η(t)
m2(t)

−2σ1(t)|ρ∗|θ̃T(t)θ(t)−2σ2(t)ρ̃(t)ρ(t)

= − ε2(t)
m2(t)

−
(

ε(t)
m(t)

−µ
η(t)
m(t)

)2

+µ2 η2(t)
m2(t)

−2σ1(t)|ρ∗|θ̃T(t)θ(t)−2σ2(t)ρ̃(t)ρ(t)

≤− ε2(t)
m2(t)

+µ2 η2(t)
m2(t)

−2σ1(t)|ρ∗|θ̃T(t)θ(t)−2σ2(t)ρ̃(t)ρ(t) (162)

which is (5.224). Since|η(t)|
m(t) ≤ b0 for some constantb0 > 0, we haveV̇ < 0 if

2σ1(t)|ρ∗|θ̃T(t)θ(t)+2σ2(t)ρ̃(t)ρ(t) > µ2b2
0. (163)

For θ̃ = θ−θ∗ andρ̃ = ρ−ρ∗, by definition, we have

σ1(t)|ρ∗|θ̃T(t)θ(t) ≥ 0, σ2(t)ρ̃(t)ρ(t) ≥ 0, t ≥ 0 (164)

lim
‖θ‖2→∞

θ̃Tθ = ∞, lim
|ρ|→∞

ρ̃ρ = ∞. (165)

This implies that there exist constantsθ0 > 0 andρ0 > 0 such that‖θ(t)‖2 ≥ θ0

or/and|ρ(t)| ≥ ρ0 implies thatV̇ < 0. Hence, the boundedness ofθ(t) andρ(t) is
ensured. One choice of such (θ0, ρ0) is

θ0 = max{2M1,

√
1

4σ10
(2µ2b2

0 +‖θ∗‖2
2 +ρ∗2)+

1
2
‖θ∗‖}

ρ0 = max{2M2,

√
1

4σ20
(2µ2b2

0 +‖θ∗‖2
2 +ρ∗2)+

1
2
|ρ∗|}. (166)
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A Discrete-time MRAC System Example

Consider the first-order plant

y(t +1) = apy(t)+bpu(t) (167)

with two unknown parametersap andbp and choose the reference model

ym(t +1) = −amym(t)+bmr(t) (168)

with |am| < 1 for stability. We use the adaptive controller structure

u(t) = k1(t)y(t)+k2(t)r(t), (169)

wherek1(t) andk2(t) are estimates of the unknown parameters

k∗1 =
−ap−am

bp
, k∗2 =

bm

bp
. (170)

In this case the tracking error equation becomes

e(t +1) = −ame(t)+bpk̃1(t)y(t)+bpk̃2(t)r(t), (171)

wherek̃1(t) = k1(t)−k∗1 andk̃2(t) = k2(t)−k∗2.
Definingρ∗ = bp and

θ∗ = [k∗1,k
∗
2]

T , θ = [k1,k2]
T , (172)

ω(t) = [y(t), r(t)]T (173)

and introducing the filtered vector signal

ζ(t) =
1

z+am
[ω](t) =

[
1

z+am
[y](t),

1
z+am

[r](t)

]T

= [ζ1(t),ζ2(t)]
T , (174)

where, as a notation,ζ1(t) = 1
z+am

[y](t) denotes the output of the system with trans-

fer function 1
z+am

and inputy(t) (it satisfies the equation:ζ1(t + 1) = −amζ1(t)+

y(t), for generatingζ1(t) from y(t)), we rewrite (171) as

e(t) =
ρ∗

z+am
[θTω−θ∗Tω](t)

= ρ∗
(

1
z+am

[θTω](t)−θ∗Tζ(t)

)
. (175)
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The design task is to find adaptive laws to update the parameter estimatesθ(t) and
ρ(t) (which is an estimate ofρ∗) such that the estimation error

ε(t) = e(t)−ρ(t)

(
1

z+am
[θTω](t)−θT(t)ζ(t)

)
(176)

is small in some sense. With (175), this error can be expressed as

ε(t) = ρ∗θ̃T(t)ζ(t)+ ρ̃(t)ξ(t), (177)

where

ξ(t) = θT(t)ζ(t)− 1
z+am

[θTω](t) (178)

θ̃(t) = θ(t)−θ∗, ρ̃(t) = ρ(t)−ρ∗. (179)

We choose the gradient adaptive laws forθ(t) andρ(t):

θ(t +1) = θ(t)− sign[bp]Γε(t)ζ(t)

m2(t)
, 0 < Γ = ΓT <

2
b0

p
I2, (180)

ρ(t +1) = ρ(t)− γε(t)ξ(t)
m2(t)

, 0 < γ < 2, (181)

where sign[bp] is the sign ofbp, b0
p ≥ |bp| is a known upper bound on|bp|, and

m(t) =
√

1+ζT(t)ζ(t)+ξ2(t). (182)

The stability analysis of this MRAC system is given in Section6.3.1.
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Indirect Observer Based Adaptive Control

Consider a continuous-time linear multivariable time-invariant plant

y(t) = G(s)[u](t), u(t) ∈ RM, y(t) ∈ RM, M ≥ 1, (183)

whereG(s) is anM ×M strictly proper rational transfer matrix which can be ex-
pressed as

G(s) = D−1(s)N(s) = Cg(sI−Ag)
−1Bg, (184)

where, for the observability indexν of G(s) (its minimal realization),

D(s) = sνIM +Aν−1sν−1 + · · ·+A1s+A0, (185)

N(s) = Bmsm+ · · ·+B1s+B0, (186)

Ag =




−Aν−1 IM 0 · · · · · · 0
−Aν−2 0 IM 0 · · · 0

...
...

...
...

...
...

−A1 0 · · · · · · 0 IM
−A0 0 · · · · · · 0 0



∈ RMν×Mν, (187)

Bg =




0
...
0

Bp


 ∈ RMν×M, Bp =




Bm
...

B1

B0


 ∈ RM(m+1)×M, (188)

Cg =
[

IM 0 · · · 0 0
]
∈ RM×Mν (189)

for the M ×M identity matrix IM and someM ×M parameter matricesAi, i =

0,1, . . . ,ν−1, andB j , j = 0,1, . . . ,m, m≤ ν−1.
In view of (184), the plant (183) can be expressed as

ẋ(t) = Ax(t)+Apy(t)+

[
0

Bp

]
u(t), y(t) = Cgx(t), (190)

whereA∈ RMν×Mν andAp ∈ RMν×M are

A =




0 IM 0 · · · · · · 0
0 0 IM 0 · · · 0
...

...
...

...
...

...
0 0 · · · · · · 0 IM
0 0 · · · · · · 0 0




, Ap =




−Aν−1

−Aν−2
...

−A1

−A0




. (191)
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Control objective. The control objective is to design an adaptive feedback con-
trol signalu(t) to make the plant outputy(t) tracks the outputym(t) of the reference
model system

ym(t) = Wm(s)[r](t), Wm(s) = ξ−1
m (s), (192)

whereξm(s) is the modified left interactor matrix ofG(s): lims→∞ ξm(s)G(s) = Kp

is finite and nonsingular.

Adaptive parameter estimation. Based on the input-output model of the plant:
D(s)[y](t) = N(s)[u](t), we can design an adaptive parameter estimation scheme
to generate adaptive estimatesÂi and B̂ j of the coefficient matricesAi andB j of
D(s) andN(s). From the parameter estimatesÂi andB̂ j , we can obtain the adaptive
estimateŝAp andB̂p of the parameter matricesAp andBp, and the adaptive estimates
Âg andB̂g of the parameter matricesAg andBg.

Adaptive state observer. With adaptive estimateŝAp andB̂p, we construct an
adaptive state observer for the plant (190) as

˙̂x(t) = Ax̂(t)+ Âpy(t)+

[
0

B̂p

]
u(t)+L(y(t)− ŷ(t)), ŷ(t) = Cgx̂(t), (193)

whereL ∈ RMν×M is such thatA− LCg is a desired stable matrix. For the state
estimation error ˜x(t) = x̂(t)−x(t), it follows that

˙̃x(t) = (A−LCg)x̃(t)+ Ãp(t)y(t)+

[
0

B̃p(t)

]
u(t), ỹ(t) = Cgx̃(t) (194)

whereỹ(t) = ŷ(t)−y(t), Ãp(t) = Âp(t)−Ap andB̃p(t) = B̂p(t)−Bp.

Adaptive control law. The adaptive control law is an indirect-design (that is,
its parameters are calculated from plant parameter estimates) and explicit-observer
(that is, it uses the state estimate ˆx(t) for feedback control) based control law:

u(t) = KT
1 (t)x̂(t)+K2(t)r(t), (195)

whereK1(t) ∈ RMν×M andK2(t) ∈ RM× are parameter matrices which satisfy

Cg(λI − Âg− B̂gKT
1 )−1B̂gK2 = Wm(λ), (196)

point-wise in the time variablet, whereÂg(t) andB̂g(t) are the on-line estimates
of Ag andBg. It can be shown that such solutionsK1 andK2 exist if the estimated
plant(Âg, B̂g,Cg) hasξm(s) as its modified left interactor matrix point-wise, that is,
limλ→∞ ξm(λ)Cg(λI − Âg)

−1B̂g = K̂p is finite and non-singular, for each timet as
Âg = Âp(t) andB̂g = B̂p(t) (note thatK̂p may be a function of timet).
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In the single-input single-output case withM = 1, such a condition becomes:
B̂m(t) = b̂m(t) 6= 0 for any t, which can be easily ensured by using a parameter
projection based adaptive parameter estimator. In this case, ξm(λ) = λν−m and
K̂p = b̂m(t), for ν = n being the plant order.
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Adaptive Control of ẋ(t) = Ax(t)+BΛu(t)+BΘ∗φ(x)

Consider anM-input linear time-invariant plant

ẋ(t) = Ax(t)+BΛu(t)+BΘ∗φ(x), x(t) ∈ Rn, u(t) ∈ RM, (197)

where (A, B) is a known and controllable pair,Λ = diag{λ1,λ2, . . . ,λM} is an un-
known and diagonal matrix withλi 6= 0 for i = 1,2, . . . ,M, Θ∗ is an unknown matrix,
andφ(x) is a known vector.

With (A, B) known and controllable, we can find known constant matricesK10∈
Rn×M andK20 ∈ RM×M such that

Am = A+BKT
10, Bm = BK20 (198)

are known withAm being stable, for constructing a good reference model system

ẋm(t) = Amxm(t)+Bmr(t), xm(t) ∈ Rn, r(t) ∈ RM, (199)

wherer(t) is a bounded and piecewise continuous reference input.
We first introduce the parameter matrices

K∗T
1 = Λ−1KT

10, K∗
2 = Λ−1K20, K∗

3 = −Λ−1Θ∗. (200)

Then, forK1, K2 andK3 being the estimates ofK∗
1, K∗

2 andK∗
3, we use the adaptive

controller
u(t) = KT

1 (t)x(t)+K2(t)r(t)+K3(t)φ(x). (201)

From the definitions ofK∗
1, K∗

2 andK∗
3, we have

BΛ(K∗T
1 x(t)+K∗

2r(t)+K∗
3φ(x)) = B(KT

10x(t)+K20r(t)−Θ∗φ(x)). (202)

Introducing the parameter errors

K̃1 = K1−K∗
1, K̃2 = K2−K∗

2, K̃3 = K3−K∗
3 (203)

we express the control signal from (201) as

u(t) = K̃T
1 (t)x(t)+ K̃2(t)r(t)+ K̃3(t)φ(x)+K∗T

1 x(t)+K∗
2r(t)+K∗

3φ(x) (204)

and, in view of (198) and (202), the closed-loop system as

ẋ(t) = Ax(t)+BΛ(K̃T
1 (t)x(t)+ K̃2(t)r(t)+ K̃3(t)φ(x))

+BΛ(K∗T
1 x(t)+K∗

2r(t)+K∗
3φ(x))+BΘ∗φ(x)

= Amx(t)+Bmr(t)+BΛ(K̃T
1 (t)x(t)+ K̃2(t)r(t)+ K̃3(t)φ(x)). (205)
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Then, in view of this equation and (199), the tracking errore(t) = x(t)− xm(t)
satisfies

ė(t) = Ame(t)+BΛ(K̃T
1 (t)x(t)+ K̃2(t)r(t)+ K̃3(t)φ(x)). (206)

Introducingθ∗i such thatθ∗T
i is theith row of [K∗T

1 ,K∗
2,K∗

3], i = 1,2, . . . ,M, letting
θi be the estimate ofθ∗i andθ̃i(t) = θi(t)−θ∗i , i = 1,2, . . . ,M, and defining

ω(t) = [xT(t), rT(t),φT(x)]T , (207)

we express (206) as

ė(t) = Ame(t)+BΛ




θ̃T
1 (t)ω(t)

θ̃T
2 (t)ω(t)

...
θ̃T

M−1(t)ω(t)
θ̃T

M(t)ω(t)




. (208)

LettingP = PT > 0 satisfy

PAm+AT
mP = −Q (209)

for a chosen constant matrixQ∈ Rn×n such thatQ = QT > 0, andēi(t) be theith
component ofeT(t)PB, i = 1,2, . . . ,M, we design the adaptive law forθi(t) as

θ̇i(t) = −sign[λi]Γiēi(t)ω(t), (210)

whereΓi = ΓT
i > 0 is a chosen constant adaptation gain matrix, and sign[λi] is the

sign ofλi , i = 1,2, . . . ,M.
To analyze the adaptive control system performance, we consider the positive

definite function

V(e, θ̃i, i = 1,2, . . . ,M) = eTPe+
M

∑
i=1

|λi|θ̃T
i Γ−1

i θ̃i (211)

and derive its time derivative along the trajectory of (208)and (210) as

V̇ = 2eT(t)Pė(t)+2
M

∑
i=1

|λi|θ̃T
i (t)Γ−1

i θ̇i(t)

= 2eT(t)PAme(t)+2
M

∑
i=1

ēi(t)λi θ̃T
i (t)ω(t)+2

M

∑
i=1

|λi|θ̃T
i (t)Γ−1

i θ̇i(t)

= −eT(t)Qe(t). (212)

From this result, it follows thatx(t) andθi(t) are bounded ande(t) ∈ L2, and in
turn, thatu(t) is bounded, and so is ˙e(t), so that limt→∞ e(t) = 0.
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Parameters ofu(t) = Θ∗T
1 ω1(t) + Θ∗T

2 ω2(t) + Θ∗
20y(t) +

Θ∗
3ξ(z)y(t)

For multivariable MRAC, the parametersΘ∗
1, Θ∗

2, Θ∗
20 andΘ∗

3 of the matching equa-
tion

u(t) = Θ∗T
1 ω1(t)+Θ∗T

2 ω2(t)+Θ∗
20y(t)+Θ∗

3ξ(z)y(t) (213)

are the nominal controller parameters. For discrete-time MRAC whereΛ(z) = znc

for generatingω1(t) andω2(t), such parameters can be calculated from the follow-
ing procedure.

For a given system transfer matrixG(z) = A−1(z−1)B(z−1) and an interactor
matrix ξ(z) such that rlimz→∞ ξ(z)G(z) = Kp finite and nonsingular, where

A(z−1) = I +A1z−1 + · · ·+Anaz
−na, B(z−1) = B1z−1 + · · ·+Bnbz

−nb (214)

ξ(z) = ξ0zd +ξ1zd−1 + · · ·+ξd−1z, (215)

we can solve the equation

ξ(z) = F(z)A(z−1)+H(z−1) (216)

for some matrix functions

F(z) = F0zq +F1zd−1 + · · ·+Fd−1z (217)

H(z−1) = H0 +H1z−1 + · · ·+Hnhz
−nh (218)

for somenh > 0 to be determined, that is,

ξ0zd +ξ1zd−1 + · · ·+ξd−1z

= (F0zd +F1zd−1 + · · ·+Fd−1z)(I +A1z−1 + · · ·+Anaz
−na)

+H0 +H1z−1 + · · ·+Hnhz
−nh. (219)

The solutionsFi andH j are from the iterative procedure

F0 = ξ0, F1 +F0A1 = ξ1, . . . (220)

whereng depends onna andnb.

Then, we define

α(z−1) = H(z−1) = α0 +α1z−1 + · · ·+αngz
−ng (221)
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with αi = Hi, and
β(z−1) = F(z)B(z−1). (222)

Fromξ(z) = F(z)A(z−1)+H(z−1), we have

ξ(z)−H(z−1) = F(z)B(z−1)B−1(z−1)A(z−1) = β(z−1)G−1(z) (223)

that is,
G(z) = (ξ(z)−α(z−1))−1β(z−1). (224)

Since limz→∞ ξ(z)G(z) = Kp finite and nonsingular, we have

lim
z→∞

β(z−1) = Kp (225)

which implies that

β(z−1) = β0 +β1z−1 + · · ·+βnβz−nβ (226)

with β0 = Kp andnβ determined fromβ(z−1) = F(z)B(z−1).

FromA(z−1)y(t) = B(z−1)u(t), we haveF(z)A(z−1)y(t) = F(z)B(z−1)u(t), and
from ξ(z) = F(z)A(z−1)+H(z−1), we have

ξ(z)y(t) = F(z)A(z−1)y(t)+H(z−1)y(t) = F(z)B(z−1)u(t)+H(z−1)y(t)

= α(z−1)y(t)+β(z−1)u(t). (227)

Comparing this equation with

ξ(z)y(t) = Θ∗−1
3 u(t)−Θ∗−1

3 Θ∗T
1 ω1(t)−Θ∗−1

3 Θ∗T
2 ω2(t)−Θ∗−1

3 Θ∗
20y(t) (228)

with Λ(z) = znc, we can obtainΘ∗
1, Θ∗

2, Θ∗
20 andΘ∗

3 = K−1
p , fromα(z−1) andβ(z−1).

Example 1 Consider the system transfer matrix

G0(z) =

[
z−3

1+z−1
3z−3

1+4z−1

z−2

1+z−1
2z−2

1+3z−1

]
. (229)

Its interactor matrix and high frequency gain matrix are

ξ(z) =

[
z3 0
0 z2

]
= ξ0z3 +ξ1z2, Kp =

[
1 3
1 2

]
. (230)

It can be found that

A(z−1) =

[
(1+z−1)(1+4z−1) 0

0 (1+z−1)(1+3z−1)

]
(231)
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B(z−1) =

[
z−3(1+4z−1) 3z−3(1+z−1)
z−2(1+3z−1) 2z−2(1+z−1)

]
. (232)

Hence,na = 2, nb = 4, d = 3, andF(z) = F0z3+F1z2+F2z in (217) withFi ∈ R2×2.
For this example,B1 = 0 andξ2 = 0 are 2 by 2 zero matrices. Since the lowest
order in (F0z3 + F1z2 + F2z)(I + A1z−1 + A2z−2) is z−1, we havenh = 1, so that
(219) becomes

ξ0z3 +ξ1z2 = (F0z3 +F1z2 +F2z)(I +A1z−1 +A2z−2)+H0 +H1z−1. (233)

From this equation, we can find:F0,F1,F2,H0,H1. Then, we define

α(z−1) = H(z−1) = α0 +α1z−1 (234)

β(z−1) = F(z)B(z−1) = (F0z3 +F1z2 +F2z)(B1z−1 +B2z−2 +B3z−3 +B4z−4).

(235)
It should turn out that

F0B1 = F0B2 = F1B1 = 0 (236)

F0B3 +F1B2 +F2B1 = Kp = β0 (237)

SinceB1 = 0, we haveF0B2 = 0 andF0B3 +F1B2 = Kp. It can be seen from (235)
that

β(z−1) = β0 +β1z−1 +β2z−2 +β3z−3, (238)

that is,nβ = 3. The termβ(z−1)u(t) has the form

β(z−1)u(t) = β0 +β1u(t −1)+β2u(t −2)+β3u(t −3). (239)

For G(z) in this example, it can be found the system order isn = 5 and its
observability indexν≤ n−1= 4, so that the order ofΛ(z) in (227) isnc = ν−1= 3,
which meansω1(t) depends onu(t −1), u(t −2) andu(t −3), as contained in the
termβ(z−1)u(t).

Finally, with α(z−1) andβ(z−1) specified, from the matching equations (227)
and (228):

ξ(z)y(t) = α(z−1)y(t)+β(z−1)u(t) (240)

ξ(z)y(t) = Θ∗−1
3 u(t)−Θ∗−1

3 Θ∗T
1 ω1(t)−Θ∗−1

3 Θ∗T
2 ω2(t)−Θ∗−1

3 Θ∗
20y(t) (241)

we can find the parametersΘ∗
1 ∈ R6×2, Θ∗

2 ∈ R6×2, Θ∗
20 ∈ R2×2 andΘ∗

3 = β−1
0 :

Θ∗
1 = [β3,β2,β1]

T , Θ∗
2 = [α3,α2,α1]

T , Θ20 = α0. (242)

Since the termα(z−1)y(t) does not containy(−2) andy(−3), α3 = α2 = 0 (the
2×2 zero matrix), the first 4×2 part ofΘ∗

2 ∈ R6×2 is the 4×2 zero matrix. 2
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Parametrization of (9.102)

To define the parametersΘ∗
i , i = 1,2,20,3, to satisfy (9.105):

Θ∗T
1 A(D)P0(D)+(Θ∗T

2 A(D)+Θ∗
20Λ(D))Z0(D)

= Λ(D)(P0(D)−Θ∗
3ξm(D)Z0(D)), (243)

for the nominal version of the multivariable MRAC controller(9.102), we consider
an equivalent version (see (244) below) of (9.105) by dividing it from the right by
P−1

0 (D) and use the left matrix-fraction description ofG0(D) = P−1
l (D)Zl (D) such

thatG0(D) = P−1
l (D)Zl (D) = Z0(D)P−1

0 (D) (as used in the proof of Lemma 9.3),
to obtain

Θ∗T
1 A(D)+(Θ∗T

2 A(D)+Θ∗
20Λ(D))P−1

l (D)Zl (D)

= Λ(D)(I −Θ∗
3ξm(D)P−1

l (D)Zl (D)). (244)

ExpressingΛ(D)Θ∗
3ξm(D)P−1

l (D) with Θ∗
3 = K−1

p as

Λ(D)Θ∗
3ξm(D)P−1

l (D) = Ql (D)+Rl (D)P−1
l (D) (245)

for someM × M polynomial matricesQl (D) and Rl (D) such that∂ci[Rl (D)] <

∂ci[Pl (D)] ≤ ν. Then, we defineΘ∗
1, Θ∗

2 andΘ∗
20 from

Θ∗T
2 A(D)+Θ∗

20Λ(D) = −Rl (D), (246)

Θ∗T
1 A(D) = Λ(D)IM −Ql (D)Zl (D) (247)

(recall that∂[Λ(D)] = ν−1 and∂[A(D)] = ν−2 for the controller structure (9.102)).
With this definition ofΘ∗

2, Θ∗
20 andΘ∗

1, (244) is satisfied, and so is (9.105).
From (9.105) (that is, (244)), we have the plant–model matching equation

IM −Θ∗T
1 F(D)− (Θ∗T

2 F(D)+Θ∗
20)G0(D) = Θ∗

3W
−1
m (D)G0(D) (248)

whereWm(D) = ξ−1
m (D). From this equation with limD→∞ Θ∗

3W
−1
m (D)G0(D) = IM

as from the definition ofξm(D), we have

lim
D→∞

Θ∗T
1 F(D) = 0, (249)

which implies that∂[Θ∗T
1 A(D)] ≤ ν−2, that is, (247) is solvable.
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Plant Signal Identities for MIMO Cases

It has been shown that there existΘ∗
1, Θ∗

2 andΘ∗
3 to satisfy the matching equation

Θ∗T
1 A(D)P0(D)+Θ∗T

2 A(D)Z0(D) = Λ(D)(P0(D)−Θ∗
3ξm(D)Z0(D)), (250)

which is nominally (mathematically) equivalent to

IM −Θ∗T
1 F(D)−Θ∗T

2 F(D)G0(D) = Θ∗
3W

−1
m (D)G0(D). (251)

Operating this identity onu(t), we may get the plant signal identity:

u(t)−Θ∗T
1 ω1(t)−Θ∗T

2 ω2(t) = Θ∗
3W

−1
m (D)[y](t). (252)

(This identity was used in deriving (9.119), and its similarversion withΘ∗
20 was

used in deriving (9.365).)
As an alternative procedure to obtain the plant parametrized signal identity (sim-

ilar to that in (5.30) for the SISO case withM = 1), we start by considering (9.84)
and (9.85):

Θ∗T
2 A(D) = Ql (D)Pl (D)−Λ(D)K−1

p ξm(D) (253)

Θ∗T
1 A(D) = Λ(D)IM −Ql (D)Zl (D). (254)

and obtain the signal identities:

Θ∗T
2

A(D)

Λ(D)
[y](t) =

1
Λ(D)

Ql (D)Pl (D)[y](t)−K−1
p ξm(D)[y](t) (255)

Θ∗T
1

A(D)

Λ(D)
[u](t) = u(t)− 1

Λ(D)
Ql (D)Zl (D)[u](t). (256)

Using the open-loop plant signal identity:Pl (D)[y](t) = Zl (D)[u](t), and from
(255)–(256), we finally have the parametrized plant signal identity (252):

u(t) = Θ∗T
1

A(D)

Λ(D)
[u](t)+Θ∗T

2
A(D)

Λ(D)
[y](t)+K−1

p ξm(D)[y](t). (257)

This identity holds for any input signalu(t), in a feedback structure.
Similarly, for the controller structure (9.102) with nominal parameters:

u(t) = Θ∗T
1 ω1(t)+Θ∗T

2 ω2(t)+Θ∗
20y(t)+Θ∗

3r(t), (258)

in which ∂[Λ(D)] = ν−1, we have the polynomial matching equation

Θ∗T
1 A(D)P0(D)+(Θ∗T

2 A(D)+Θ∗
20Λ(D))Z0(D)

= Λ(D)(P0(D)−Θ∗
3ξm(D)Z0(D)) (259)
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and the transfer matrix matching equation

IM −Θ∗T
1 F(D)− (Θ∗T

2 F(D)+Θ∗
20)G0(D) = Θ∗

3W
−1
m (D)G0(D). (260)

The nominal parametersΘ∗
1, Θ∗

2, Θ∗
20 andΘ∗

3 are defined from

(Θ∗T
2 A(D)+Θ∗

20Λ(D)) = −Rl (D) = Ql (D)Pl (D)−Λ(D)K−1
p ξm(D) (261)

Θ∗T
1 A(D) = Λ(D)IM −Ql (D)Zl (D), (262)

that is, dividingΛ(D)K−1
p ξm(D) on the right byPl (D) to get Rl (D) and Ql (D).

From these equations, we obtain the signal identities:

(Θ∗T
2

A(D)

Λ(D)
+Θ∗

20)[y](t) =
1

Λ(D)
Ql (D)Pl (D)[y](t)−K−1

p ξm(D)[y](t) (263)

Θ∗T
1

A(D)

Λ(D)
[u](t) = u(t)− 1

Λ(D)
Ql (D)Zl (D)[u](t). (264)

Using the open-loop plant signal identity:Pl (D)[y](t) = Zl (D)[u](t), we have the
plant signal identity in a feedback form:

u(t) = Θ∗T
1

A(D)

Λ(D)
[u](t)+Θ∗T

2
A(D)

Λ(D)
[y](t)+Θ∗

20y(t)+K−1
p ξm(D)[y](t) (265)

which also holds for any input signalu(t), similar to that in (257).
Both parametrized plant signal identities (257) and (265) are useful for adaptive

control: either verify the nominal controller structure

u(t) = Θ∗T
1

A(D)

Λ(D)
[u](t)+Θ∗T

2
A(D)

Λ(D)
[y](t)+Θ∗

3r(t) (266)

for the matching equation (250), or

u(t) = Θ∗T
1

A(D)

Λ(D)
[u](t)+Θ∗T

2
A(D)

Λ(D)
[y](t)+Θ∗

20y(t)+Θ∗
3r(t) (267)

for the matching equation (259), whereΘ∗
3r(t) = K−1

p ξm(D)[ym](t) for the reference
outputym(t) = ξ−1

m (D)[r](t), leading toξm(D)[y−ym](t) = 0 exponentially, or they
motivate the adaptive controller structure

u(t) = ΘT
1

A(D)

Λ(D)
[u](t)+ΘT

2
A(D)

Λ(D)
[y](t)+Θ3r(t) (268)

for the matching equation (250), or

u(t) = ΘT
1

A(D)

Λ(D)
[u](t)+ΘT

2
A(D)

Λ(D)
[y](t)+Θ20y(t)+Θ3r(t) (269)
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for the matching equation (259), leading to the desired tracking error equation:

e(t) = y(t)−ym(t) = ξ−1
m (D)Kp[Θ̃Tω](t) (270)

for Θ̃(t) = Θ(t)−Θ∗ with

Θ(t) = [ΘT
1 (t),ΘT

2 (t),Θ3(t)]
T , Θ∗ = [Θ∗T

1 ,Θ∗T
2 ,Θ∗

3]
T (271)

ω(t) = [ωT
1 (t),ωT

2 (t), rT(t)]T (272)

for the matching equation (250), or

Θ(t) = [ΘT
1 (t),ΘT

2 (t),Θ20(t),Θ3(t)]
T , Θ∗ = [Θ∗T

1 ,Θ∗T
2 ,Θ∗

20,Θ
∗
3]

T (273)

ω(t) = [ωT
1 (t),ωT

2 (t),yT(t), rT(t)]T (274)

for the matching equation (259). Both tracking error equations can be used to de-
rive some desired estimation errors for designing stable adaptive laws to update the
controller parametersΘ(t).
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Proof of limt→∞ e(t) = 0 in (9.187C)

To show limt→∞ e(t) = 0, we just need to prove that for any givenδ > 0, there exists
aT = T(δ) > 0 such that‖e(t)‖< δ, for all t > T. For such a proof, we only require
the existence ofT for each chosenδ which may be set to be arbitrarily small but do
not consider the limit ofδ going to zero, that is,δ > 0 such that1δ is finite.

In view of (9.187C) (for the continuous-time case), for any givenδ > 0, we can
choose (think of) a pair ofK3(s) andH3(s) to make c4

a3
< δ

2 (that is,a3 > 2c4
δ is

finite) (recall thatK3(s) andH3(s) are not real but fictitious filters, and they are not
employed in the control design but only used in the expression (decomposition) of
e(t) in (9.185C)), and letT > 0 such that|z1(t)|< δ

2 for anyt > T (such aT = T(δ)

exists, because limt→∞ z1(t) = 0; also note thatz1(t) depends onK3(s)). It follows
that‖e(t)‖ < δ for anyt > T, which implies that limt→∞ e(t) = 0.
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Adaptive Robot Control for Time-Varying Parameters

Consider the manipulator dynamic equation (9.586):

D(q, t)q̈+
∂D(q, t)

∂t
q̇+C(q, q̇, t)q̇+φ(q, t) = u. (275)

With (9.590):v = q̇d −Λ0(q−qd), s= q̇−v, e= q−qd, we have (9.592):

D(q, t)ṡ+C(q, q̇, t)s

= u−D(q, t)v̇−C(q, q̇, t)v−φ(q, t)− ∂D(q, t)
∂t

q̇

△
= u−Y(q,qd, q̇, q̇d, q̈d, t)θ∗(t)−

∂D(q, t)
∂t

q̇, (276)

for some known function matrixY(q,qd, q̇, q̇d, q̈d, t) ∈ Rn×nθ and unknown param-
eter vectorθ∗(t) ∈ Rnθ which may be time-varying.

In this study, we consider the case when

θ∗(t) = θ∗0 +δθ∗(t) (277)

whereθ∗0 is a constant vector andδθ∗(t) is the variation ofθ∗(t) with respect to
θ∗0 (note that bothθ∗0 andδθ∗(t) are unknown). We will develop and analyze some
alternative adaptive control schemes to that presented in (9.607)–(9.608).

Adaptive Control Scheme I

As an alternative scheme to (9.607)–(9.608), we use the control law

u(t) = Y(q,qd, q̇, q̇d, q̈d, t)θ0(t)−m(t)ψ(t)−m1(t)ψ1(t)−KDs(t), (278)

m(t) = k0‖q̇(t)+v(t)‖ f (q), k0 > 0, ψ(t) = m(t)s(t), (279)

m1(t) = k1‖Y(q,qd, q̇, q̇d, q̈d, t)‖, k1 > 0, ψ1(t) = m1(t)s(t), (280)

and the update law for the estimateθ0(t) of θ∗0:

θ̇0(t) = −Γ
(
YT(q,qd, q̇, q̇d, q̈d, t)s+σ(t)θ0(t)

)
, , Γ = ΓT > 0 (281)

whereσ(t) is a switching signal similar to that in (9.610), using a design parameter
σ0 > 0 and the knowledge of the upper boundM0 on‖θ∗0‖:

σ(t) =






0 if ‖θ0(t)‖ < M0,

σ0(
‖θ0(t)‖

M0
−1) if M0 ≤ ‖θ0(t)‖ < 2M0,

σ0 if ‖θ0(t)‖ ≥ 2M0.

(282)
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This adaptive control scheme has the properties: all signals in the closed-loop
system are bounded, and the tracking errore(t) = q(t)−qd(t) satisfies

Z t2

t1
‖e(t)‖2dt ≤ α0

(
γ2

k2
0

+
γ2
1

k2
1

)
(t2− t1)+β0 (283)

for some constantsα0 > 0, β0 > 0 and anyt2 > t1 ≥ 0, whereγ1 > 0 is the upper
bound on supt≥0‖δθ∗(t)‖. Moreover,e(t) ∈ L2 and limt→∞ e(t) = 0 in the absence

of parameter time variations, that is, whenδθ∗(t) = 0 and∂D(q,t)
∂t = 0.

The proof of these properties is based on the positive definite function

V0(s, θ̃0) =
1
2
(sTDs+ θ̃T

0 Γ−1θ̃0), θ̃0(t) = θ0(t)−θ∗0, D = D(q(t), t), (284)

which has the following time derivation:

V̇0 = −sT(t)KDs(t)−m2(t)sT(t)s(t)−m2
1(t)s

T(t)s(t)−σ(t)θ̃T
0 (t)θ0(t)

−1
2

sT(t)
∂D(q, t)

∂t
(q̇(t)+v(t))−sT(t)Y(q,qd, q̇, q̇d, q̈d, t)δθ∗(t)

≤−sT(t)KDs(t)−
(

m(t)‖s(t)‖− γ
4k0

)2

+
γ2

16k2
0

−
(

m1(t)‖s(t)‖− γ1

2k1

)2

+
γ2
1

4k2
1

−σ(t)θ̃T
0 (t)θ0(t). (285)

With this adaptive control scheme, as indicated by (283), the tracking perfor-
mance can be influenced by the design parametersk0 andk1 in the feedback control
law (278)–(280) (one may increasek0 andk1 to reduce the tracking errore(t)).

Adaptive Control Scheme II

A different adaptive control scheme can be developed, employing a switching con-
trol law which uses adaptive estimates of parameter variation uncertainty bounds,
to improve system tracking performance.

To derive such a scheme, we denote the parameter variation uncertainties as

g(q, q̇,qd, q̇d, t) =
1
2

∂D(q, t)
∂t

(q̇+v) = [g1,g2, . . . ,gn]
T (286)

h(q, q̇,qd, q̇d, q̈d, t) = Y(q,qd, q̇, q̇d, q̈d, t)δθ∗(t) = [h1,g2, . . . ,hn]
T (287)

and make use of the bounding relationship

|gi(q, q̇,qd, q̇d, t)| ≤ a∗i αi(q, q̇,qd, q̇d, t), i = 1,2, . . . ,n (288)

|hi(q, q̇,qd, q̇d, q̈d, t)| ≤ b∗i βi(q, q̇,qd, q̇d, q̈d, t), i = 1,2, . . . ,n (289)
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for some unknown constantsa∗i andb∗i , and known functionsαi(q, q̇,qd, q̇d, t) and
βi(q, q̇,qd, q̇d, q̈d, t), i = 1,2, . . . ,n.

If the parametersa∗i andb∗i were known, one could use the control law

u(t) = Y(q,qd, q̇, q̇d, q̈d, t)θ0(t)−φ∗(t)−φ∗1(t)−KDs(t), (290)

φ∗(t) = [sgn[s1(t)]a
∗
1α1,sgn[s2(t)]a

∗
2α2, . . . ,sgn[sn(t)]a

∗
nαn]

T , (291)

φ∗1(t) = [sgn[s1(t)]b
∗
1β1,sgn[s2(t)]b

∗
2β2, . . . ,sgn[sn(t)]b

∗
nβn]

T , (292)

whereθ0(t) is updated from (281), and the sgn function is defined as

sgn[w] =






1 if w > 0,

0 if w = 0,

−1 if w < 0.

(293)

FormV0 defined in (284), this control law leads to

V̇0 = −sT(t)KDs(t)−sT(t)φ∗(t)−sT(t)φ∗1(t)−σ(t)θ̃T
0 (t)θ0(t)

−1
2

sT(t)
∂D(q, t)

∂t
(q̇(t)+v(t))−sT(t)Y(q,qd, q̇, q̇d, q̈d, t)δθ∗(t)

= −sT(t)KDs(t)−
n

∑
i=1

|si(t)|a∗i αi −
n

∑
i=1

|si(t)|b∗i βi −σ(t)θ̃T
0 (t)θ0(t)

−
n

∑
i=1

si(t)gi −
n

∑
i=1

si(t)hi

≤−sT(t)KDs(t). (294)

The last equality follows from the facts that∑n
i=1 |si(t)|a∗i αi − ∑n

i=1si(t)gi ≥ 0,
∑n

i=1 |si(t)|b∗i βi −∑n
i=1si(t)hi ≥ 0 andσ(t)θ̃T

0 (t)θ0(t) ≥ 0. From (294), one may
conclude that all signals in the closed-loop system are bounded, and the tracking
errore(t) = q(t)−qd(t) converges to zero ast goes to∞.

When the parametersa∗i andb∗i are unknown, one can use the control law

u(t) = Y(q,qd, q̇, q̇d, q̈d, t)θ0(t)−φ(t)−φ1(t)−KDs(t), (295)

φ(t) = [sgn[s1(t)]a1(t)α1,sgn[s2(t)]a2(t)α2, . . . ,sgn[sn(t)]an(t)αn]
T , (296)

φ1(t) = [sgn[s1(t)]b1(t)β1,sgn[s2(t)]b2(t)β2, . . . ,sgn[sn(t)]bn(t)βn]
T , (297)

whereθ0(t) is updated from (281), and the parametersai(t) andbi(t) are estimates
of a∗i andb∗i and updated from the adaptive laws:

ȧi(t) = κai|si(t)|αi(q, q̇,qd, q̇d, t), κai > 0, i = 1,2, . . . ,n, (298)

ḃi(t) = κbi|si(t)|βi(q, q̇,qd, q̇d, q̈d, t), κbi > 0, i = 1,2, . . . ,n. (299)
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Consider the positive definite function

V(s, θ̃0, ãi, b̃i) =
1
2
(sTDs+ θ̃T

0 Γ−1θ̃0 +
n

∑
i=1

κ−1
ai ã2

i +
n

∑
i=1

κ−1
bi b̃2

i ), (300)

whereθ̃0(t) = θ0(t)−θ∗0, D = D(q(t), t), ãi(t) = ai(t)−a∗i , b̃i(t) = bi(t)−b∗i , i =

1,2, . . . ,n. Using (276), (295), (281), (298) and (299), we have

V̇ = −sT(t)KDs(t)−sT(t)φ(t)−sT(t)φ1(t)−σ(t)θ̃T
0 (t)θ0(t)

−1
2

sT(t)
∂D(q, t)

∂t
(q̇(t)+v(t))−sT(t)Y(q,qd, q̇, q̇d, q̈d, t)δθ∗(t)

+ ∑
i=1

ãiκ−1
ai ȧi + ∑

i=1
b̃iκ−1

bi ḃi

= −sT(t)KDs(t)−
n

∑
i=1

|si(t)|ai(t)αi −
n

∑
i=1

|si(t)|bi(t)βi −σ(t)θ̃T
0 (t)θ0(t)

−
n

∑
i=1

si(t)gi −
n

∑
i=1

si(t)hi + ∑
i=1

ãiκ−1
ai ȧi + ∑

i=1
b̃iκ−1

bi ḃi

≤−sT(t)KDs(t)−
n

∑
i=1

|si(t)|ai(t)αi −
n

∑
i=1

|si(t)|bi(t)βi −σ(t)θ̃T
0 (t)θ0(t)

+
n

∑
i=1

|si(t)|a∗i αi +
n

∑
i=1

|si(t)|b∗i βi + ∑
i=1

ãiκ−1
ai ȧi + ∑

i=1
b̃iκ−1

bi ḃi

= −sT(t)KDs(t)−σ(t)θ̃T
0 (t)θ0(t)

≤−sT(t)KDs(t). (301)

This result also implies that all signals in the closed-loopsystem are bounded, and
the tracking errore(t) = q(t)−qd(t) converges to zero ast goes to∞.

However, since the adaptive control scheme (295) uses the sgn functions inφ(t)
andφ1(t) and such switching signals are discontinuous whensi(t) passes through
zero, it may lead to chattering of system response.

Remark 5 The adaptive control scheme (295) may have certain advantage for per-
formance even if when the parametersa∗i andb∗i are known. This is because the
parametersa∗i andb∗i are only the upper bounds for the parameter variation uncer-
taintiesgi andhi in (286) and (287), and some smaller (and unknown) bounds may
exist and can be estimated by the adaptive laws (298) and (299). The use of smaller
bounds is desirable because it leads to smaller control signals. In this case, the
adaptive laws (298) and (299) can be modified by setting

ȧi(t) = 0, t ≥ τ if ai(τ) = a∗i , (302)

ḃi(t) = 0, t ≥ τ if bi(τ) = b∗i (303)
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With this modification, we also havėV ≤−sT(t)KDs(t), as desired. 2

Adaptive Control Scheme III

As mentioned above the use of the discontinuous sgn functions in φ(t) andφ1(t)
in the adaptive control scheme (295) may cause chattering ofsystem response. To
overcome possible chattering, we can modify the control law(295) as

u(t) = Y(q,qd, q̇, q̇d, q̈d, t)θ0(t)− φ̂(t)− φ̂1(t)−KDs(t), (304)

φ̂(t) = [sat[s1(t);ε1]a1(t)α1, . . . ,sat[sn(t);εn]an(t)αn]
T , (305)

φ̂1(t) = [sat[s1(t);η1]b1(t)β1, . . . ,sat[sn(t);ηn]bn(t)βn]
T , (306)

where the sat function is defined as

sat[si;xi] =






1 if si > xi,
si
xi

if |si| ≤ xi ,

−1 if si < −xi

(307)

for some chosenxi > 0 (for xi = εi or xi = ηi in (305) and (306)),i = 1,2, . . . ,n,
with the associated indicator functions

χ[si;xi] =

{
1 if |si| > xi,

0 if |si| ≤ xi.
(308)

Such functions have the property:χ[si;xi](1− χ[si;xi]) = 0 (that is,χ[si;xi] = 0
whenever 1−χ[si;xi] = 1, andχ[si;xi] = 1 whenever 1−χ[si;xi] = 0).

The adaptive laws are also modified as

ȧi(t) = χ[si;εi]κai|si(t)|αi(q, q̇,qd, q̇d, t), κai > 0, i = 1,2, . . . ,n, (309)

ḃi(t) = χ[si;ηi]κbi|si(t)|βi(q, q̇,qd, q̇d, q̈d, t), κbi > 0, i = 1,2, . . . ,n. (310)

With this modification, we have

V̇ = −sT(t)KDs(t)−sT(t)φ̂(t)−sT(t)φ̂1(t)−σ(t)θ̃T
0 (t)θ0(t)

−1
2

sT(t)
∂D(q, t)

∂t
(q̇(t)+v(t))−sT(t)Y(q,qd, q̇, q̇d, q̈d, t)δθ∗(t)

+ ∑
i=1

ãiκ−1
ai ȧi + ∑

i=1
b̃iκ−1

bi ḃi

= −sT(t)KDs(t)−
n

∑
i=1

si(t)sat[si;εi]ai(t)αi −
n

∑
i=1

si(t)sat[si;ηi]bi(t)βi
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−
n

∑
i=1

si(t)gi −
n

∑
i=1

si(t)hi + ∑
i=1

ãiκ−1
ai ȧi + ∑

i=1
b̃iκ−1

bi ḃi −σ(t)θ̃T
0 (t)θ0(t)

≤−sT(t)KDs(t)−
n

∑
i=1

si(t)sat[si;εi]ai(t)αi −
n

∑
i=1

si(t)sat[si;ηi]bi(t)βi

+
n

∑
i=1

|si(t)|a∗i αi +
n

∑
i=1

|si(t)|b∗i βi + ∑
i=1

ãiκ−1
ai ȧi + ∑

i=1
b̃iκ−1

bi ḃi −σ(t)θ̃T
0 (t)θ0(t)

= −sT(t)KDs(t)−
n

∑
i=1

(1−χ[si;εi])si(t)sat[si;εi]ai(t)αi

−
n

∑
i=1

(1−χ[si;ηi])si(t)sat[si;ηi]bi(t)βi +
n

∑
i=1

(1−χ[si;εi ])|si(t)|a∗i αi

+
n

∑
i=1

(1−χ[si;ηi])|si(t)|b∗i βi −σ(t)θ̃T
0 (t)θ0(t). (311)

This modified scheme would ensure the closed-loop signal boundedness but not
the asymptotic convergence of the tracking errore(t) = q(t)−qd(t) to zero (only a
bounded tracking errore(t) = q(t)−qd(t) of the orderεi andηi).
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Derivation of (10.152)

In this case, the expression (5.30) also holds

u(t) = φ∗T
1

a(s)
Λ(s)

[u](t)+φ∗T
2

a(s)
Λ(s)

[y](t)+φ∗20y(t)+φ∗3Pm(s)[y](t) (312)

(with θ∗i replaced byφ∗i as the new notation and the exponentially decaying term
ε1(t) ignored). Recall (10.39):

u(t) = ud(t)+(θ−θ∗)Tω(t)+dN(t) (313)

and (10.15) (withas(t) = 0 for simplicity):

ud(t) = −θT(t)ω(t) (314)

from which we have
u(t) = −θ∗Tω(t)+dN(t). (315)

Using (313) foru(t) in the left side of (312) and (315) foru(t) in the right side of
(312), we obtain

ud(t)+(θ−θ∗)Tω(t)+dN(t)

= φ∗T
1

a(s)
Λ(s)

[−θ∗Tω+dN](t)+φ∗T
2

a(s)
Λ(s)

[y](t)+φ∗20y(t)+φ∗3Pm(s)[y](t).(316)

Subtracting (316) from (10.151) and recalling (10.148), wehave (10.152).
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Backstepping Design with Nonsmooth Inverse Signal

For an adaptive inverse control scheme using a backsteppingfeedback design for
the output-feedback nonlinear systems (see Section 10.6.3), the nonlinearity inverse
signalω(t) in (10.280), defined in (10.21) or (10.35) for the case of an adaptive
dead-zone inversêDI(·) or an adaptive backlash inversêBI(·), is not smooth (it is
not even continuous; but it is well-defined). A backstepping-based feedback control
design needs certain smoothness condition. Will the nonsmoothness ofω(t) cause
any problem? The answer is “no”. It turns out that the use of filters in the state
observer helps to avoid the potential difficulty with nonsmoothness of such signals
in a backstepping design.

Starting from (10.277), (10.283) and (10.284), we see that the nonsmooth signal

ω(t) passes the filterspi j (s)
Λ(s) , where pi j (s)

Λ(s) are the components of(sI−A0)
−1 for

A0 = A− kc with k = [k1,k2, . . . ,kn]
T and (A, c) in (10.272). This means that only

the signalsωi j (t) in (10.285) are associated with the nonsmooth signalω(t). In fact,
it is the signal ˆx2(t) defined in (10.128) that plays a key role in the backstepping
design procedure, that is, only those of the signalsωi j (t), for i = 0,1, . . . ,m and
j = 2, are crucial in the backstepping design.

From the canonical form ofA andc, we can obtain

p02(s) = s+k1, p12(s) = s(s+k1), p22(s) = s2(s+k1), . . . ,

pn−2,2(s) = sn−2(s+k1), pn−1,2(s) = −k2sn−2−k3sn−3−·· ·−kn−1s−kn.(317)

This calculation can be verified by using the symbolic algebra operations in Matlab.
For example, forn = 5, we can use

a=sym(’[s+k1, -1, 0, 0, 0; k2, s, -1, 0, 0;
k3, 0, s, -1, 0; k4, 0, 0, s, -1; k5, 0, 0, 0, s]’)
b=inv(a)
c=symmul(det(a),b)

to get the numerator matrix of(sI−A0)
−1 as

[sˆ4, sˆ3, sˆ2,
s, 1]

[-sˆ3 * k2-k3 * sˆ2-k4 * s-k5, sˆ3 * (s+k1), sˆ2 * (s+k1),
(s+k1) * s, s+k1]

[-s * (k3 * sˆ2+k4 * s+k5),-k3 * sˆ2-k4 * s-k5,sˆ2 * (k2+sˆ2+s * k1),
s* (k2+sˆ2+s * k1), k2+sˆ2+s * k1]

[-sˆ2 * (k4 * s+k5), -s * (k4 * s+k5), -k4 * s-k5,
s* (k2 * s+k3+sˆ3+sˆ2 * k1), k2 * s+k3+sˆ3+sˆ2 * k1]
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[-k5 * sˆ3, -k5 * sˆ2, -k5 * s,
-k5, sˆ4+k1 * sˆ3+k2 * sˆ2+k3 * s+k4]

In the backstepping design procedure, the derivativesω( j)
i2 (t), i = 0,1, . . . ,m,

j = 0,1, . . . ,ρ−1, are needed, whereρ = n−m. For the case ofρ = n−m= 1, no
derivative ofωi2(t) is used. Forρ = n−m≥ 2, the highest degree ofsρ−1pi2(s),
i = 0,1, . . . ,m−1, is ρ−1+m= n−1, and the degree ofsρ−1pm2(s) is n, so that
sρ−1pi2(s)

Λ(s) , i = 0,1, . . . ,m−1, are strictly proper, ands
ρ−1pm2(s)

Λ(s) is proper. Therefore,

the signalsω( j)
i2 (t), i = 0,1, . . . ,m, j = 0,1, . . . ,ρ−1, are well-defined, and so all

other signals related the inverse signalω(t) in the backstepping design procedure,
that is, the nonsmoothnessω(t) does not cause any problem for the backstepping-
based adaptive inverse control scheme.


