## **Beginning-of-Course Assessment Memo**

# ECE4850 – Linear Control Systems (Fall 2022)

## **Course Description**:

This course is to explore the modeling of linear dynamic systems via differential equations and transfer functions utilizing state-space and input-output representations; analysis of control systems in the time and frequency domains and using transfer function and state-space methods; study of the classical stability tests, such as the Routh-Hurwitz and Nyquist criterions, and design methods using root-locus plots and Bode plots; and the development of control techniques based on PID, lead and lag networks, using linear state or output feedback (3 credits). (Elective for Electrical and Computer Engineering)

### **Prerequisites**:

ECE3750: ECE Fundamentals III (Signals and Systems), or equivalent.

## **Objectives**:

Study the principles of system modeling, system analysis and feedback control, and use them to design and evaluate feedback control systems with desired performance; specifically, to acquire the related knowledge and techniques to meet the following course objectives:

1. *Control system modeling*: modeling of electric, mechanical and electromechanical systems, using differential equations, transfer functions, block diagrams, and state variables;

2. *Control system analysis*: analysis of properties of control systems, such as sensitivity, stability, controllability, tracking, in time and frequency domains; and

3. *Control system design*: design of feedback controllers, such as PID, lead and lag compensators, pole placement designs, to meet desired system performance specifications.

## **Textbook**:

G. F. Franklin, J. D. Powell and A. Emami-Naeini, *Feedback Control of Dynamic Systems*, 7th ed., Pearson Prentice Hall, Upper Saddle River, NJ, 2014 (or the 6th ed. (2009), or the 8th ed. (2019)) (required).

## Topics:

- 1. Mathematical models of control systems (2 lectures)
- 2. Transfer functions and block diagrams (2 lectures)
- 3. Time-domain responses (2 lectures)
- 4. The Routh-Hurwitz stability criterion (2 lectures)
- 5. Feedback control systems (2 lectures)
- 6. Root-locus techniques (5 lectures)
- 7. Bode plot techniques (2 lectures)
- 8. The Nyquist stability criterion (2 lectures)
- 9. Dynamic compensation in frequency-domain (3 lectures)
- 10. State space analysis and design (4 lectures).

## Instructor:

Dr. Gang Tao, Thornton Hall, Room E311, 924-4586, gt9s@virginia.edu.

## Lecture hours:

11:00 - 12:15pm, Tuesdays and Thursdays

### Additional information:

### Disability accommodations

UVA is committed to creating a learning environment that meets the needs of its diverse student body. If you anticipate or experience any barriers to learning in this course, please feel welcome to discuss your concerns with me. If you have a disability, or think you may have a disability, you may also want to meet with the Student Disability Access Center (SDAC), to request an official accommodation. You can find more information about SDAC, including how to apply online, through their website at

### http://sdac.studenthealth.virginia.edu

If you have already been approved for accommodations through SDAC, please make sure to send me your accommodation letter and meet with me so we can develop an implementation plan together.

### Violence and sexual assault prevention

The University of Virginia is dedicated to providing a safe and equitable learning environment for all students. For information about violence prevention and sexual assault prevention, please see

```
https://notonourgrounds.virginia.edu
https://notonourgrounds.virginia.edu/greendot
https://uvapolice.virginia.edu/sexual-assault
https://eocr.virginia.edu
```

#### Religious accommodations

It is the University's long-standing policy and practice to reasonably accommodate students so that they do not experience an adverse academic consequence when sincerely held religious beliefs or observances conflict with academic requirements.

Students who wish to request academic accommodation for a religious observance should submit their request to me by email as far in advance as possible. If you have questions or concerns about your request, you can contact the University's Office for Equal Opportunity and Civil Rights (EOCR) at UVAEOCR@virginia.edu or 434-924-3200. Accommodations do not relieve you of the responsibility for completion of any part of the coursework you miss as the result of a religious observance.

For information about accommodations for religious observance, please see

https://eocr.virginia.edu/accommodations-religious-observance

### UVa honor system

For information about University of Virginia's honor code, please see

```
http://honor.virginia.edu
https://honor.virginia.edu/frequently-asked-questions
```

In this class, we follow the honor statement suggested in

```
https://honor.virginia.edu/statement
```

In particular, all graded assignments (homeworks, project and tests) should be pledged, and for any homework, project or test, no old or new solution can be consulted before your own solution is turned in. Group discussion is allowed for homeworks only, not for the project and tests.

### ECE4850 – Linear Control Systems (Fall 2021; 3 credits)

## Schedule of Office Hours, Homeworks, Project and Tests

Instructor's office hours: 11:00 - 12:15, Wednesday; 2:00 - 3:15, Thursday.

#### Honor code and solution policy:

All graded assignments (homework, project and test) should be pledged, and for any homework, project or test, no solution can be consulted before your own solution is handed in. Group discussion is allowed for homeworks only, not for the project and tests for which additional guidelines will be given.

#### Late work policy:

Unless an extension has been given <u>ahead of time</u> for special situations, no late project or test will be accepted, and a late homework submission will be subject to penalty: 10% if the submission is up to 12 hours late, 25% if the submission is up to the next 12 hours late, and 100% if the submission is more than 24 hours late. Any grading dispute should be discussed with the instructor and/or the TA as soon as possible and no later than one week, to avoid any potential delay in the next grading and final grade.

Grading policy: Homeworks: 20 %; Test 1: 30 %; Project: 20%; Test 2: 30 %.

Each homework should be submitted in a .pdf document, via email, to Mr. Qianhong Zhao (our teaching assistant), at qz2nv@virginia.edu, by 4:00pm on one selected Thursday (most times) or Tuesday.

Homework 1: Due by 4:00pm, September 1, Thursday.

Homework 2: Due by 4:00pm, September 8, Thursday.

Homework 3: Due by 4:00pm, September 15, Thursday.

Homework 4: Due by 4:00pm, September 22, Thursday.

Homework 5: Due by 4:00pm, September 29, Thursday.

**Reading days**: October 1 - 4 (Saturday - Tuesday)

**Test 1** (Topics 1 - 5): **October 13, Thursday, 6:00 - 8:00pm** (a closed-book test for which only two pages of reference notes are allowed).

Homework 6: Due by 4:00pm, October 20, Thursday.

Homework 7: Due by 4:00pm, October 27, Thursday.

Project: October 27 - November 3 (Thursday - Thursday) (a take-home and open-book project).

Homework 8: Due by 4:00pm, November 10, Thursday.

Homework 9: Due by 4:00pm, November 22, Tuesday.

Homework 10: Due by 4:00pm, December 6, Tuesday.

Test 2 (Topics 7 - 10): December 9, Friday, 10:00am - 12:00pm (an open-book test).

## Homework Assignments Based on the 6th Edition Textbook

**Homework assignments** ("1.1" or "2.9(a)" = "Problem 1.1 or 2.9 part (a) of the 6th edition textbook):

Homework 1 (Topic 1): 1.1, 2.9(a), 2.15(b), (c), 2.20.

**Homework 2** (Topic 2): 3.3(c), 3.7(d) ( $F(s) = \frac{3s^2 + 9s + 12}{(s+1)(s^2 + 5s + 11)}$ ), (i), 2.9(b), 3.15 (the input is  $v_a$ ), 3.20.

**Homework 3** (Topic 3): 3.25, 3.26, 3.28 (<u>hint</u>: using the region  $\omega_1 \le \omega_n \le \omega_2$ ,  $\theta_1 \le \theta \le \theta_2$  containing the given circle), 3.35.

**Homework 4** (Topic 4): 3.42 (<u>hint</u>: KG(s) is an open loop transfer function), 3.43, 3.45.

**Homework 5** (Topic 5): 4.2, 4.31 (<u>hint</u>: for (c), (e) and (g), only evaluate the steady-state value of  $\theta(t)$  for  $w(t) = w_0$  and  $\theta_r(t) = 0$ , and do not determine system type and error constant; for (a), (b), (d), (f), set w(t) = 0; for all parts, check system stability), 4.19, 4.24(a), (b) ( $K = k_p$ ,  $H_f = H_y$ ), (c) (the feedforward case is the open-loop case).

**Homework 6** (Topic 6a): 5.4(c), 5.6(d) (with  $L(s) = \frac{s+3}{s^2(s+10)}$ ), 5.7(a), 5.8(b), 5.41 (for 5.7(a), 5.8(b)).

**Homework 7** (Topic 6b): 5.25, 5.26, 5.30 (<u>hint</u>: for (a), consider a positive *K* for positive feedback and use root locus technique in Matlab).

**Homework 8** (Topics 7 and 8): 6.3(c), (d) (with  $L(s) = \frac{1}{(s+1)^2(s+10)^2}$ ), (e) (with  $L(s) = \frac{10(s+4)}{s(s+1)(s+200)}$ ), (h) (with  $L(s) = \frac{4s(s+10)}{(s+100)(s+500)}$ ) (hint: obtain the Bode plots by Matlab), 6.17(b), 6.19(a)-(d) (hint: for (a)-(b), also draw Nyquist plot of G(s) by hand using our method and verify it by Matlab; for (d), find the range of K for 1 + KG(s) to have all zeros stable, using our method).

For 6.3(c) and (e), also figure out the gain margin and phase margin at K = 1, for the closed-loop unity negative feedback system with open-loop transfer function KL(s). Also, for each case, examine the closed-loop stability for K = 1. You may use the "grid" command on the Bode plots to make it easy to figure out the numbers; note that the amplitude Bode plots from Matlab are given in db:  $20 \log |L(j\omega)|$ , e.g.,  $20 \log(1) = 0$ , and you need to figure out the original  $|L(j\omega)|$ .

Homework 9 (Topic 9): 6.49, 6.50.

*Additional problems*: (1) Draw the Nyquist plot of  $G(s) = \frac{s+5}{(s-2)(s-4)}$  by hands, and find the range of *K* for the system  $\frac{KG(s)}{1+KG(s)}$  to be stable (you may use Matlab to verify your results) (<u>hint</u>: use the procedure in the lecture notes). (2) Repeat the above work for  $G(s) = \frac{(s+3)(s+5)}{(s-2)(s-4)}$ .

**Homework 10** (Topic 10): 7.17(b), 7.20, 7.21 (<u>hint</u>:  $y = x_1$ ), 7.30(a), 7.48(a), (b), (c).

## Homework Assignments Based on the 7th Edition Textbook

**Homework assignments** ("1.1" or "2.8(a)" = "Problem 1.1 or 2.8 part (a) of the 7th edition textbook):

Homework 1 (Topic 1): 1.1, 2.8(a), 2.15(b), (c), 2.20.

**Homework 2** (Topic 2): 3.3(c), 3.7(d) ( $F(s) = \frac{3s^2 + 9s + 12}{(s+1)(s^2 + 5s + 11)}$ ), (i), 2.8(b), 3.15 (the input is  $v_a$ ), 3.20.

**Homework 3** (Topic 3): 3.27, 3.28, 3.31 (<u>hint</u>: using the region  $\omega_1 \le \omega_n \le \omega_2$ ,  $\theta_1 \le \theta \le \theta_2$  containing the given circle), 3.42.

**Homework 4** (Topic 4): 3.53 (<u>hint</u>: KG(s) is an open loop transfer function), 3.54, 3.56.

**Homework 5** (Topic 5): 4.2, 4.34 (<u>hint</u>: for (c), (e) and (g), only evaluate the steady-state value of  $\theta(t)$  for  $w(t) = w_0$  and  $\theta_r(t) = 0$ , and do not determine system type and error constant; for (a), (b), (d), (f), set w(t) = 0; for all parts, check system stability), 4.21, 4.27(a), (b) ( $K = k_p$ ,  $H_f = H_y$ ), (c) (the feedforward case is the open-loop case).

**Homework 6** (Topic 6a): 5.4(d), 5.6(d) (with  $L(s) = \frac{s+3}{s^2(s+10)}$ ), 5.7(a), 5.8(b), 5.42 (for 5.7(a), 5.8(b)).

**Homework 7** (Topic 6b): 5.25, 5.26, 5.30 (<u>hint</u>: for (a), consider a positive *K* for positive feedback and use root locus technique in Matlab).

**Homework 8** (Topics 7 and 8): 6.3(c), (d), (e) (with  $L(s) = \frac{10(s+4)}{s(s+1)(s+200)}$ ), (h) (<u>hint</u>: obtain the Bode plots by Matlab), 6.17(b), 6.19(a)-(d) (<u>hint</u>: for (a)-(b), also draw Nyquist plot of G(s) by hand using our method and verify it by Matlab; for (d), find the range of *K* for 1 + KG(s) to have all zeros stable, using our method).

For 6.3(c) and (e), also figure out the gain margin and phase margin at K = 1, for the closed-loop unity negative feedback system with open-loop transfer function KL(s). Also, for each case, examine the closed-loop stability for K = 1. You may use the "grid" command on the Bode plots to make it easy to figure out the numbers; note that the amplitude Bode plots from Matlab are given in db:  $20 \log |L(j\omega)|$ , e.g.,  $20 \log(1) = 0$ , and you need to figure out the original  $|L(j\omega)|$ .

### Homework 9 (Topic 9): 6.49, 6.50.

*Additional problems*: (1) Draw the Nyquist plot of  $G(s) = \frac{s+5}{(s-2)(s-4)}$  by hands, and find the range of *K* for the system  $\frac{KG(s)}{1+KG(s)}$  to be stable (you may use Matlab to verify your results) (<u>hint</u>: use the procedure in the lecture notes). (2) Repeat the above work for  $G(s) = \frac{(s+3)(s+5)}{(s-2)(s-4)}$ .

**Homework 10** (Topic 10): 7.17(b), 7.21, 7.22 (<u>hint</u>:  $y = x_1$ ), 7.31(a), 7.49(a), (b), (c).

### ECE4850 – Linear Control Systems (Fall 2022; 3 credits)

## Homework Assignments Based on the 8th Edition Textbook

**Homework assignments** ("1.1" or "2.8(a)" = "Problem 1.1 or 2.8 part (a) of the 6th edition textbook):

**Homework 1** (Topic 1): 1.1, 2.8(a), 2.17(b), (c), 2.22.

**Homework 2** (Topic 2): 3.3(c), 3.7(d), (i), 2.8(b), 3.14 (the input is *v<sub>a</sub>*), 3.19.

**Homework 3** (Topic 3): 3.26, 3.27, 3.30 (<u>hint</u>: using the region  $\omega_1 \le \omega_n \le \omega_2$ ,  $\theta_1 \le \theta \le \theta_2$  containing the given circle), 3.41.

**Homework 4** (Topic 4): 3.52 (<u>hint</u>: KG(s) is an open loop transfer function), 3.53, 3.55.

**Homework 5** (Topic 5): 4.2, 4.44 (<u>hint</u>: for (c), (e) and (g), only evaluate the steady-state value of  $\theta(t)$  for  $w(t) = w_0$  and  $\theta_r(t) = 0$ , and do not determine system type and error constant; for (a), (b), (d), (f), set w(t) = 0; for all parts, check system stability), 4.21, 4.27(a), (b) ( $K = k_p$ ,  $H_f = H_y$ ), (c) (the feedforward case is the open-loop case).

Homework 6 (Topic 6a): 5.4(d), 5.6(d), 5.7(a), 5.8(b), 5.42 (for 5.7(a), 5.8(b)).

**Homework 7** (Topic 6b): 5.24, 5.25, 5.29 (<u>hint</u>: for (a), consider a positive *K* for positive feedback and use root locus technique in Matlab).

**Homework 8** (Topics 7 and 8): 6.3(c), (d), (e), (h) (<u>hint</u>: obtain the Bode plots by Matlab), 6.17(b), 6.19(a)-(d) (<u>hint</u>: for (a)-(b), also draw Nyquist plot of G(s) by hand using our method and verify it by Matlab; for (d), find the range of *K* for 1 + KG(s) to have all zeros stable, using our method).

For 6.3(c) and (e), also figure out the gain margin and phase margin at K = 1, for the closed-loop unity negative feedback system with open-loop transfer function KL(s). Also, for each case, examine the closed-loop stability for K = 1. You may use the "grid" command on the Bode plots to make it easy to figure out the numbers; note that the amplitude Bode plots from Matlab are given in db:  $20 \log |L(j\omega)|$ , e.g.,  $20 \log(1) = 0$ , and you need to figure out the original  $|L(j\omega)|$ .

Homework 9 (Topic 9): 6.49, 6.50.

*Additional problems*: (1) Draw the Nyquist plot of  $G(s) = \frac{s+5}{(s-2)(s-4)}$  by hands, and find the range of *K* for the system  $\frac{KG(s)}{1+KG(s)}$  to be stable (you may use Matlab to verify your results) (<u>hint</u>: use the procedure in the lecture notes). (2) Repeat the above work for  $G(s) = \frac{(s+3)(s+5)}{(s-2)(s-4)}$ .

**Homework 10** (Topic 10): 7.17(b), 7.21, 7.22 (<u>hint</u>:  $y = x_1$ ), 7.31(a), 7.49(a), (b), (c).