Stat Learn & Graph Models HW 4

Due date: 11/28/2017

Total points: $100 + 15^*$ UG grading : $\min(p, 100)$ Grad grading : $\min(p, 110)/110 \times 100$ where p is the points obtained in the HW.

Problem 1 Classification with Poisson Class-conditionals

(15 pts, 5 pts/part) Consider a classification problem with

$$p(y = 0) = \pi_0$$

$$p(y = 1) = \pi_1$$

$$p(x|y = 0) = \frac{\lambda_0^x e^{-\lambda_0}}{x!}$$

$$p(x|y = 1) = \frac{\lambda_1^x e^{-\lambda_1}}{x!}$$

where x is a nonnegative integer, y is 0/1-binary, and $\pi_0 + \pi_1 = 1$.

- a) Assuming a dataset $\{(x_i, y_i)\}_{i=1}^N$, find the maximum likelihood estimates for λ_0 and λ_1 .
- b) Prove that the p(y = 1|x) has the logistic form. That is $p(y = 1|x) = \frac{1}{1+e^{-\beta^T \tilde{x}}}$, where $\tilde{x} = (1, x)^T$ and $\beta = (\beta_0, \beta_1)^T$. Determine β_0 and β_1 .
- c) Determine the decision boundary.

Problem 2 The gradient for Logistic Regression

(10 pts) Consider the logistic regression model in which $p(y|x) = \mu(x)^y (1 - \mu(x))^{1-y}$, where $\mu(x) = \frac{1}{1 + e^{-\beta^T x}}$. The goal is to find the ML estimate for β , based on the dataset $\{(x_i, y_i)\}_{i=1}^N$. Let $\mu_i = \mu(x_i)$. The log-likelihood function is

$$\ell(\beta) = \sum_{i=1}^{N} (y_i \ln \mu_i + (1 - y_i) \ln(1 - \mu_i))$$

Prove that $\nabla_{\beta} \ell(\beta) = \sum_{i=1}^{N} (y_i - \mu_i) x_i$.

Problem 3 EM vs. ML

(25 pts, 5 pts/part) (Capital letters denote random variables.) We saw in our in-class activity that if X = S + N, where $S \sim \mathcal{N}(0, \theta)$ and $N \sim \mathcal{N}(0, \sigma^2)$, with σ^2 known and $\theta > 0$ but unknown, the new EM estimate for θ when X = x is

$$\theta'' = E[S^2|X = x, \theta']$$

- a) Argue that the pair (S, X) is jointly Gaussian. (Hint: Two random variables are jointly Gaussian if every linear combination of the two is Gaussian.)
- b) Find the mean vector and the covariance matrix of this joint distribution.

- c) Find the distribution for $S|X = x, \theta$, using the following fact. If Y and Z are zero-mean and jointly Gaussian, then Y|Z = z has distribution $\mathcal{N}(a, b)$, where $a = \frac{Cov(Y,Z)}{Var(Z)}z$ and $b = Var(Y) \frac{Cov(Y,Z)^2}{Var(Z)}$.
- d) Let $f(\theta) = \left(\frac{\theta x}{\theta + \sigma^2}\right)^2 + \frac{\theta \sigma^2}{\theta + \sigma^2}$. Use the previous part to show that

$$E[S^2|X = x, \theta'] = f(\theta').$$

This means that $\theta'' = f(\theta')$.

e) Show that $\theta = x^2 - \sigma^2$ (the solution with direct ML approach) is a stationary point of $f(\theta)$, if $x^2 \ge \sigma^2$.

Problem 4 EM

(35 pts) Suppose that we have K coins numbered $1, \ldots, K$. The probability of heads for coin k is τ_k . We perform the following N experiments. In experiment *i*, we pick a coin at random, where coin k is chosen with probability π_k . We don't actually know which coin we have picked (hidden data). We toss the coin and record $x_i = 1$ if head shows and $x_i = 0$ otherwise (observed data). Let $\theta = (\pi, \tau)$ determine the (unknown) parameter set. Find the EM recursion for θ .

Hint: Define the random vector Y_i that determines which coin is chosen in experiment *i* as a binary vector of length *K*. If coin *k* is chosen in experiment *i*, all coordinates of Y_i are zero except the *k*th coordinate, which is equal to 1.

Problem 5 Non-negativity of the Relative Entropy

a) (8 pts) The log-sum inequality states that for nonnegative numbers a_1, \ldots, a_n and b_1, \ldots, b_n ,

$$\sum_{i=1}^n a_i \log \frac{a_i}{b_i} \ge \left(\sum_{i=1}^n a_i\right) \log \frac{\sum_{i=1}^n a_i}{\sum_{i=1}^n b_i},$$

with equality if and only if $\frac{a_i}{b_i} = \text{const.}$ Prove it using the Jensen inequality: For a convex function f and a random variable X, $f(EX) \leq Ef(X)$, and, moreover, if f is strictly convex, equality holds if and only if X is constant.

b) (7 pts) Using the log-sum inequality prove that $D(p||q) \ge 0$, for two distributions p and q, with equality if and only if $p \equiv q$.

Problem 6 MMSE Estimators

(15 pts^{*}) (Random variables shown by capital letters.) Suppose that X, Y are random variables with the joint pdf

$$f(x,y) = \begin{cases} x+y, & 0 \le x, y \le 1, \\ 0, & else \end{cases}$$

Find the linear and unconstrained estimators for Y if X = x is known.