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Corrections, Remarks and References

• On page 22, (2.31) defines a set ofm0+1 functionsVp for all m0+1 failure patternsσ (including
σ = 0 for the no-failure pattern), and their matching parameters k∗1 j , k∗2 j andk∗3 j are fixed at the
valuesk∗1 j(i), k∗2 j(i) andk∗3 j(i), for all t ≥ 0, e.g., for the first functionV0 (the no failure case),
k∗1 j , k∗2 j andk∗3 j arek∗1 j(0), k∗2 j(0) andk∗3 j(0), for all t ≥ 0; for the next functionV1 (if one failure
occurred) orV2 (if two failures occurred) orV3 (if three failures occurred),k∗1 j , k∗2 j andk∗3 j are
k∗1 j(1), k∗2 j(1) andk∗3 j(1), for all t ≥ 0; and so on.

With this definition, the functionsVp are continuous functions for allt ≥ 0.

• On page 24, line 4, “It can also be verified” should be “If ˙r(t) is also bounded, then it can be
verified”.

• On page 25, in (2.46), “(k3i(t)− k∗3i(0))” should be “(k3i(t)− k∗3i(0))
2”, and in (2.47), “(k3i(t)−

k∗3i(1))” should be “(k3i(t)−k∗3i(1))
2”.

• On page 72, (3.73) should be
αi j = cĀn∗−1b j .

• Remark: On pages 71 and 72, the proof of Lemma 3.2.1, for the case whencĀn∗−1bi = αii 6= 1,
can also be obtained with the following minor changes:

c(sI− Ā)−1biPm(s) = αii (64)

c(sI− Ā)−1bi =
sn−n∗ +cn−n∗sn−n∗−1 + · · ·+c2s+c1

sn +ansn−1 + · · ·+a2s+a1
αii (67)

cĀkbi =
αii

αi j
cĀkb j = 0, k = 0,1, . . . ,n∗−2 (72)

αi j = cĀn∗−1b j (73)

cĀn∗−1bi =
αii

αi j
cĀn∗−1b j (74)

cĀkbi =
αii

αi j
cĀkb j (75)

cĀk(bi −
αii

αi j
b j) = 0,k = 0,1, . . . ,n−1 (76)

Using this result and applying (3.60)) toc(sI− Ā)−1(bi −
αii
αi j

b j), we obtain

c(sI− Ā)−1
(

bi −
αii

αi j
b j

)

= 0. (77)

In view of (3.58), we see that (3.77) is equivalent to (3.59):c(sI−A−bik∗T
1i )−1b j = αi jWm(s).

This result is true for allj = 1,2, . . . ,m, j 6= i.
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• Remark: On pages 71 and 72, the proof ot Lemma 3.2.1 is given based on acontrollable canon-
ical form realization (A, bi, c) and the fact that (A, bi , c) and (A, b j , c) have the same relative
degreen∗. The result of the lemma leads to

c(sI−A−bik
∗T
1i )−1[bi fi +b ju j ](t) = Wm(s)αii [ fi](t)+Wm(s)αi j [u j ](t)

for two signalsfi(t) andu j(t), asc(sI−A−bik∗T
1i )−1bi = Wm(s)αii andc(sI−A−bik∗T

1i )−1b j =

Wm(s)αi j , for αii = c(A+bik∗T
1i )n∗−1bi andαi j = c(A+bik∗T

1i )n∗−1b j as verified in the proof.

When (A, bi , c) is not in the controllable canonical form realization but (A, bi, c) and (A, b j ,
c) have the same relative degreen∗, there is a transformation matrixT such thatAc = T−1AT,
bic = T−1bi andcc = cT are in in the controllable canonical form realization, so that

c(sI−A−bik
∗T
1i )−1[bi fi +b ju j ](t)

= cc(sI−Ac−bick∗T
1ic)

−1[bic fi +T−1b ju j ](t),

wherek∗T
1ic = k∗T

1i T. Since (Ac, bic, cc) and (Ac, T−1b j , cc) have the same relative degree and (Ac,
bic, cc) is the controllable canonical form realization, we also have

c(sI−A−bik
∗T
1i )−1[bi fi +b ju j ](t) = Wm(s)αii [ fi](t)+Wm(s)αi j [u j ](t).

• Remark: From Lemma 3.2.1, we can see that

c(sI−A−bik
∗T
1i )−1bi =

1
k∗2iPm(s)

= −c(sI−A−bik
∗T
1i )−1b j

1
k∗3i

have the same zeros. This can be verified as follows. Fromc(sI−A−bik∗T
1i )−1bi = 1

k∗2iPm(s) , it

follows that there aren−n∗ poles ofĀ = A+bik∗T
1i (those different from the zeros ofPm(s)) are

made unobservable byk∗1i at y(t) = cx(t) (that is, (c, A+bik∗T
1i ) hasn−n∗ unobservable poles),

given that (A+bik∗T
1i , bi) is controllable as (A, bi) is controllable and the state feedback gaink∗1i

does change the controllability of (A+bik∗T
1i , bi) and (A, bi). This implies that

c(sI−A−bik
∗T
1i )−1b j =

Pj(s)

Pm(s)

for some polynomialPj(s) of degreen∗−1 or less.

From the condition thatcAkbi = 0, cAkb j = 0, k = 0,1, . . . ,n∗−2, we have

cĀkb j = c(A+bik
∗T
1i )(A+bik

∗T
1i )k−1b j = cA(A+bik

∗T
1i )k−1b j = · · · = cAkb j = 0

for k = 0,1, . . . ,n∗−2, and from the additional condition thatcAn∗−1b j 6= 0, that

cĀn∗−1b j = cA(A+bik
∗T
1i )n∗−2b j = · · · = c(An∗−1 +An∗−2bik

∗T
1i )b j = cAn∗−1b j 6= 0.

From (3.60)–(3.62), the degree ofN(s) for b = b j is n−n∗, that is, the degree ofPj(s) is 0.

This remark actually gives a simpler proof of Lemma 3.2.1.

The case when the degree ofPj(s) is larger than 0 corresponds to the case when the relative
degree of (A, b j , c) is less thann∗, that is, whencĀkb j 6= 0 for somek < n∗−1.
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What if the relative degree of (A, b j , c) is larger thann∗, e.g.,cAn∗−1b j = 0 in addition, so that

cĀn∗−1b j = cA(A+bik
∗T
1i )n∗−2b j = · · · = c(An∗−1 +An∗−2bik

∗T
1i )b j = cAn∗−1b j = 0,

in addition tocĀkb j = c(A+ bik∗T
1i )kb j = 0 for k = 0,1, . . . ,n∗ − 2. In this case, it follows

from (3.69):c(Ān∗ +a∗n∗Ā
n∗−1 +a∗n∗−1Ān∗−2 + · · ·+a∗2Ā+a∗1I) = 0, thatcĀn∗b j = 0. Similarly,

cĀkb j = 0 for k = n∗ +1, . . . ,n−1, so thatN(s) = 0 in (3.62) withb = b j , that is,Pj(s) = 0 or
c(sI−A−bik∗T

1i )−1b j = 0. Thus, we have the result:

Proposition 1 Assume that(A,bi) is controllable and there are k∗1i ∈ Rn and k∗2i ∈ R such that

c(sI−A−bik
∗T
1i )−1bik

∗
2i = Wm(s) =

1
Pm(s)

where Pm(s) is a monic polynomial of degree n∗. Then, (i) for any bj ∈ Rn such that the relative
degree of (c, A, bj ) is n∗1 < n∗, there is a polynomial Pj(s) of degree n∗−n∗1 such that

c(sI−A−bik
∗T
1i )−1b j =

Pj(s)

Pm(s)
;

and (ii) for any bj ∈ Rn such the relative degree of (c, A, bj ) is n∗2 > n∗, it follows that

c(sI−A−bik
∗T
1i )−1b j =

0
Pm(s)

= 0.

Note thatcĀn∗b j = 0 means that

cĀn∗b j = cA(A+bik
∗T
1i )n∗−1b j = · · · = c(An∗ +An∗−1bik

∗T
1i )b j = cAn∗b j +cAn∗−1bik

∗T
1i b j = 0.

A direct proof ofcAn∗b j +cAn∗−1bik∗T
1i b j = 0 may not be simple.

• On page 72, after (3.75), “k = n∗ to k = n−1” should be “k = n∗ to k = n−1”.

• On page 78, (3.112) should be

f ∗i (t) = ∑
j 6=i

−
αi j

αii
u j(t).

• On page 79, the last sentence of the paragraph above (3.113) is so stated for the problem of “up
to m−1” actuator failures, which implies that(c,A,b j), j = 1,2, . . . ,m, all have relative degree
n∗, a condition needed for the matching equation (3.116) (the corrected version; see below).

For the problem of totally less thanm− 1 actuator failures, the condition that(c,A,b j), j =
1,2, . . . ,m, all have relative degreen∗ needs to be explicitly stated.

• On page 80, (3.116) should be

c

(

sI−A− ∑
j 6= j1,..., jp

b jk
∗T
11

)−1[

∑
j 6= j1,..., jp

b j f ∗1 + ∑
j= j1,..., jp

b ju j

]

(t) = 0.
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• Remark: In this equation,Ā
△
= A+ ∑ j 6= j1,..., jp bik∗T

11 is the nominal closed-loop system charac-
teristic matrix for a desired nominal valuek∗11 of the gain vectork11, such that

c

(

sI−A− ∑
j 6= j1,..., jp

b jk
∗T
11

)−1

∑
j 6= j1,..., jp

b j = Wm(s)k∗−1
21

(by the closed-loop plant-model matching condition) and

c

(

sI−A− ∑
j 6= j1,..., jp

b jk
∗T
11

)−1

b j = −Wm(s)k∗3 jk
∗−1
21

(by Lemma 3.2.1), where

k∗3 j = −
αi j

αii
, k∗21 =

1
αii

αi j = cĀn∗−1b j andαii = cĀn∗−1∑ j 6= j1,..., jp b j (as from the proof of Lemma 3.2.1).

The controller (3.113) can then be expressed as

v1(t) = v2(t) = · · · = vm(t) = θTω

for some parameter vectorθ which contains all parameters ofk11, k21 and those inf1(t), and a
corresponding vector signalω(t). The same form of the error equation (3.101) can be obtained
with the new notation̄A = A+∑ j 6= j1,..., jp bik∗T

11 andρ∗ = 1/k∗21.

• Remark: For (3.47), with the designs of Chapter 3, if the relative degree of(A,bi,c) is equal to
the relative degree of(A,b j ,c), thenui can compensate (reject) a time-varying failureu j = ū j(t);
if the relative degree of(A,bi,c) is less than the relative degree of(A,b j ,c), thenui can make
the effect ofu j disappear (using state feedback, which is crucial); and if the relative degree of
(A,bi,c) is larger than the relative degree of(A,b j ,c), thenui can only compensate (reject) a
constant failureu j = ū j = ū j0.

The equal relative degree assumption (A3.2) is needed for the considered problem in which
there can be up tom−1 actuator failures in the system, including the case when mutural failure
compensation of actuators is needed, that is,(A,bi,c) and(A,b j ,c) have to have the same relative
degree, in order for them to be able to compensate for each other’s failure.

• Remark: If the relative degree of(A,bi,c) is larger than the relative degree of(A,b j ,c), thenu j

can compensate (reject) a time-varying failureui = ūi(t) (it can make the effect ofui disappear
by using state feedback). An input filter atu j can make the relative degree of the new(A,b j ,c)
equal to that of(A,bi,c) but this does not help the newu j to deal withui (while u j can still
compensate (reject) a time-varying failureui = ūi(t) but it no longer can make the effect of
ui disappear using state feedback, so it actually decreases the compensation power of the new
u j ). Morever, whenu j fails it fails at the oldu j , andui still can only compensate (reject) a
constant failureu j = ū j = ū j0. Hence, the idea of using an input filter does not relax any failure
compensation condition.

• Remark: For (4.55), if the relative degree ofZi(s)
P(s) is equal to the relative degree ofZ j (s)

P(s) , then

ui can compensate (reject) a time-varying failureu j = ū j(t), if the relative degree ofZi(s)
P(s) is less
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than the relative degree ofZ j (s)
P(s) , thenui can compensate (reject) a time-varying failureu j = ū j(t)

but cannot make the effect ofu j disappear by using output feedback (see page 99), and if the

relative degree ofZi(s)
P(s) is larger than the relative degree ofZ j (s)

P(s) , thenui can only compensate
(reject) a constant failureu j = ū j = ū j0.

Similarly, the equal relative degree assumption in (A4.1) is needed for the considered problem in
which there can be up tom−1 actuator failures in the system, including the case when mutural
failure compensation of actuators is needed.

• On page 98, line 7, “θ∗T
1 ω1(t)” should be “θ∗T

1
a(s)
Λ(s)”.

• On page 98, line 10, “(3.7)” should be “(3.47)”.

• On page 98, line 14, “tracking” should be “tracks”.

• Remark: On page 46, for the conditions (2.166)–(2.168), if they hold for q = 1, then they also
hold for m> q ≥ 1. In other words, if anym−q failures can be compensated, then anym− i
failures can be compensated for everyi = q+1,q+2, . . . ,m−1 (andi = m, the no failure case).

• Remark: On page 99, line 5,Pi(s) is a monic polynomial of degreen∗−1, satisfiesΛ(s)Pm(s)
P(s) =

Pi(s)+ R(s)
P(s) for some polynomialR(s) of degreen−1 (such thatθ∗T

1 a(s)+θ∗20Λ(s) =−θ∗3R(s)).

• On page 99 and page 100, use the notation “φ∗j ” to replace “θ∗j ” in (4.65), (4.66) and (4.70), and
“ψ j(t)” to replace “ω j(t)” in (4.65), (4.66), (4.69), (4.70), (4.71) and (4.73).

• On page 100, in (4.70), “A(s)” is revised as

A(s) = [Iq+1,sIq+1, . . . ,s
n−2Iq+1]

T .

• On page 101, use the notation “φ∗j ” to replace “θ∗j ” in line 8, (4.78) andθ∗60 (φ∗1, . . . ,φ
∗
m), “ψ j(t)”

to replace “ω j(t)” in line 8, (4.80) (ψ1(t), . . . ,ψm(t)), and “ω60(t)” to replace “ω̄(t)”.

• On page 101, “ω6(t)” in (4.80) is revised as

ω6(t) = [(
A(s)
Λ(s)

[ψ1](t))
T , . . . ,(

A(s)
Λ(s)

[ψm](t))T ]T .

• On page 101, “A(s)” in (4.80) is revised as

A(s) = [Iq+1,sIq+1, . . . ,s
n−2Iq+1]

T .

• Remark: On page 102, after “...limt→∞(y(t)−ym(t)) = 0”, we note the following:

In the parametrization (4.79), the parameter vector dimensions can be reduced. Forθ∗60, since
the first components ofωi(t) (which is ψi(t), under the new notation),i = 1,2, . . . ,m, are all
equal to 1, the corresponding components inθ∗60 can be combined as one single parameter, with
the first components ofωi(t) (or ψi(t)), i = 2, . . . ,m, being deleted from̄ω(t) (which isω60(t),
under the new notation).
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Similarly, for θ∗6 andω6(t), the first components ofA(s)
Λ(s) [ψi](t), i = 1,2, . . . ,m, are all the same

(which converges to the constant1Λ(0) and can be replaced by1
Λ(0) in the design), and the cor-

responding components inθ∗6 can be combined as one single parameter, with the first compo-

nents ofA(s)
Λ(s) [ψi](t), i = 2, . . . ,m, being deleted fromω6(t). The(k(q+1)+1)th components of

A(s)
Λ(s) [ψi](t), i = 1,2, . . . ,m, are all the same (equal to 0), fork= 1, . . . ,n−2, which can be deleted
from ω6(t), with the corresponding components inθ∗6 being also deleted fromθ∗6.

In the expression (4.53), a more compact form is withq = q j for each j, which can be similarly
handled with a modification to the parametrization (4.79).

• On page 105, line 3, “Gi j (s), i = 1, . . . ,M, j = 1, . . . ,ni, are 1×M vectors” should be “Gi j (s),
i = 1, . . . ,M, j = 1, . . . ,ni, areM×1 vectors”.

• On page 119, in (5.81) and (5.82), “-0.12879” should be “-0.012879” and “0.21326” should be
“0.021326”.

• On page 120, in (5.83), “-0.12879” should be “-0.012879” and“-0.13” should be “-0.013”.

• On page 155, in line 5, change “We segment the elevator into” to “For (7.40), we segment the
elevator into”, and in (7.61), change “B = [b2,b3]” to “ B = [b1,b2]”.

• On page 156, in line 14, change “v(t)” to “ v(t) = v0(t)”.

• On page 120, in the line before (5.85), change “no-failure case” to “no-failure case with (5.82)”.

• On page 173, in equation (8.68), “0< γθ < 1
k0

p
” should be “0< γθ < 1”.

• On page 174, equation (8.68) should be

t2

∑
t=t1

(y(t)−ym(t))2 ≤ c1 +c2

t2

∑
t=t1

d2(t)+c3µ2(t2− t1)

• On page 182, in (9.18) and (9.20),u1 should be “Pξ+Sη+cn−ρu1”; below (9.18), add “P∈R1×ρ

andS∈ R1×(n−ρ) are some vectors” and in (9.19),T2 should be:

T2 =















cc

ccAc
...

ccA
ρ−1
c

P















.

• Remark: On page 226, in (10.141), and after, the same notation “θ” is used to denote an un-
known parameter vector, instead of the bitch angle in (10.138) until before (10.141).

• On page 258, line 16, and, on page 261, the last line, “Remark 11.5.1” should be “Remark
11.4.3”
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• The example in Chapter 11, Section 11.4.4, is from

H. Xu and M. Mirmirani, “Robust adaptive sliding control fora class of MIMO nonlinear sys-
tems,”Proceedings of the 2001 AIAA Guidance, Navigation and Control Conference, Montreal,
Canada, August 2001.

with the altitude fixed as a constant so that the system becomea SISO one.

• On page 265, last line, “7–11” should be “7–8”.

• Remark: On page 266, the aircraft models are studied in different chapters:

– Boeing 737 longitudinal dynamics model (elevator/stabilizer failure)
Chapter 7

– Boeing 737 lateral-directional dynamics model (rudder/aileron failure)
Chapter 5

– Boeing 747 lateral-directional dynamics model (rudder failure)
Chapter 2, Chapter 3, Chapter 4, Chapter 8

– DC-8 lateral-directional dynamics model (aileron failure)
Chapter 6

– F-18 wing dynamics model (aileron failure)
Chapter 10

– Twin Otter longitudinal nonlinear dynamics model (elevator failure)
Chapter 10

– a hypersonic aircraft longitudinal nonlinear model (elevator failure).
Chapter 11
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