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Chapter 0

Review of Probability

In this chapter, we will review some concepts from probability theory and linear algebra that will
be useful in the rest of the course. For an excellent review of probability see [1], which also has
many examples.

0.1 What is probability?
Probability is a branch of mathematics that deals with sets, and functions that assign real values
to those sets, in a way that certain axioms are satisfied. Note that this may or may not correspond
to our models of the real world. In that sense, probability is similar to geometry, number theory,
etc.

0.1.0.1 Definitions:

Assuming an experiment with different possible outcomes, consider the following definitions.1

• Ω: the sample space, the set of all possibilities (outcomes)

• E ⊆ Ω: an event, i.e., a set of outcomes

• Pr : A function from subsets of Ω to R. Pr(E) is the probability of the event E.

0.1.0.2 Axioms:

• Pr(E) ≥ 0 for all E ⊆ Ω.

• Pr(Ω) = 1

• Pr(E1 ∪ E2) = Pr(E1) + Pr(E2) if E1 ∩ E2 = ∅.

Based on these axioms, many theorems and other results can be proven. For A,B ⊆ Ω:
1These definitions and the following axioms are simplified. We cannot always assign probability to all subsets of

Ω. Also, for the third axiom, for any countable sequence of mutually exclusive events E1, E2, . . . , we require that
Pr(
⋃∞
i=1) =

∑∞
i=1 Pr(Ei).

6
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• If A ⊆ B, then Pr(A) ≤ Pr(B).

• Pr(A ∪B) = Pr(A) + Pr(B)− Pr(A ∩B).

More definitions for basic concepts:

• Two events A and B are independent, denoted A ⊥⊥ B, if Pr(A ∩B) = Pr(A) Pr(B).

• If Pr(B) 6= 0, the conditional probability of A given B is defined as

Pr(A|B) =
Pr(A ∩B)

Pr(B)
.

• Random variables, distributions, expected value, ...

What these theorems and definitions ‘mean’ depends on what we think probability means.

0.1.0.3 Interpretations of probability

Probability is the most important concept
in modern science, especially as nobody
has the slightest notion what it means.

Bertrand Russell

How do we assign probability to events? What does it mean, for example, to say that Pr(E) = 1/3?

• Frequentist interpretation: Assuming that there is a “random” experiment that can be re-
peated many times for which E is an event, the relative “frequency” of E occurring is 1/3.

– Probability of heads for a fair coin: Pr(H) = 1/2. As odds this is represented as 1:1
(happening : not happening)

– Probability distribution of the number N of children (≤ 18) of a randomly chosen
American household:

Pr(N = 0) Pr(N = 1) Pr(N = 2) Pr(N ≥ 3)

1970 0.442 0.182 0.174 0.203
2008 0.541 0.195 0.169 0.095

• Bayesian interpretation: probability indicates the degree of belief in a way that is consistent
with the axioms. This allows us to consider events that are, strictly-speaking, not random.

– Pr(Heads) = 1/2 (both Bayesian and frequentist)

– Pr(Stock market will hit a certain threshold this year)

– Pr(Nuclear war this century)

– Pr(A certain person is guilty of a given crime)

Different interpretations lead to different approaches to problems, potentially leading to different
real-life decisions.

Farzad Farnoud 7 University of Virginia
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0.2 Sets and their sizes
Finding the probability of an event is easiest when all outcomes are equally likely. In such cases, if
we can measure the size of the set of desirable outcomes A, dividing that by the size of the sample
space, will yield the probability,

Pr(A) =
|A|
|Ω| ,

where |A| denotes the size of the set A.

Definition 0.1. A set A is finite if there is a natural number n such that the number of elements
in A is less than n. Otherwise, it is infinite. If the elements of A can be counted, i.e., there is a one-
to-one function from A to natural numbers, then A is countable. Otherwise, it is uncountable.
A countable set may be finite (e.g., {1, 5, 6}) or infinite (e.g., integers, prime numbers, rational
numbers).

If A is finite, we define its size (aka, cardinality) as the number of elements. This requires us to be
able to count:

• Sum rule: If an action can be performed in m ways and another action can be performed in
n ways, and further if we can choose which action to perform, in total we have m+n options.

• Product rule: If the first action can be performed in m ways and the second action can be
performed in n ways, and further if we must perform both actions in order, in total we have
m× n options.

• Permutations: The number of ways we can arrange n objects is n! = 1× 2× · · · × n.
• Combinations: The number of ways we can choose k objects from a set of n objects is(

n

k

)
=

n!

k!(n− k)!
.

Exercise 0.2. Prove that
(
n
x

)
x = n

(
n−1
x−1

)
. 4

Exercise 0.3. How many 8-bit bytes are there? How many of these have exactly 3 ones? If we pick
a random byte, what is the probability that it has exactly 3 ones (binomial distribution)? What is
the probability that it has 6 or more consecutive ones? 4

Exercise 0.4. How many binary sequences of length n that end with one are there with exactly k
ones? 4

If the sample space has an infinite, even uncountable, number of outcomes, we may still be able to
think of the outcomes as equally likely. For example, if we pick a random number between 0 and 1
(doing this is pretty difficult if not impossible), we may assume all outcomes are equally likely. In
such cases, the size of the set can be measured via length, area, volume, etc.

Exercise 0.5. A random number in the interval [0, 1] is chosen. What is the probability that it
is more than 1/2 but less than 2/3? What is the probability that it is equal to 1/2? What is the
probability that it is rational (optional)? 4

Farzad Farnoud 8 University of Virginia
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Exercise 0.6. A random point is chosen in a square of unit side. What is the probability that it
is inside the circle of diameter one inscribed in the square? What is the probability that it is on
the circle? 4

0.3 Random variables and distributions
A random variable (RV) is a function that assigns real values to outcomes in Ω. In most cases,
there is a very natural mapping. For example, let X denote the number showing on a dice. Now X
is a random variable, mapping each outcome of the form “the dice shows i” to the real number i.
For this reason, the fact that random variables are really functions is often overlooked. Information
about the probabilities of different outcomes is given by the distribution of the random variable.

A random variable is discrete if there are a countable number of possibilities (could be infinite but
countable, like natural numbers). They can also be continuous (uncountable number of outcomes,
defined over the real line or some subset of some Euclidean space).

Examples: a random variable that is 1 if heads shows when a given coin is filliped and is 0 otherwise
(discrete, finite); the arrival time of a plane in seconds from midnight; the number of people buying
a specific product; ...

0.3.1 Discrete distributions
The distribution of a discrete random variable X is given by its probability mass function (pmf)
denoted by pX(x), where

pX(x) = Pr(X = x).

Clearly, pX(x) ≥ 0 for all x and ∑
x

pX(x) = 1. (0.1)

If clear from the context, we drop the X in the subscript.

Example 0.7 (Poisson Distribution). An RV X has the Poisson distribution with parameter λ
if

p(x) =
λxe−λ

x!
, x ∈ {0, 1, . . . }.

The number of times an event, e.g., phone calls or car accidents, occurs in a given interval of time
is often assumed to have a Poisson distribution (with good reason). 4

Exercise 0.8. A red die and a blue die are rolled. Let X denote the number showing on the red
die and Y denote the sum of the two dice. Find the pmf of X and the pmf of Y . 4

Exercise 0.9. Two cards are drawn at random from a standard deck of 52 cards and let Z denote
the number of Aces drawn. Find the pmf of Z. 4
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0.3.2 Continuous distributions
The distribution of a continuous random variable X is given by its probability distribution
function (pdf) pX(x), also sometimes denoted fX(x). Roughly speaking,

Pr

(
x− dt

2
≤ X ≤ x+

dt

2

)
= pX(x)dt.

For two real numbers a, b,

Pr(a ≤ X ≤ b) =

ˆ b

a

pX(x)dx.

For any pdf, we have pX(x) ≥ 0 and
ˆ ∞
−∞

pX(x)dx = 1.

Exercise 0.10 (Exponential distribution). An exponential random variable X with parameter
λ has distribution

f(x) = λe−λx, x ≥ 0.

For λ = 1, the probability that X is between 1 and 1.1 is around e−1 × 0.1 = 0.37 × 0.1 = 0.037.
In the figure below, the area colored red represents this probability.

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

1.2

x

f
(x
)

4
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0.3.3 Cumulative distribution functions
Cumulative distribution functions (CDFs) are defined for both discrete and continuous RVs as
FX(x) = pX(X ≤ x) and can be found via summation or integration:

FX(x) =
∑
k≤x

pX(k)

FX(x) =

ˆ x

−∞
pX(t)dt

Example 0.11. The CDF of the exponential RV in Example 0.10 with λ = 2 is given by

FX(x) =

ˆ x

−∞
λe−λtdt = 1− e−λx

0 1 2 3 4
0

0.5

1

1.5

2

x

f
(x
),
F
(x
)

4

0.3.4 Expected value
The expected value or the mean E[X] of a random variable X with distribution p(x) is given by

E[X] =
∑
x

xp(x),

E[X] =

ˆ ∞
−∞

xp(x)dx.

One way to think about the expected value is as the average of a large number of experiments. For
example, if a game pays out $X each time you play with probability distribution p(x), if you play

Farzad Farnoud 11 University of Virginia
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the game many times, on average you will win $E[X] per game. That is if you play n times, each
time winning $xn, and n is large, then

1

n
(x1 + x2 + ...+ xn) ' E[X].

Exercise 0.12. Find the expected value of the discrete and continuous RVs in the examples above.
4

Exercise 0.13. Find E[1]. 4

0.3.4.1 Expectation of functions of random variables

For an RV X and a function f(x) it follows from the definition that

E[f(X)] =
∑
x

f(x)p(x),

E[f(X)] =

ˆ ∞
−∞

f(x)p(x)dx.

(0.2)

Exercise 0.14. A random variable X has distribution

pX(−1) = 0.1, pX(0) = 0.2, pX(1) = 0.3, pX(2) = 0.4.

Find EX. Let Y = X2. Find EY , both by finding the distribution of Y and by using (0.6). 4

0.3.4.2 Linearity of expectation

For a RV X, functions f(x) and g(x), and real numbers a and b,

E[af(X) + bg(X)] = aE[f(X)] + bE[g(X)],

which can be proven easily from the definition of expectation.

Example 0.15. E[(X − a)2] = E[X2 − 2aX + a2] = E[X2]− 2aEX + a2. 4

Consider a collection of random variables X1, X2, . . . , Xn. By the linearity of expectation

E

[
n∑
i=1

Xi

]
=

n∑
i=1

EXi. (0.3)

If all variables are identically distributed, then

E

[
n∑
i=1

Xi

]
= nEX1. (0.4)
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Example 0.16. In a class of n students, what is the expected number of pairs of students who
have the same birthday? To find this, for two students i and j, let Xij be equal to 1 if they share
a birthday and 0 otherwise and let X =

∑n−1
i=1

∑n
j=i+1Xij . Now,

EX =

(
n

2

)
EX12 =

(
n

2

)
Pr(X12 = 1) =

(
n

2

)
1

365
' n2

730
. (0.5)

In particular, having n =
√

730 ' 27 students in a class is enough to have on average one pair with
the same birthday. With n = 60 and n = 85 students, there should be around 5 and 10 such pairs,
respectively. 4

0.3.4.3 Variance

Suppose someone offers you a game in which your expected winning is $100. Will you accept?
Which game would you play?

• You always win exactly $100.

• You win $0 with probability 1/2 and $200 with probability 1/2.

• You win $1200 with probability 1/2 and lose $1000 with probability 1/2.

All three have the same mean. So what’s different between them?

The mean helps us represent a distribution with one value, which describes the average behavior of
the RV. But as this example shows, the behavior around the mean is also important. Denoting the
mean of X by µX , the variability around the mean is captured to a degree by the variance Var[X],

Var[X] = E[(X − µX)2].

The variance gives a sense of how far X is from its mean µX , on average. The standard deviation,
σX , is defined as

σX =
√

Var[X],

and the variance is usually denoted as σ2
X .

Exercise 0.17. Prove that
Var[X] = EX2 − (EX)2.

4

Exercise 0.18. Find the mean and variance of each of the following RVs [1]:

• X + c

• aX
• aX + c

• X−µX
σX

(called the standardized version of X)

4

Farzad Farnoud 13 University of Virginia



ESL Chapter 0. Review of Probability

0.3.5 Common distributions
We denote X having distribution ‘Dist’ by X ∼ Dist(a, b, . . . ), where a, b, . . . , are the parameters
of the distribution.

0.3.5.1 Discrete distributions

• X ∼ Ber(p) : Pr(X = 1) = p, Pr(X = 0) = 1− p, E[X] = p, Var[X] = p(1− p).
• X ∼ Bin(n, p) : 2 p(x) =

(
n
x

)
px(1− p)n−x, 0 ≤ x ≤ n, E[X] = np, Var[X] = np(1− p).

• X ∼ Geo(p) : p(x) = (1− p)x−1p, x ≥ 1, E[X] = 1/p, Var[X] = (1/p)2 − (1/p).

• X ∼ NegBin(k, p) : p(x) =
(
x−1
k−1

)
(1−p)x−kpk, x ≥ k, E[X] = k/p, Var[X] = k[(1/p)2−

(1/p)].

• X ∼ Poi(λ) : p(x) = λxe−λ

x! , x ≥ 0, E[X] = λ, Var[X] = λ.

• X ∼ Uni[a, b] : p(x) = 1
b−a+1 , x ∈ Z, a ≤ x ≤ b, E[X] = a+b

2 , Var[X] = (b−a+1)2−1
12 .

Exercise 0.19. Prove that the mean of Bin(n, p) is as given using Exercise 0.2. 4

0.3.5.2 Continuous distributions

• X ∼ Uni(a, b) : p(x) = 1
b−a , x ∈ (a, b), E[X] = a+b

2 , Var[X] = (b−a)2

12 .

• X ∼ N (µ, σ2) : p(x) = 1√
2πσ2

exp(− (x−µ)2

2σ2 ), x ∈ R, E[X] = µ, Var[X] = σ2.

• X ∼ Exp(λ) : p(x) = λe−λx, x ≥ 0, E[X] = 1/λ, Var[X] = 1/λ
2
.

Sometimes, we drop the normalization constant, that is, the constant by which we divide to ensure
that the distribution integrates to 1. This could be because the constant is not important (e.g., in
Bayesian inference) or because it is hard to determine. In such cases, we use ∝ to show proportion-
ality rather than equality. We should be careful which of the entities appearing is the variable. For
example, viewed as a function of x, we have f(x) = λxe−λ

x! ∝ λx

x! and as a function of λ, we have
g(λ) = λxe−λ

x! ∝ λxe−λ.
• X ∼ Beta(α, β) : p(x) ∝ xα−1(1 − x)β−1, 0 ≤ x ≤ 1, E[X] = α

α+β , Var[X] =
αβ

(α+β)2(α+β+1) .

• X ∼ Gamma(α, β) : p(x) ∝ xα−1e−βx, x > 0, E[X] = α
β , Var[X] = α

β2 .

Example 0.20. For the distributions given in this section, try changing what the variable is and
what the parameters are and check whether another distribution from the list can be obtained
with appropriate normalization. For example, Bin(n, p) viewed as a distribution in p turns into
Beta(x+ 1, n− x+ 1). 4

2Note that sometimes p is used both as a parameter and as the distribution. The meaning should be clear from
the context.
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0.4 Joint probability distributions
Joint probability distributions allow us to encode information about relationships between quanti-
ties, from independence to strong correlation.

For random variables X and Y , the CDF and the pmf/pdf give their joint distribution, depending
on their type,

FX,Y (x, y) = Pr(X ≤ x, Y ≤ y), CDF for continuous and discrete
pX,Y (x, y) = Pr(X = x, Y = y), pmf for discrete

pX,Y (x, y)dxdy ' Pr

(
x− dx

2
≤ X ≤ x+

dx

2
, y − dy

2
≤ Y ≤ y +

dy

2

)
, pdf for continuous

We can find the distribution for each random variable (in this context these are called themarginals)
by integration/summation,

pX(x) =
∑
y

pX,Y (x, y), pX(x) =

ˆ ∞
−∞

pX,Y (x, y)dy.

0.4.1 Expectation, correlation, and covariance
Given two or more RVs, we may be interested in finding the expected value of a function of these
RVs, e.g., E[XY ]. In such case, similar to (0.6), we have

E[f(X,Y )] =

ˆ ∞
−∞

ˆ ∞
−∞

f(x, y)p(x, y)dxdy, (0.6)

and similarly for discrete variables.

The correlation between X and Y is E[XY ] =
´ ´

xyp(x, y)dxdy. The covariance Cov(X,Y )
and the correlation coefficient ρX,Y are defined as

Cov(X,Y ) = E[(X − µX)(Y − µY )]

ρX,Y =
Cov(X,Y )

σXσY
.

It can be shown that −1 ≤ ρX,Y ≤ 1. If ρ = 0, then the random variables are uncorrelated.

What does the correlation coefficient mean? Let X and Y be random variables, for example, weight
and height of a person chosen at random. Suppose that we want to predict the value of Y given X
but we are restricted to linear functions of X. Then, in a certain sense,3 the best predictor Ŷ of Y
is

Ŷ = EY + ρ
σY
σX

(X − EX),

with the “error” being
σ2
Y

(
1− ρ2

)
.

In particular, if X and Y are standardized, Ŷ = ρX with error 1− ρ2.
3Minimizing the Mean Square Error
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Figure 1: Bivariate Normal pdfs with µX = µY = 0, σX = σY = 1, with ρ = 0 (uncorrelated),
ρ = .5 (positively correlated), and ρ = −.5 (negatively correlated), respectively.

Exercise 0.21. If |ρ| is close to 1, the RVs are said to be strongly correlated. Why? 4

Exercise 0.22. Show that Cov(X,Y ) = E[XY ]− EX EY . 4

Example 0.23. The bivariate jointly Gaussian distribution for X,Y with means µX and µY ,
variances σX and σY , and correlation coefficient ρ is given as

p(x, y) =
1

2πσxσy
√

1− ρ2
e
− 1

2(1−ρ2)

[
(x−µX )2

σ2
X

+
(y−µY )2

σ2
Y

− 2ρ(x−µX )(y−µY )

σXσY

]
.

Examples of this pdf are given in Figure 1. 4

Exercise 0.24. For random variables X,Y, Z and constants a, b, c, d, e, prove that

• Var(X) = Cov(X,X)

• Cov(X + Y,Z) = Cov(X,Z) + Cov(Y,Z)

• Cov(aX, Y ) = aCov(X,Y )
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• Cov(X, b) = 0

• Cov(aX + bY + c, dZ + e) = adCov(X,Z) + bdCov(Y,Z)

4

Exercise 0.25. Find the expected values and variances of X and Y from Exercise 0.8. Find
Cov(X,Y ). 4

0.4.2 Independence
Recall that two events A and B are independent iff (if and only if) Pr(A∩B) = Pr(A) Pr(B). Two
random variables X and Y are independent if {X ∈ S1} and {Y ∈ S2} are independent for all sets
S1 and S2. This implies that

p(x, y) = p(x)p(y). (0.7)

For two independent random variables, we have

E[XY ] = E[X]E[Y ] (0.8)

and Cov(X,Y ) = 0.

Exercise 0.26. Prove (0.8) using (0.7). 4

Exercise 0.27. For two independent RVs X and Y , find Var[X + Y ] and E[(X − Y )2 + 3XY + 5]
in terms of means and variances of X and Y . 4

A collection X1, . . . , Xn of random variables that are independent from each other but have the
same distribution are called independent and identically distributed (iid). We have

p(x1, . . . , xn) =

n∏
i=1

p(xi). (0.9)

Exercise 0.28. For iid RVs X1, . . . , Xn, let Sn =
∑n
i=1Xi. Show that

Var(Sn) =

n∑
i=1

Var(Xi). (0.10)

4

Exercise 0.29. For iid RVs X1, . . . , Xn, suppose E[Xi] = µ and Var[Xi] = σ2, and let X̄ be their
average. Show that

E[X̄] = µ, Var[X̄] =
σ2

n
. (0.11)

4
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0.4.3 Conditional probability and conditional distributions
For two discrete variables X and Y , the conditional probability distribution of Y given X is given
by

pY |X(y|x) = Pr(Y = y|X = x) =
Pr(Y = y,X = x)

Pr(X = x)
=
pX,Y (x, y)

pX(x)
.

For continuous RVs, we also have pY |X(y|x) =
pX,Y (x,y)
pX(x) . In this case, however, we interpret the

conditional density as

pY |X(y|x) ' Pr(y − ε/2 ≤ Y ≤ y + ε/2|x− ε/2 ≤ X ≤ x+ ε/2)

ε
,

for small positive ε. This essentially says to find pY |X(y|x), we first assume that X is in a narrow
strip around x and then find the density for Y given this assumption.

Law of total probability. Let A1, A2, . . . , An be a partition of the sample space. That is,
∪ni=1Ai = Ω and for all i 6= j, we have Ai ∩Aj = ∅. For an event Bi, we have

Pr(B) =

n∑
i=1

Pr(B ∩Ai) =

n∑
i=1

Pr(B|Ai) Pr(Ai).

In particular, if X can take on {1, 2, . . . , n}, then for another RV Y,

pY (y) =

n∑
x=1

pY |X(y|x)pX(x).

Chain rule of probability. For events A1, . . . , An, we have

Pr(A1 ∩A2 ∩ · · · ∩An) = Pr(A1) Pr(A2|A1) Pr(A3|A1, A2) · · ·Pr(An|A1, . . . , An−1),

which can be easily proven by induction. A similar rule holds for random variables X1, . . . , Xn:

p(x1, . . . , xn) = p(x1)p(x2|x1)p(x3|x1, x2) . . . p(xn|x1, . . . , xn−1).

Conditional expectations are defined based on conditional distributions, e.g.,

E[X|Y = y] =
∑
x

xpX|Y (x|y).

Exercise 0.30. Suppose the joint pmf is given as

pX,Y (x, y) x = 0 x = 1
y = 0 0.25 0
y = 1 0.5 0.25

Find p(y|x), p(x|y), E[Y |X = 0], E[Y |X = 1], E[X|Y = 0], E[X|Y = 1]. 4

Exercise 0.31. A point is chosen uniformly at random in a triangle with vertices on (0, 0), (1, 0), (1, 1).
Let X and Y determine the x and y coordinates of the chosen point. Find p(x|y), p(y|x), E[X|Y =
y], E[Y |X = x]. 4
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Law of iterated expectations. Consider a random variable X and a function g(x). We can
now obtain g(X) by replacing the deterministic value for x with a random one. Note that g(X) is
a random variable. For example, if X ∼ Uni(−1, 1) and g(x) = |x|, then g(X) is a random variable
with distribution Uni(0, 1).

Now let g(x) = E[Y |X = x]. This is, of course, a well-defined function. So we can consider
g(X) = E[Y |X]. Now that we have a random variable, we can compute its expectation, i.e.,
E[E[Y |X]].

Exercise 0.32. A die is rolled, showing X. A coin is then flipped X times resulting in Y heads.
Find E[Y ], E[Y |X = x], the pmf of E[Y |X], and E[E[Y |X]]. 4

It can be shown that

E[E[Y |X]] = E[Y ], E[E[Y |X,Z]|Z] = E[Y |Z]. (0.12)

0.4.4 Bayes’ rule
In Exercise 0.32, the conditional distribution p(y|x) is readily available as

p(y|x) =

(
x

y

)
2−x.

But what if we are interested in p(x|y)? Since p(x|y) = p(x,y)
p(y) and p(x, y) = p(y|x)p(x), we have

p(x|y) =
p(y|x)p(x)

p(y)
=

p(y|x)p(x)∑
x′ p(y|x′)p(x′)

,

which is called the Bayes rule.

Example 0.33. In Exercise 0.32, we can use the Bayes rule to find p(x|y),

p(x|y) =

(
x
y

)
2−x(1/6)∑6

x′=y

(
x′

y

)
2−x′(1/6)

=

(
x
y

)
2−x∑6

x′=y

(
x′

y

)
2−x′

We may ask for example, what is the likeliest value for X if Y = 2. Below, pX|Y (x|2), i.e., the
conditional distribution of X given Y = 2. We can see that the likeliest values for X are 3, 4.
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4

Bayes’ rule is used in evidential reasoning, examples of which we will see in the next chapter. In
this setting, the goal is to find the probabilities of different causes based on the evidence.

Bayesian inference takes its name from Bayes rule. In this setting, it is often the case that we know
the distribution of data given the parameters. But what we actually have is data and need to find
the distribution of the parameters. The Bayes rule allows us to find this conditional distribution, a
topic we will discuss in detail later.

0.5 Inequalities and limits

0.5.1 Inequalities
0.5.1.1 Markov inequality

Suppose the average length of a blue whale is 22 m and we do not know anything else about the
distribution of the lengths of blue whales. Can we say anything about the probability that the
length of a randomly chosen blue whale is ≥ 30m? For example, is it possible that this probability
is 0.8 or larger? No, since in that case, the average would be ≥ 0.8 × 30 = 24m. So only knowing
the mean enables us to say something about the extremes of the probability distribution.

This observation is formalized via the Markov inequality. For a non-negative random variable
X, we have

Pr(X ≥ a) ≤ EX
a
.

Exercise 0.34. Prove the Markov inequality. 4

A special case of this occurs when X counts something, i.e., it only takes non-negative integer
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values. Then,

Pr(X ≥ 1) = Pr(X > 0) ≤ EX, Pr(X = 0) ≥ 1− EX.

In particular, if the mean EX is small, then there is a large probability that X = 0.

Exercise 0.35 (optional). Provide a bound on the probability that in a random binary sequence
of length n, there exists a run (consecutive occurrences) of 1s of length at least 2 log2 n? (The result
will tell you that this is unlikely for large n.) 4

0.5.1.2 Chebyshev inequality

If in addition to the mean, we also have the variance, we can use the Chebyshev bound. For a
random variable X with mean µ and variance σ2,

Pr

(∣∣∣∣X − µσ

∣∣∣∣ ≥ a) ≤ 1

a2
.

Exercise 0.36. Prove the Chebyshev bound using the Markov bound. 4

Example 0.37. The Chebyshev bound tells us that being k standard deviations away from the
mean has probability at most 1/k2.

k 2 3 4 5 6 7 8 9 10
Probability of deviating
more than k × std is ≤ 25% 11.1% 6.25 % 4% 2.78% 2.04% 1.56% 1.23% 1%

In particular, being 10 standard deviations away from the mean has probability at most 1%. 4

0.5.2 Limits
Limits in probability provide a way to understand what happens when the number of experiments
grows or many random effects accumulate. Limit theorems are beneficial given that we often deal
with large volumes of data. The following limit theorems will be helpful to us later in the course.

0.5.2.1 Law of large numbers

Let X1, . . . , Xn be random variables with mean µ and variance ≤ σ2 and suppose that for each i
and j, Xi and Xj are uncorrelated (in particular, it is sufficient for them to be independent). Also,
let X̄n = 1

n

∑n
i=1Xi. Then, for any ε > 0,

Pr
(
|X̄n − µ| ≥ ε

)
≤ σ2

nε2
. (0.13)

As n becomes large the right side becomes smaller and smaller. So for large n the probability of
X̄n being too far from the mean is very small. This is referred to as the Law of Large Numbers
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(LLN). In other words, if we take n independent samples from a random variable X, then the
average of those samples will be close to the mean EX,

1

n
(x1 + x2 + ...+ xn) ' E[X],

which is what we used to motivate expected value.

Exercise 0.38. Use the Chebyshev inequality to prove LLN when random variables are indepen-
dent and all have the same variance σ2. 4

Example 0.39. Suppose Xi ∼ Poi(2), 1 ≤ i ≤ 500, and let X̄n be the average of the first n Xis.
Figure 2 shows the plot for X̄n for a realization of Xis obtained via computer simulation. It is
observed that for large values of n, X̄n is close to 2, the mean of the Poisson distribution. 4

0 100 200 300 400 500
1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

Figure 2: X̄n based on Xi ∼ Poi(2) as a function of n.

0.5.2.2 Central limit theorem

Let X1, X2, . . . be iid random variables with mean µ and variance σ2 and let X̄n = 1
n

∑n
i=1Xi. As

n→∞. The Central Limit Theorem (CLT) states that

distribution of
√
n(X̄n − µ) → N (0, σ2). (0.14)

That is, the distribution of
√
n(X̄n − µ) approaches the distribution of a normal random variable

with mean 0 and variance σ2.

Loosely speaking, the CLT also means Sn =
∑n
i=1Xi has distribution N (nµ, nσ2).
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Example 0.40. Let Xi ∼ Uni(0, 1), 1 ≤ i ≤ n = 10. We produce 50, 000 samples of X̄n (and Sn),
and plot the normalized histograms for

√
n(X̄n − µ) and the pdf of N (0, σ2) and the normalized

histogram for Sn and the pdf of N (nµ, nσ2) in Figure 3. 4

-2 0 2 4 6 8 10
0

0.5

1

Figure 3: The normalized histograms for
√
n(X̄n−µ) and the pdf of N (0, σ2) (on the left) and the

normalized histogram for Sn and the pdf of N (nµ, nσ2) (on the right) for uniform Xi with µ = 1/2
and σ2 = 1/12 and with n = 10.
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Chapter 1

Probability, Inference, and Learning

1.1 Introduction
In this chapter, we will study the role of probability in inference, codifying relationships, and
machine learning. When considering these problems, we deal with uncertainty, and that’s were
probability comes in. In other words, we are interested in probability because it allows us to model
uncertainty (or equivalently, belief and knowledge). Sources of uncertainty, for example in machine
learning, include:

• Noise: aggregate contribution of factors that we do not (wish to) consider (models focus on
the most important quantities).

• Finite sample size: finite size of data makes it impossible to determine relationships (i.e.,
probability distributions) as some configuration may never happen or happen few times in
finite data.

1.2 Relationships and joint probability distributions
Is there any relationship between the arrival times of two people working at a business (opening at
9:00 am), both living in the same area? If so, how can we represent this relationship? How can we
make prediction about one being late given the other is late (e.g., if we need at least one person be
present)?

In the same way that we can encode our information about a random quantity as a distribution, we
can encode information about random quantities, as well as their relationships, as joint distributions.

In our example, there’s obviously a relationship, that is, the arrival times are not independent. For
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example, both are affected by traffic. Let

T0 : normal traffic
T1 : heavy traffic
A0 : Alice is on time
A1 : Alice is late
B0, B1 for Bob

and assume

Pr(T0) = 0.65,

Pr(A0|T0) = 0.9,

Pr(B0|T0) = 0.82,

Pr(A0|T1) = 0.5,

Pr(B0|T1) = 0.15.

Finally, conditioned on the traffic situation, Alice and Bob’s arrival times are independent. This
information completely determines all probabilities. As we will see in much grater depth later, the
fact that the Alice and Bob’s arrival times are only related through traffic can be shown graphically
as

T

A B

Causal reasoning:

Pr(A0) = Pr(T0) Pr(A0|T0) + Pr(T1) Pr(A0|T1) = (0.65× 0.9) + (0.35× 0.5) = 0.76

Pr(B0) = Pr(T0) Pr(B0|T0) + Pr(T1) Pr(B0|T1) = (0.65× 0.82) + (0.35× 0.15) = 0.5855

Evidential reasoning (inverse probabilities, uses Bayes rule):

Pr(T0|A0) = Pr(A0|T0) Pr(T0)/Pr(A0) = 0.65× 0.9/0.76 = 0.7697

Pr(T0|B0) = Pr(B0|T0) Pr(T0)/Pr(B0) = 0.65× 0.82/0.5855 = 0.9103

The common cause makes the events Ai and Bi dependent. Recall that two events E1 and E2

are independent, denoted E1 ⊥⊥ E2 if Pr(E1E2) = Pr(E1) Pr(E2), or, if Pr(E2) 6= 0, Pr(E1|E2) =
Pr(E1). We have

Pr(A0|B0) = Pr(A0B0)/Pr(B0)

Pr(A0B0) = (0.65× 0.82× 0.9) + (0.35× 0.15× 0.5) = 0.506

Pr(A0|B0) = 0.506/0.586 = 0.863 6= Pr(A0)

Pr(B0|A0) = 0.506/0.76 = 0.6658 6= Pr(B0)
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So A0 6⊥⊥ B0.

However, they are conditionally independent, by assumption

Pr(A0B0|T0) = Pr(A0|T0) Pr(B0|T0),

which is denoted as A0 ⊥⊥ B0|T0.

What is the source of uncertainty in this problem? Since we have assumed the distribution is
known, finite sample size is not an issue. The source is noise. For example, if we had information
about other factors affecting Bob, e.g., how reliable his car is, if he needs to drop off his kids, etc.,
we could reduce the amount of noise and make better predictions.

1.3 Inference and decision making
Let us consider a problem about inferring unknown values and making decisions and use prob-
ability to solve it, using both frequentist and Bayesian views. Suppose that the probability that
someone with a given allele of a gene will develop a certain disease is θ and we are interested to
know if θ > 0.01, where 0.01 is the fraction of people in the general population with that disease.
Different interpretations lead to different approaches to problems. But to decide, both frequentists
and Bayesians need data.

Data (D): Among a sample of 100 people with this allele, 2 had the disease.

• A Frequentist thinks of θ as unknown non-random parameter. She devises statistical tests to
decide if θ > 0.01. Clearly, 2 out of 100 is larger than would be expected by chance. So this
may be because the allele and the disease are related. On the other hand, maybe the allele
doesn’t have anything to do with the disease, but we have been unlucky enough to pick two
people with the disease. So how do we decide?

Our statistician may consider how likely it is to see similar or stronger evidence by chance.
This probability is called the p-value.

If the probability of the disease is 0.01, what is the probability of seeing 2 or more sick people
in a sample of size 100?

p = 1−
((

100

0

)
0.99100 +

(
100

1

)
0.99990.011

)
= 1− 0.37− 0.37 = 0.26 > 0.05

The smaller the p-value, the stronger the evidence. Typically, if the p-value is smaller than
0.05, we believe the evidence is strong enough to reject the hypothesis that the observation
has occurred by chance.

• A Bayesian thinks of θ as random and assigns to it a distribution, called the prior, before
seeing the data. She then looks at the data and updates her distribution for θ, thus obtaining
the posterior distribution. (We’ll learn more about Bayesian methods.)

Assume that before seeing the data, we believe that the distribution for θ is uniform, i.e.,
p(θ) ∼ Uni[0, 1] = Beta(1, 1). This means that while we do not know what θ is, we believe it
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is equally likely to be any value between 0 and 1. When we see the data, we can update this
belief,

p(θ|D) =
p(D|θ)p(θ)
p(D)

(Bayes’ rule)

It turns out p(θ|D) ∼ Beta(3, 99), and, as we will see,

p(θ > 0.01|D) = 0.92.
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What is the source of uncertainty in this case? Why can’t we say for certain if θ > 0.01? This is
because of the finite sample size. If we know the status of a very large number of people with the
allele, we would know the distribution/ the value of θ.
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1.4 Machine Learning and Probability
Let us consider the generic form of supervised machine learning problems, which have the following
components:

• Data: D = {(x1, y1), ..., (xn, yn)}, xi ∈ X , yi ∈ Y. X is called the feature space, and Y is
called the label space. As an example, each xi could be a vector providing information about
a house, e.g., (location, lot size, square footage, number of bedrooms, . . . ), and y can be the
sale price of the house.

• Assumption: (xi, yi) are iid samples of random variables X and Y . The joint distribution
(X,Y ) is (partially) unknown.

• Goal: Find the “best” function f to predict y corresponding to a given x. In other words,
the function f produces an estimate ŷ = f(x) of y given data x. Continuing our example,
y would be the true but unknown price of the house with features x, and f(x) would be a
prediction (similar to what Zillow does).

• Evaluation: How do we define “best”? For a given data point (x, y), evaluate the success
of f using a loss function L(y, f(x)), e.g., L(y, f(x)) = |y − f(x)|. Ideally, we would like to
minimize the expected loss over all possible outcomes weighted by their probabilities, so we
define

L(f) = E[L(Y, f(X)], (1.1)

where the expectation is over the distribution p(x, y) of (X,Y ). Our goal then becomes finding

f∗ = arg min
f
L(f) = arg min

f
E[L(Y, f(X)]. (1.2)

• Learning Algorithm: The algorithm that finds f∗, or tries to.

You may have noticed that D consists of samples from p(x, y), but in (1.2), we need the joint distri-
bution of X,Y . We can address this in two ways, either through the Empirical Risk Minimization
framework discussed in §1.4.1, or through estimating the unknown distribution using D as discussed
in §1.4.2.

Before proceeding further, let us consider two common problems in supervised learning:

• Regression: Y consists of scalars or vectors of reals. For example, predicting stock price
based on financial information, or determining the score someone will assign a movie based on
previous scores. A common loss function is the quadratic or squared error loss function:

L(y, f(x)) = (y − f(x))2. (1.3)

For this choice, if the distribution is known, it can be shown that

ŷ = f(x) = E[Y |X = x]. (1.4)

• Classification: Y consists of classes or categories. For example, speech recognition, hand
writing recognition, the presence or absence of a disease. A common loss function is the 0-1
loss:

L(y, f(x)) =

{
1, if y 6= f(x).

0, if y = f(x).
(1.5)
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In this case, if the distribution is known, then the best classifier is ŷ = arg maxy∈Y p(y|x).

1.4.1 Empirical Risk Minimization (ERM)
Since we usually do not know the distribution but have access to data D = {(x1, y1), . . . , (xn, yn)},
we cannot directly minimize the expected loss as in (1.2). Instead we can minimize the loss on
observed data points,

f∗ = arg min
f

E[L(Y, f(X)] → f∗ = arg min
f

1

n

n∑
i=1

L(yi, f(xi)). (1.6)

This is, however, problematic, as it only provides a way for us to determine the value of f(x) for
x ∈ {x1, . . . , xn}. In other words, it is not able to extrapolate or generalize. A common solution,
which is also helpful from a practical point of view, is to restrict the choices for f to a set, called
the hypothesis set. This leads to the ERM formulation of the learning problem

f∗ = arg min
f∈F

1

n

n∑
i=1

L(yi, f(xi)). (1.7)

For example, we may choose F to be the set of linear or sigmoid functions.

The choice of F is critical to how well the predictor generalizes. On the one hand, it needs to be
large enough to be able to produce a small loss. As an extreme example, setting F to contain only
f(x) = 0 for all x is not a good choice. On the other hand, if F has too many degrees of freedom, we
may get a predictor f that is tuned well to the dataset but does not generalize well, i.e., performs
poorly for examples outside of the dataset. This is called overfitting. We check whether this is the
case by setting aside part of the data, referred to as the test set, which is used only for evaluating
performance but not for training. Data used for training is called the training set. (If we need to
choose between different algorithms or tune hyper-parameters, we may further divide the training
set to training and validation sets.)

1.4.2 Density estimation
As discussed, density estimation is another way to use data for prediction. Here we discuss only
parametric density estimation, where we can (or choose to) represent the joint distribution of (X,Y )
using a probabilistic model with some unknown parameters, for example, a graphical model with
known structure and unknown parameters.

Let us consider maximum likelihood, which is one method for parameter estimation. Suppose the
distribution has a set of unknown parameters θ and we represent the distribution as Pθ. So what
should we choose as the value of θ? If an outcome has a small probability, the chance it appears in
our dataset D is small. So those outcomes observed in D must have large probability. Hence, we
must choose θ such that the probability assigned to D is large, that is,

θ̂ = arg max
θ
Pθ(D)

= arg max
θ

n∏
i=1

Pθ(xi, yi)
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Alternatively, we can formulate the problem as density estimation with maximum-likelihood loss
to begin with. From the following equation, loss is minimized when log-likelihood is maximized.

L(Pθ(x, y)) = − logPθ(x, y)

L(θ) = −E(log (Pθ(X,Y ))

Again, before determining θ, we do not know the distribution and cannot evaluate the expected
loss. So we minimize the empirical risk:

L(θ) = −
n∑
i=1

logPθ(xi, yi)

θ̂ = arg min
θ∈Θ
L(θ),

where Θ is the set of all valid parameters.

1.4.3 Decomposition of error for mean squared error
In (1.4), we claimed that for mean squared error and known joint distribution, the best predictor
for Y given X = x is E[Y |X = x]. We start by proving this claim. First, let us consider: What
is the best predictor for a (random) quantity Y when we know the distribution of Y but have no
other information. Since we have no information, this predictor is a single constant value c and for
the mean squared error we have

E
[
(Y − c)2

]
= E

[
(Y − µ+ µ− c)2

]
= Var(Y ) + 2E[Y − µ](µ− c) + (µ− c)2

= Var(Y ) + (µ− c)2
,

where µ = E[Y ]. This is minimized by letting c = µ = E[Y ].

Now let us consider the original problem: What is the best predictor f(x) for Y if we know X = x
as well as the joint distribution of (X,Y )? Let ȳ(x) = E[Y |X = x]. For the mean squared error for
a given value of x, we have

E
[
(Y − f(x))2|X = x

]
= E

[
(Y − ȳ(x) + ȳ(x)− f(x))

2|X = x
]

= E
[
(Y − ȳ(x))

2|X = x
]

+ 2E[Y − ȳ(x)|X = x](ȳ(x)− f(x)) + (ȳ(x)− f(x))
2

= E
[
(Y − ȳ(x))

2|X = x
]

+ (ȳ(x)− f(x))
2
.

Note that the error has two parts: an irreducible part, referred to as intrinsic error, which is not
under our control, and a part that depends on the choice of the predictor. The intrinsic error results
from the noise in our model and not lack of enough data. The reducible part, and thus the error, is
minimized by setting f(x) = ȳ(x) = E[Y |X = x]. However, doing so exactly is only possible if we
have the distribution or an infinite amount of data. When f is determined based on a finite sample
D, the term (ȳ(x) − f(x))2 can be decomposed into bias and variance components, which we will
discuss later.

Farzad Farnoud 30 University of Virginia



ESL Chapter 1. Probability, Inference, and Learning

1.5 Quantifying uncertainty
Suppose we know the distribution for a random variable. How do we measure how uncertain we are?
Alternatively how much information will we gain when we find out the outcome or how surprised
will we be when we see the outcome?

First, we observe that the lower the probability of a statement, the higher the surprise/information
content:

• The sun will rise tomorrow: Very likely, low information content

• It’s raining in Seattle: Even chances, provides some information

• It’s raining in the Sahara: Very unlikely, high information content

So we look for a function that decreases as the probability p of the event increases. It turns out a
good choice is I(p) = log 1

p , which is called the self-information function and shown in Figure 1.1
when the base of the log is 2. Then the information content of the statement ‘X = xi’ is

I(p(xi)) = log
1

p(xi)
.

And the amount of information on average is

H(X) = E
[
log

1

p(X)

]
=

m∑
i=1

p(xi) log
1

p(xi)

This is called the entropy. If the log is base 2, then the unit is a bit.

If there are m different possible outcomes, then the maximum value that entropy can take is logm.
So

0 ≤ H(X) ≤ logm.

An important special case is the binary entropy function Hb(p) = p log 1
p + (1 − p) log 1

1−p for
experiments with two outcomes with probabilities p and 1− p. For example,

H(Fair coin) = Hb(
1

2
) =

1

2
log 2 +

1

2
log 2 = 1,

H(Sun coming up or not) = Hb(2
−64) = 2−64 log 264 + (1− 2−64) log

1

1− 2−64

' 65× 2−64 ' 2−58

The plot for binary entropy is given in Figure 1.1. The maximum entropy is 1 bit. This makes
sense since we can represent the outcome with 1 bit.

Entropy was introduced by Shannon in his article “A mathematical theory of communication” in
1948. It is also the minimum amount of “bandwidth” you need to transmit the outcome of the
experiment. He also popularized the term bit (Binary digit).
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Figure 1.1: Self-information (left) for an event with probability p and binary entropy (right) for a
Bernoulli RV with probability of success equal to p.

“My greatest concern was what to call it. I thought of calling it ‘information,’ but the word was
overly used, so I decided to call it ‘uncertainty.’ When I discussed it with John von Neumann,
he had a better idea. Von Neumann told me, ‘You should call it entropy, for two reasons. In the
first place your uncertainty function has been used in statistical mechanics under that name, so it
already has a name. In the second place, and more important, no one really knows what entropy
really is, so in a debate you will always have the advantage.” – Claude Shannon, Scientific American
(1971), volume 225, page 180.

1.6 Conditional entropy*
We can measure the information in multiple random variables also using entropy. The information
in both X and Y is denoted H(X,Y ) and is defined as

H(X,Y ) = E
[
log

1

p(X,Y )

]
=
∑
x∈X

∑
y∈Y

p(x, y) log
1

p(x, y)
.

If we know Y , how much information is left in X? This is denoted H(X|Y ). If, for example
X = Y + 2, then H(X|Y ) = 0 since if we know Y , we also know X. Conditional entropy is defined
as

H(X|Y ) =
∑
y∈Y

p(y)H(X|Y = y) = E

[
log

1

p(X|Y )

]
= H(X,Y )−H(Y )

Mutual information, I(X;Y ), represents the amount of information that one random variable has
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about the other, and is defined as

I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X).

Finally, relative entropy between two distributions p and q is defined as

KL(p||q) =
∑
x∈X

p(x) log
p(x)

q(x)
,

which can be viewed as a measure of difference between distributions.

While this quick overview is sufficient for our purposes in this course, if you are interested, you can
check out the slides for this Short Lecture on Information Theory, or the course Mathematics of
Information.
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Chapter 2

Frequentist Parameter Estimation

2.1 Parameter Estimation
In order to find the distribution of the data, we need to estimate the parameters of the distribution.
We have two frameworks for doing so:

• Frequentist methods: frequentists have different methods for estimation including:

– Maximum likelihood

– least squares

– moment method

• Bayesian methods: Parameters are considered to be random and are treated as such. The
Bayesian method provides a unified approach consisting of the following steps:

1. Start with the prior distribution for the parameter

2. Collect data

3. Obtain posterior distribution by updating the prior distribution using data and Bayes’
theorem

2.2 Maximum likelihood: Introduction and Examples
Suppose data D is collected and is assumed to be derived from a distribution p with unknown
parameter θ. Let the probability of observing D, assuming θ, be denoted by p(D; θ). Maximum
likelihood estimation finds θ that maximizes p(D, θ):

θ̂ML = arg max
θ
p(D; θ)

The expression p(D; θ), viewed as a function of θ, is called the likelihood; hence the name maximum
likelihood estimation. As shorthand, we use L(θ) = p(D; θ) and `(θ) = lnL(θ), where `(θ) is the
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log-likelihood. Clearly, the value of θ that maximizes L(θ) is the same as the one that maximizes
`(θ):

θ̂ML = arg max
θ
`(θ) = arg max

θ
ln p(D; θ)

Example 2.1. In this example, we attempt to show the intuition behind maximum likelihood. Let
T be a binary random variable such that T = 1 if there is traffic and T = 0 if there is no traffic.
Suppose that data D collected over 100 days indicates that 65 days had no traffic. We have

Pr(T = 0) = θ

p(D; θ) =

(
100

65

)
θ65(1− θ)35

Let’s try a few different choices for θ and see which one makes more sense. In the figure below,
p(D; θ) is plotted for θ ∈ {0.2, 0.4, 0.6, 0.8}. The vertical line indicates the observation, i.e., 65 days
with no traffic. Which is a more appropriate value for θ?
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Text

D
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θ = 0.2

θ = 0.4

θ = 0.6

θ = 0.8

If θ = 0.2, the probability of 65 days with no traffic is very small. So observing D = 65 would
be very unlikely, which in turn would make θ = 0.2 an unreasonable guess. Among the presented
choices, θ = 0.6 appears the most reasonable. This reasoning suggests the following: The value of
the parameter that assigns a higher probability to the observation is a better choice. Since we are
not limited to a specific set of choices, we can find the parameter that maximizes the probability
of the observation, i.e., the maximum-likelihood estimate. In the figure below, L(θ) = p(D, θ) is
plotted as a function of θ. This is the likelihood.
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We can see that θ = 0.65 maximizes the likelihood and hence is the maximum-likelihood estimate.
We can show this also analytically. First, the likelihood is given as

L(θ) = p(D; θ) =

(
100

65

)
θ65(1− θ)35.

We usually use the log-likelihood as the function to optimize:

`(θ) = logL(θ) = log

((
100

65

)
θ65(1− θ)35

)
=̇65 log θ + 35 log(1− θ), (2.1)

where =̇ denotes equality but with ignoring additive terms that are constant in θ (and thus do not
alter the value of θ that maximize the log-likelihood). We differentiate `(θ) to find the value of θ
that maximizes l(θ).

d`(θ)

dθ
=

65

θ
− 35

1− θ = 0 =⇒ 65− 65θ = 35θ =⇒ θ̂ML =
65

100
. (2.2)

Note that this result is intuitive as it agrees with our observation that 65% of the days had no
traffic.

Example 2.2 (Parameters of the normal distribution). A device for measuring an unknown
quantity µ is used n times producing valuesD = y = (y1, . . . , yn). Each measurement is independent
and for each i we have yi = µ + zi, where zi is the measurement noise satisfying zi ∼ N (0, σ2).
Note that this implies yi ∼ N (µ, σ2). We consider the problem in two cases: µ is unknown but σ2

is known; and both µ and σ are unknown.
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• Known σ2, unknown µ: We have

p(yi;µ) =
1

σ
√

2π
exp

(
−1

2

(
yi − µ
σ

)2
)

p(y;µ) =

n∏
i=1

1

σ
√

2π
exp

(
−1

2

(
yi − µ
σ

)2
)

L(µ) =

n∏
i=1

1

σ
√

2π
exp

(
−1

2

(
yi − µ
σ

)2
)

`(µ) =

n∑
i=1

(
− ln(σ

√
2π)− 1

2

(
yi − µ
σ

)2
)

.
= −1

2

n∑
i=1

(
yi − µ
σ

)2

and so

d`

dµ
=

n∑
i=1

yi − µ
σ

= 0 =⇒ µ̂ML =
1

n

n∑
i=1

yi = ȳ.

• Unknown σ2, µ: We have

`(µ, σ) =

n∑
i=1

(
− ln(σ

√
2π)− 1

2

(
yi − µ
σ

)2
)

.
= −n lnσ − 1

2

n∑
i=1

(
yi − µ
σ

)2

and so

∂`

∂µ
=

n∑
i=1

yi − µ
σ

= 0,

∂`

∂σ
= −n

σ
+

n∑
i=1

(yi − µ)2

σ3
= 0.

Solving this system of equations for µ and σ yields

µ̂ML =
1

n

n∑
i=1

yi = ȳ,

σ̂2
ML =

1

n

n∑
i=1

(yi − ȳ)2.

4

Farzad Farnoud 37 University of Virginia



ESL Chapter 2. Frequentist Parameter Estimation

2.3 Properties of Estimators
Maximum likelihood is just one way of estimating parameters. For example, in Example 2.2, we
could choose the middle value among y1, . . . , yn as the estimate for µ. Given the fact that there are
many estimators, how do we evaluate them and select one? In this section, we will see some of the
evaluation criteria.

2.3.1 Estimation error and bias
For an estimator θ̂ of θ, assume D is collected. Then the error is given as

θ̂(D)− θ,

where θ̂(D) is the estimate based on data D.
For a given estimation task that is performed once, since we do not know the true value, we cannot
find θ̂(D) − θ. Even if we know the true value, the error is the result of only one experiment and
does not tell us much about the general behavior of the estimator.

However, we can think of the thought experiment in which estimation is performed many times and
consider the behavior of the estimator and its error. For example, we may consider whether the
result would be generally an overestimate or an underestimate? The key point in answering such
questions is that the estimate itself is a random value because each time we perform the estimation
task, new data samples are obtained and these are random, following a certain distribution. So for
example, we can talk about the expected error. In other words, since D is random (although its
distribution is the same in each experiment), so is θ̂(D).

So we can consider the expected error, known as bias,

Bias(θ̂) = E[θ̂(D)− θ] (2.3)

The expected value is taken over D. However, the dependence on data is often implicit and we
write

Bias(θ̂) = E[θ̂]− θ (2.4)

Bias of the estimator tells us that whether in general the estimator over- or under-estimates the
true value. If bias is equal to 0, then the estimator is called unbiased.

Example 2.3. Given n samples y1, . . . , yn from a distribution with mean µ and variance σ2, are
the estimators

µ̂ = ȳ =
1

n

n∑
i=1

yi, σ̂2 =
1

n

n∑
i=1

(yi − ȳ)2

for the mean and variance, respectively, unbiased? For µ̂, we have

E[µ̂] = E[ȳ] = E

[
1

n

n∑
i=1

yi

]
=

1

n

n∑
i=1

E[yi] =
1

n
· n · E[y1] = µ

and so the ML estimator for the mean is unbiased. We can show (how?) that

E
[
σ̂2
]

=
n− 1

n
σ2
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and the bias of estimating σ2 is

E
[
σ̂2
]
− σ2 = − 1

n
σ2.

Based on this, we can create an unbiased estimator for the variance as

σ̂2
u =

1

n− 1

n∑
i=1

(yi − ȳ)2.

4

Example 2.4. [1, Example 2.8.2] An urn has N balls, numbered 1, 2, ..., N . Suppose however that
N is unknown to us. We pick one random ball from the urn and the number on the ball is y. We
Estimate N using maximum likelihood. First, for p(y;N) we have

p(y;N) =

{
1
N y ≤ N,
0 y > N.

and thus

L(N) =

{
1
N N ≥ y,
0 N < y.

Hence, L(N) is maximized by choosing N = y and so N̂ML = y. To find the bias of N̂ML,

E[N̂ML] = E[y] =

N∑
i=1

i · 1

N
=
N + 1

2
,

Bias(N̂ML) =
N + 1

2
−N = −N − 1

2
,

which means that the ML estimator tends to underestimates N by almost a factor of 2. 4

Example 2.5 (Linear unbiased estimator). Can we design an unbiased estimator for Exam-
ple 2.4? There are many options but for simplicity we may choose an estimator that is linear in the
data, in particular, one of the form

N̂L = ay + b.

We find a and b such that N̂L is unbiased. We have

E[N̂L] = aE y + b = a
N + 1

2
+ b.

Setting this equal to N (equality should hold for any N) yields a = 2 and b = −1, i.e.,

N̂L = 2y − 1.

4
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Example 2.6 (Survival of Humanity (!)). The human species will eventually die out. We use
the two methods to estimate the total number of humans N who will ever live. Let humans be
enumerated as h1, h2, ..., hy, ..., hN , where h1 represents Adam, h2 represents Eve, hy represents
you, and hN represents the last human to live. Assuming that your birth order is random, this is
similar to the urn in Example 2.4.

Assuming that 100 billion have been born so far, we have N̂ML = 100 billion and N̂L = 200
billion. The ML estimates predicts that the end is here. Further, assuming that there will be 140
million births each year, the unbiased estimator predicts the end of humanity to occur in around
700 years. 4

Exercise 2.7. Given iid data D = (y1, . . . , yn), n ≥ 3, with mean θ, find the bias of each of the
following estimators,

θ̂1 = ȳ =
1

n

n∑
i=1

yi,

θ̂2 = y1,

θ̂3 =
2y2 + y3

3
.

4

2.3.2 Mean squared error and variance
Example 2.8. Consider an unbiased estimator θ̂ and define θ̂′ = θ̂ +W , where W is a zero-mean
random variable with a large variance. Now, θ̂′ is unbiased, similar to θ̂, but it is not a good
estimator (regardless of how good θ̂ is). So clearly, being unbiased alone is not sufficient to ensure
that an estimator is “good.” 4

The mean squared error (MSE) is defined as

MSE(θ̂) = E
[(
θ̂ − θ

)2
]

Note that

E
[(
θ̂ − θ

)2
]

= E
[((

θ̂ − E θ̂
)
−
(
θ − E θ̂

))2
]

= E
[(
θ̂ − E θ̂

)2
]
− 2E

[(
θ̂ − E θ̂

)](
θ − E θ̂

)
+
(
θ − E θ̂

)2

= E
[(
θ̂ − E θ̂

)2
]

+
(
θ − E θ̂

)2

and hence
MSE(θ̂) = Var(θ̂) + (Bias(θ̂))2.
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For unbiased estimators, the variance of the estimator becomes an important quantity since it is
equal to the MSE.

Example 2.9. Consider data D = {y1, ..., yn}, where yi are iid with distribution N (µ, σ2). The
ML estimator for the mean µ̂ML = ȳ = 1

n

∑n
i=1 yi is unbiased. We have

MSE(µ̂ML) = Var(ȳ) =
σ2

n
.

4

Note that as n increases, the MSE decreases and the estimate becomes more accurate, as would be
expected. This property is studied next.

Exercise 2.10. For the estimators in Exercise 2.7, find the MSE, assuming the variance is σ2. 4

Exercise 2.11 (Bias-variance trade-off). Given iid data D = (y1, . . . , yn), n ≥ 3, with mean θ and
variance σ2, the MSE of

θ̂1 = ay1,

θ̂n = aȳ =
a

n

n∑
i=1

yi,

for some constant a ∈ R is given as

MSE(θ̂1) = (a− 1)2θ2 + a2σ2,

MSE(θ̂n) = (a− 1)2θ2 + a2σ2/n.

What is a good value for a? Does anything other than a = 1 make sense? The components of the
MSE are given in the plots below for θ̂1 and θ̂n with n = 10. A trade-off between the bias and
variance is evident. Why is it not feasible to design an estimator by optimizing for a? What is the
difference between estimation based on little data (θ̂1) and a lot of data (θ̂n, n = 10)?

−1 −0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8
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a

(Bias(θ̂1))
2

Var(θ̂1)

MSE(θ̂1)
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4

2.3.3 Consistency
An estimator θ̂n based on n samples is said to be consistent if θ̂n → θ as n→∞. More precisely,
for all ε > 0, we need

lim
n→∞

Pr(|θ̂n − θ| ≥ ε) = 0.

In other words, the estimator is accurate if the size of the data is large.

Example 2.12. The ML and linear estimators described in Examples 2.4 and 2.5 are very different
for a single data point. But how do they behave if we have a lot of data. First we need to define
these for n data samples. Suppose that we take n samples from the urn with replacement, resulting
in D = (y1, y2, . . . , yn). Define

ȳ =
1

n

n∑
i=1

yi.

To extend the linear estimator to n data points, we can choose

N̂L,n = 2ȳ − 1.

For the ML estimator, we have (why?)

N̂ML,n = max
i
yi.

Both of these, although they look very different, are consistent and converge to N as n→∞.

• As n → ∞, by LLN, ȳ converges to the mean of the distribution, i.e., E y1 = N+1
2 . Hence,

N̂L,n → 2N+1
2 − 1 = N .

• For the ML estimator, as n→∞, at some point, we will pick the ball numbered N and so we
will eventually have N̂ML = N .
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Figure 2.1: The log-likelihood on the left demonstrates strong dependence on θ compared to the
one on the right.

Given the two estimators, the bad news is that the estimators disagree significantly for small data.
However, as the size of sample data increases, the two estimators agree. 4

2.4 The Cramer-Rao lower bound*
For an unbiased estimator, the MSE is equal to the variance, and thus the variance represents the
accuracy of the estimator. This leads to the following question: For a given distribution of data,
what is the smallest possible variance of an unbiased estimator?

The accuracy of estimating a parameter θ depends on how strongly the distribution of the data
depends on θ. If the dependence is strong, i.e., for values of θ other than the true value, the
probability of the observed data falls sharply, then we may expect to find θ with accuracy. On the
other hand, if the dependence is week, then it will be difficult to find θ with precision. These two
cases are shown in Figure 2.1.

Let the data be encoded as a vector x, i.e., D = x. The sharpness of the log-likelihood `(θ) can be
quantified as

− ∂2`(θ)

∂θ2
= −∂

2 ln p(x; θ)

∂θ2
. (2.5)

Given the randomness of data the above quantity is random. So to average over the data, we define

I(θ) = −E
[
∂2`(θ)

∂θ2

]
= −
ˆ
∂2 ln p(x; θ)

∂θ2
p(x; θ)dx,

which is called the Fisher Information.

The following theorem provides a lower bound on the variance as is referred to as the Cramer-Rao
lower bound (CRLB).

Theorem 2.13 (CRLB). Given that the log-likelihood `(θ) satisfies a certain regularity condition1,
the variance of any unbiased estimator θ̂ of θ satisfies

Var(θ̂) ≥ 1

I(θ)
.

1The regularity condition is E
[
∂`(θ)
∂θ

]
= 0, for all θ.
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If an estimator achieves the CRLB, i.e., Var(θ̂) = 1/I(θ), then it is called efficient.

As a special case, consider when we have n iid data points, and denote the estimator based on this
data as θ̂n. Denote the Fisher information based on n data points as In(θ) and based on one data
point as I1(θ) = I(θ). Since the Fisher information is additive (Why? Hint: definition), we have
In(θ) = nI(θ). Thus, the variance of an unbiased estimator θ̂n based on n independent observations
satisfies

Var(θ̂n) ≥ 1

nI(θ)
. (2.6)

Example 2.14. In Example 2.2, where we estimated the mean of a Gaussian distribution with
known σ2 based on n iid samples y1, . . . , yn, the log-likelihood, ignoring constant terms, was given
as

`(µ)
.
= −

n∑
i=1

(yi − µ)2

2σ2
.

And,
∂`(µ)

∂µ
=

1

σ2

n∑
i=1

(yi − µ). (2.7)

Then regularity condition is satisfied since

E
[
∂`(µ)

∂µ

]
=

1

σ2

n∑
i=1

E[yi − µ] = 0,

for all µ. Furthermore,

∂2`(µ)

∂µ2
= − n

σ2
=⇒ I(θ) = −E

[
∂2`(µ)

∂µ2

]
=

n

σ2
.

Based on the CRLB, the variance of the estimator satisfies

Var(µ̂) ≥ σ2

n
.

The the variance of the estimator is Var(µ̂ML) = σ2

n . Hence, the ML estimator is efficient in this
case. 4

2.5 Asymptotic normality of the MLE
As shown before, the maximum likelihood estimator is not necessarily unbiased. However, if we
have a large amount of data, under some regularity conditions, the ML estimator θ̂n based on n iid
data points satisfies √

n(θ̂n − θ)→ N (0, I−1(θ)).

So for large data, θ̂n is nearly normally distributed with mean θ (hence unbiased) and variance
I−1(θ)/n (efficient).

While we stated the CRLB and the asymptotic normality of the MLE for scalar parameters, almost
identical results also hold for a vector of parameters.
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Chapter 3

Bayesian Parameter Estimation

3.1 From Prior to Posterior
In the Bayesian philosophy, unknown parameters are viewed as being random. So our knowledge
about the parameter can be encoded as a distribution. The distribution representing our belief
before observing data is called the prior distribution. After we observe data, our belief changes,
resulting in the posterior distribution.

Specifically, the steps of Bayesian estimation of a parameter θ are:

1. Identifying the prior distribution, p(θ)

2. Collecting data and forming the likelihood: p(D|θ)
3. Finding the posterior distribution p(θ|D) as

p(θ|D) =
p(θ)p(D|θ)
p(D)

(3.1)

Normalizing distributions. Finding the posterior distribution requires computing the integral
p(D) =

´
θ
p(θ)p(D|θ)dθ. Since we have to compute an integral anyway, we might as well drop all

multiplicative terms that are constant in θ and then normalize the final distribution. In particular,
p(D) is one such term. So we often first find a function proportional to p(θ|D) as

p(θ|D) ∝ p(θ)p(D|θ),

where we can also drop constant terms in θ from p(θ) and p(D|θ). We can then normalize the result
by integration. This is often difficult to do. Sometimes, given this function, we can identify the
distribution. More generally, we can use computational methods, such as Markov Chain Monte
Carlo, as we will see later. Finally, in certain cases, we can find what we need without any
integration. For example, if our goal is to find the value of θ maximizing p(θ|D).

Example 3.1. Let θ denote the unknown parameter of a geometric random variable y, where
p(y) = θ(1 − θ)y−1. Suppose that we observe y. We would like to estimate θ based on this
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observation. If all possible values of θ are equally likely, we may choose θ ∼ Uni(0, 1). We then
have

p(θ) = 1

p(y|θ) = θ(1− θ)y−1

p(θ|y) ∝ θ(1− θ)y−1

The expression θ(1−θ)y−1 as a function of y is the geometric distribution. But as a function of θ, it
is proportional to the Beta distribution Beta(2, y). As an example, if y = 3, then θ|y ∼ Beta(2, 3):

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

θ

p
(θ
|y
)

4

Exercise 3.2. The probability of 1 (success) in a Bernoulli experiment (e.g., flipping a coin, a
system working or not working, etc) is θ, which we would like to estimate. Suppose that the
experiment is performed once and the outcome y is observed to be y = 1. Assuming a uniform
prior, find the posterior distribution of θ, i.e., θ|y = 1. 4

Example 3.3. The probability of success in a Bernoulli experiment is θ, which we would like to
estimate. We show success in the ith trial with yi = 1 and failure by yi = 0.

• Prior distribution: Assuming that a priori we do not know anything about θ, it is appropriate
to choose p(θ) ∼ Uni[0, 1], i.e., p(θ) = 1 in the interval [0, 1].

• Likelihood: We then perform the experiment n times. Suppose that we observe s successes
and f failures. Let us denote this observation as D = (s, f). The likelihood is

p(D|θ) =

(
n

s

)
θs(1− θ)f (3.2)

• The posterior distribution:

p(θ|D) ∝ 1 · θs(1− θ)f = θs(1− θ)f (3.3)
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We observe that this distribution is of the form of a beta distribution, Beta(x;α, β) ∼ xα−1(1−
x)β−1. Hence,

p(θ|D) ∼ Beta(s+ 1, f + 1).

4

Note that since we are interested in θ, we can drop multiplicative terms that are constant with
respect to θ, such as

(
n
s

)
, in the example above.

Now that we have the posterior distribution, we can answer questions about the parameter, for
example, What is the probability that 0.4 < θ < 0.6?

ˆ 0.6

0.4

p(θ|D)dθ (3.4)

Example 3.4 (Consecutive Bayesian updating). Continuing the previous example, suppose that
we collect more data D′ = (s′, f ′), consisting of s′ successes and f ′ failures. Our prior distribution
now is the posterior of the previous example, p(θ) ∝ θs(1− θ)f . We have

p(D′|θ) =

(
s′ + f ′

s′

)
θs
′
(1− θ)f ′

p(θ|D′) ∝ θs(1− θ)fθs′(1− θ)f ′

= θs+s
′
(1− θ)f+f ′

θ|D′ ∼ Beta(s+ s′ + 1, f + f ′ + 1).

(3.5)

Equivalently, we can update our uniform prior p(θ) ∝ 1 with data (s+ s′, f + f ′) to obtain p(θ|(s+
s′, f + f ′)) ∼ Beta(s+ s′ + 1, f + f ′ + 1). As we can see, the Bayesian approach provides a way to
update our belief in a consistent manner.

The figure below provides an example of the posterior with 0, 5, 20, and 50 samples. It can be
observed that the posterior becomes sharper as more data is collected. 4
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Example 3.5. Beta is a common prior for the probability of Bernoulli experiments. Based on the
discussion above, one way to interpret a Beta prior with parameters α ≥ 1, β ≥ 1 is to imagine
that, starting with the uniform prior, we have already collected α + β − 2 samples, with α − 1
successes. The following plot shows the Beta distribution with different parameters to give a sense
of the range of possible priors. 4
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Example 3.6. Suppose that y ∼ Poi(λ) and we intend to estimate λ based on n iid samples
yn1 = (y1, . . . , yn). We assume that the prior for λ is given as p(λ) ∼ Gamma(λ;α, β) ∝ λα−1e−βλ.
We have

p(λ) ∝ λα−1e−βλ

p(yn1 |λ) =

n∏
i=1

λyie−λ

yi!
∝

n∏
i=1

λyie−λ = e−nλλnȳ,

where ȳ = 1
n

∑n
i=1 yi. Note that while p(yn1 |λ) is a distribution in yn1 , we still dropped the yi! from

its expression since our final goal is to find a distribution in λ and for this purpose terms that are
independent of λ can be viewed as constant. The posterior is

p(λ|yn1 ) ∝ λα−1e−βλe−nλλnȳ = λα+nȳ−1e−λ(n+β) ∼ Gamma(α+ nȳ, n+ β).

If we choose α = 1, β = 0, then the Gamma prior is flat, giving all possible values the same prior
probability. But this is not a proper distribution. However, as long as the final posterior is a proper
distribution, an improper prior is deemed acceptable.

Suppose that n = 10 and ȳ = 2. The figure below shows the posterior distribution with different
priors. The prior on the left is called a non-informative prior because it is flat and the one on
the right is an informative prior given that it represents a prior belief that certain values have a
higher probability.
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4

3.2 Bayesian Point Estimates
Having the complete distribution for p(θ|D) is useful since it provides the probability for different
values for θ. But sometimes we want to estimate θ with a single value θ̂ = θ̂(D) as a function of
data, similar to maximum likelihood. The best choice for θ̂ then depends on how we characterize
the estimation error:

Average Error Optimal Estimator
E[(θ − θ̂)2|D] θ̂ = E[θ|D] (mean)
E[|θ − θ̂||D] θ̂ = median of p(θ|D)

E[I(θ 6= θ̂)|D] = Pr(θ 6= θ̂|D) θ̂ = arg maxθ p(θ|D) (mode)

In the table, I(condition) is 1 if the condition is satisfied and is 0 otherwise.

We prove the first case in the table. Let θ̄ = E[θ|D]. We have

E[(θ̂ − θ)2|D] = E[((θ̂ − θ̄) + (θ̄ − θ))2|D]

= E[(θ̂ − θ̄)2 + 2(θ̂ − θ̄)(θ̄ − θ) + (θ̄ − θ)2|D]

= E[(θ̂ − θ̄)2|D] + E[(θ̄ − θ)2|D]

= E[(θ̂ − θ̄)2|D] + Var(θ|D)

≥ Var(θ|D),

and the lower bound on the error is achieved when θ̂ = θ̄.

Example 3.7. Generalizing Example 3.3 by assuming p(θ) ∼ Beta(α, β), we obtain p(θ|D) ∼
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Beta(α+ s, β + f) (for Uniform, α = β = 1). We have

Mean =
s+ α

s+ f + α+ β
,

Median ' s+ α− 1/3

s+ f + α+ β − 2/3
,

Mode =
s+ α− 1

s+ f + α+ β − 2
.

Generally speaking Bayesian point estimates are between what is suggested only using the prior
and what would be obtained using only the likelihood. For example, the mean of the prior is α

α+β

and the maximum likelihood solution is s
s+f . The mean of the posterior, s+α

s+f+α+β , is between these
two. 4

3.3 Posterior Predictive Distribution
Given n iid samples, yn1 = (y1, . . . , yn), we are often interested in the distribution of the next
(unobserved) value, p(yn+1|yn1 ). This distribution is referred to as predictive posterior. We have

p(yn+1|yn1 ) =

ˆ
p(yn+1, θ|yn1 )dθ

=

ˆ
p(θ|yn1 )p(yn+1|θ, yn1 )dθ

=

ˆ
p(θ|yn1 )p(yn+1|θ)dθ,

where we have used the fact that yn+1 ⊥⊥ yn1 |θ. We have thus written the predictive posterior in
terms of two known distributions.

Example 3.8. Continuing Example 3.3, let success in the n + 1st experiment be denoted by
yn+1 = 1 and failure by yn+1 = 0. We have

p(yn+1 = 1|yn1 ) =

ˆ
θp(θ|yn1 ) = E[θ|yn1 ] =

s+ 1

s+ f + 2
,

where we have used the facts that p(yn+1 = 1|θ) = θ and that the mean of Beta(s + 1, f + 1) is
s+1

s+f+2 . 4

We may also ask about the expected value of yn+1 given yn1 , i.e., E[yn+1|yn1 ]. We can find this
by first finding p(yn+1|yn1 ) explicitly. But it is often easier to use the law of iterated expectations,
given that yn1 influences yn+1 through θ. Recall that

E[E[Y |X]] = E[Y ], E[E[Y |X,Z]|Z] = E[Y |Z].

Thus,
E[yn+1|yn1 ] = E[E[yn+1|θ, yn1 ]|yn1 ] = E[E[yn+1|θ]|yn1 ], (3.6)

where the last step follows from the fact that yn+1 ⊥⊥ yn1 |θ.

Exercise 3.9. Find E[yn+1|yn1 ] in Example 3.6. 4
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3.4 Gaussian Prior and Likelihood
Suppose that we want to estimate the mean of a Gaussian distribution with known variance,

p(yi|θ) =
1√

2πσ2
e−

(yi−θ)
2

2σ2 (3.7)

given iid data {y1, . . . , yn}.

Improper priors. Assuming that we have no information about this mean, it makes sense to
choose the prior

p(θ) ∝ 1.

But since the integral
´∞
−∞ 1dθ =∞, this does not lead to a valid distribution. Nevertheless, such a

choice is acceptable, if the posterior is a valid distribution. Such priors are called improper priors.
An improper prior does not necessarily have to be uniform.

Example 3.10. Consider the above likelihood and prior and let ȳ = 1
n

∑n
i=1 yi. We have

p(θ|yn1 ) ∝ p(yn1 |θ) · 1

∝ exp

(
−
∑n
i=1(yi − θ)2

2σ2

)
∝ exp

(
−
∑n
i=1(θ2 − 2yiθ + y2

i )

2σ2

)
∝ exp

(
−θ

2 − 2ȳθ

2σ2/n

)
∝ exp

(
− (θ − ȳ)2

2σ2/n

)
θ|yn1 ∼ N (ȳ, σ2/n).

For the expected value of the next sample,we have

E[yn+1|yn1 ] = E[E[yn+1|θ]|yn1 ] = E[E[θ]|yn1 ] = ȳ.
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We can see more explicitly as well,

E[yn+1|yn1 ] =

ˆ
yn+1p(yn+1|yn1 )dyn+1

=

ˆ
yn+1

ˆ
p(yn+1, θ|yn1 )dθdyn+1

=

ˆ
yn+1

ˆ
p(yn+1|θ)p(θ|yn1 )dθdyn+1

=

ˆ
p(θ|yn1 )

ˆ
yn+1p(yn+1|θ)dyn+1dθ

=

ˆ
θp(θ|yn1 )dθ

= E[θ|yn1 ]

= ȳ.

4

Exercise 3.11. Prove that
Var(yn+1|yn1 ) = σ2 + σ2/n.

4

We now consider the same problem with a proper Gaussian prior. Note that below as τ0 →∞, the
proper prior below tends to the improper prior p(θ) ∝ 1.

Example 3.12. We would like to estimate the mean µ of normally distributed independent values
yn1 = (y1, . . . , yn). Let ȳ =

∑
yi/n. We assume

µ ∼ N
(
µ0, τ

2
0

)
yi ∼ N

(
µ, σ2

)
where µ0 and τ2

0 are the prior mean and variance, respectively, and σ2 is known. We have

p(µ|yn1 ) ∝ p(µ)p(yn1 |µ)

∝ 1

στ0
exp

(
−
∑n
i=1(yi − µ)

2

2σ2
− (µ− µ0)

2

2τ2
0

)
The following claim will be useful.

Claim: If p(x) ∝ e−f(x), where f(x) = ax2 − bx+ c with a > 0, then x ∼ N
(
b

2a ,
1
2a

)
.

Proof: Since

ax2 − bx+ c =
x2 − bx/a+ c/a

1/a
=

(
x− b

2a

)2 − ( b
2a )2 + c

a

2(1/(2a))
,

we have

p(x) ∝ exp

(
(x− b/(2a))

2

2(1/(2a))

)
,
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proving the claim.

Returning to our problem:

a =
n

2σ2
+

1

2τ2
0

, b =
nȳ

σ2
+
µ0

τ2
0

.

Hence

µ|yn1 ∼ N
( nȳ
σ2 + µ0

τ2
0

n
σ2 + 1

τ2
0

,
1

n
σ2 + 1

τ2
0

)
.

4

3.5 Conjugate Priors
Given a likelihood function, the conjugate prior is a distribution that leads to a posterior that is
from the same family as the prior. Several examples are given below.

• Bernoulli/Beta: (y =
∑n
i=1 yi)

p(yi|θ) = θyi(1− θ)1−yi Ber(θ)

p(yn1 |θ) = θy(1− θ)n−y

p(θ) ∝ θα−1(1− θ)β−1 Beta(α, β)

p(θ|y) ∝ θy+α−1(1− θ)n−y+β−1 Beta(y + α, n− y + β)

• Exponential/Gamma: (y =
∑n
i=1 yi)

p(yi|θ) = θ exp(−θyi) Exp(θ) = Gamma(1, θ)

p(yn1 |θ) = θn exp(−θy)

p(θ) =
βα

Γ(α)
θα−1 exp(−βθ) Gamma(α, β)

p(θ|yn1 ) ∝ θn+α−1 exp(−(y + β)θ) Gamma(n+ α, y + β)

• Gaussian/Gaussian (with known σ2): (ȳ = 1
n

∑n
i=1 yi)

p(yi|θ) ∝ exp

(
(yi − θ)2

2σ2

)
N (θ, σ2)

p(yn1 |θ) ∝ exp

(∑n
i=1(yi − θ)2

2σ2

)
p(θ) ∝ exp

(
(θ − µ0)2

2τ2
0

)
N (µ0, τ

2
0 )

p(θ|yn1 ) ∝ exp

(
(θ − µ1)2

2τ2
1

)
N (µ1, τ

2
1 ),
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where

µ1 =

1
τ0
µ0 + 1

σ2/n ȳ

1
τ0

+ 1
σ2/n

,

1

τ2
1

=
1

τ2
0

+
1

σ2/n
.

Note that if a prior is conjugate for the likelihood of a single observation, it is also conjugate for the
likelihood of many iid observations. One way to see this is to note that updating the distribution
using n iid observations is equivalent to updating the distribution n times using single observations
consecutively.

Conjugate priors provide a way to fully determine the posterior distribution without the need to
integrate to find the missing constants.

3.6 The Exponential Family (EF)**
For a random variable x with parameter θ, p(x|θ) is said to be from the exponential family if it has
the following form

p(x|θ) = exp
(
a(x)T b(θ) + f(x) + g(θ)

)
,

where a, b, x, θ can be vectors and f, g are scalar functions. b(θ) is referred to as the natural
parameter.

The exponential family includes many common distributions such as Gaussian, Beta, Gamma,
Binomial, etc. For likelihoods in this family, we can identify the conjugate prior, thus simplify-
ing Bayesian estimation. Furthermore, for these distributions all information in the data can be
summarized in the sufficient statistics described below.

Maximum Likelihood. Suppose that we have n iid observation, leading to the likelihood func-
tion

p(yn1 |θ) ∝ exp

(
n∑
i=1

a(yi)
T b(θ) + ng(θ)

)
,

Define the sufficient statistics for this likelihood as t(yn1 ) =
∑n
i=1 a(yi). We then have

p(yn1 |θ) ∝ exp
(
t(yn1 )T b(θ) + ng(θ)

)
.

So for finding the maximum likelihood solution, we can summarize all our data as t(yn1 ) and the
rest of the information in yn1 is irrelevant. This is also true for Bayesian estimation. Note that the
size of t(yn1 ) is independent of n.
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Bayesian Estimation with Conjugate Priors. In this case, we have the general form of the
conjugate prior

p(yi|θ) ∝ exp
(
a(yi)

T b(θ) + g(θ)
)

p(yn1 |θ) ∝ exp
(
t(yn1 )T b(θ) + ng(θ)

)
p(θ) ∝ exp

(
νT b(θ) +mg(θ)

)
Dist(ν,m)

p(θ|yn1 ) ∝ exp
(
(ν + t(yn1 ))T b(θ) + (m+ n)g(θ)

)
Dist(ν + t(yn1 ),m+ n),

where Dist refers to a specific type distribution.

Pseudo-observations. The parameters in conjugate priors can be interpreted as representing
pseudo-observations by comparing the forms of p(yn1 |θ) and p(θ). In particular, ν plays the same
role as t(yn1 ) and m represents the number of pseudo-observations.

Example 3.13. The likelihood for a Bernoulli observation is

p(yi|θ) = θyi(1− θ)1−yi

= exp(yi ln θ + (1− yi) ln(1− θ))

= exp

(
yi ln

θ

1− θ + ln(1− θ)
)
.

We thus let a(yi) = yi, b(θ) = ln θ
1−θ , and g(θ) = ln(1 − θ). Furthermore, let y = t(yn1 ) =∑n

i=1 a(yi) =
∑n
i=1 yi. Then,

p(yn1 |θ) = exp

(
y ln

θ

1− θ + n ln(1− θ)
)

p(θ) = exp

(
ν ln

θ

1− θ +m ln(1− θ)
)

= θν(1− θ)m−ν , Beta(ν + 1,m− ν + 1)

p(θ|yn1 ) = exp

(
(ν + y) ln

θ

1− θ + (m+ n) ln(1− θ)
)
,

Beta(ν + y + 1,m+ n− ν − y + 1)

4
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Chapter 4

Multivariate Random Variables

In this chapter, we will review some topics related to random vectors, which will be of use in the
following chapters.

4.1 Review of Linear Algebra
For two vectors x,y ∈ Rn, the inner product 〈x,y〉 of x and y is

x =

x1

...
xn

, y =

y1

...
yn

, 〈x,y〉 = xTy =

n∑
i=1

xiyi.

where xT is the transpose of x.

The length or the `2 norm of a vector x is ‖x‖ = ‖x‖2 =
√
xTx and we have ‖x‖22 = xTx. Let

α be the angle between x and y. Then xTy = ‖x‖‖y‖ cosα. If xTy = 0, then the two are called
orthogonal.

For a collection of vectors v1, . . . ,vm, a linear combination of these is any vector of the form
a1v1 + · · · + amvm, ai ∈ R. The set of all linear combinations of v1, . . . ,vm is their span and
denoted as Span{v1, . . . ,vm}. This is a subspace (think line, plane, or the whole space). For a
matrix A, the span of the columns of A is the column space of A.

The vectors v1, . . . ,vm are linearly independent if there is no vector among them that can be
written as a linear combination of the others, and linearly dependent otherwise. The vectors are
linearly independent if and only if the only values for a1, . . . , am satisfying a1v1 + · · ·+ amvm = 0
are a1, . . . , am = 0. In particular, the columns of a matrix A are linearly independent if and only
if the only vector a satisfying Aa = 0 is a = 0.

The inverse of a square matrix A is a matrix A−1 such that AA−1 = A−1A = I, where I is the
identity matrix, which has 1s on the diagonal and 0s elsewhere. A matrix that has an inverse is
called invertible. For a square matrix A, the following are equivalent:
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• It is invertible.

• For all distinct vectors a and b, we have Aa 6= Ab.

• The only solution to Ax = 0 is x = 0.

• Its columns are linearly independent.

• Its determinant |A| is nonzero. (We also have |A−1| = 1
|A| .)

Given a subspace S (e.g., a plane or the column space of a matrix) and a vector y, let ŷ be the
vector in the subspace that is closest to y. That is, we find ŷ ∈ S such that ‖y − ŷ‖ is minimized.
Then ŷ is called the projection of y onto the subspace S.

Lemma 4.1. Let ŷ be the projection of a vector y onto a subspace S. Then y− ŷ is orthogonal to
every vector in S.

Proof. Suppose that this is not the case. Then there is a nonzero vector v ∈ S such that (y−ŷ)Tv 6=
0. We will show that this contradicts the minimality of ‖y − ŷ‖. For any a ∈ R,

‖y − ŷ − av‖22 = (y − ŷ − av)T (y − ŷ − av)

= ‖y − ŷ‖22 − 2avT (y − ŷ) + a2‖v‖22.

This is a convex function in a. So setting the derivative to 0 gives the value of a that minimizes
the error:

∂

∂a
‖y − ŷ − av‖22 = −2vT (y − ŷ) + 2a‖v‖22 = 0⇒ a =

vT (y − ŷ)

‖v‖22
6= 0.

Let

ŷ′ = ŷ +
vT (y − ŷ)

vTv
v,

and note that ŷ′ is also in S but it is closer to y contradicting the optimality of ŷ.

4.2 Random vectors
A random vector is a vector of random variables. Consider the random vectors x and y

x =

x1

...
xm

, y =

y1

...
yn

.
The expected value of x is

Ex =

Ex1

...
Exm

.
The correlation matrix of x and y is the m× n matrix E[xyT ], whose i, jth element is E[xiyj ].
The cross-covariance matrix of x and y is Cov(x,y) is the matrix E[(x − Ex)T (y − Ey)T ],

Farzad Farnoud 57 University of Virginia



ESL Chapter 4. Multivariate Random Variables

whose i, jth element is Cov(xi, yj). The covariance of a vector x is Cov(x) = Cov(x,x). The
conditional expectation E[x|y] of x given y is a vector whose ith element is E[xi|y].

For matrices A,B, deterministic vectors a, b, and random vectors x,y,w, z, we have [1]

• E[Ax+ a] = AEx+ a

• Cov(x,y) = E[xyT ]− ExEyT

• E[(Ax)(By)T ] = AE[xyT ]BT

• Cov(Ax+ a, By + b) = ACov(x,y)BT

• Cov(Ax+ a) = ACov(x)AT

• Cov(w + x,y + z) = Cov(w,y) + Cov(w, z) + Cov(x,y) + Cov(x, z)

4.3 Gaussian Random Vectors (Joint Gaussian Distribution)
Recall that a random variable x is Gaussian (normal) with mean µ and variance σ2 > 0 if the pdf
of x is given by

p(x) =
1√

2πσ2
exp− (x− µ)2

2σ2
.

Definition 4.2. A collection of random variables is jointly Gaussian if any linear combination
of these variables is Gaussian. A Gaussian random vector, also known as a multivariate normal
vector, is a vector whose elements are jointly Gaussian. A collection of random vectors are jointly
Gaussian if the vector obtained by concatenating them is jointly Gaussian.

Example 4.3. For example if
(
x
y

)
is a Gaussian vector, then z = 2x+3y is Gaussian. Furthermore,

E[z] = 2E[x] + 3E[y],

Var(z) = Cov(2x+ 3y, 2x+ 3y) = 4 Cov(x, x) + 12 Cov(x, y) + 9 Cov(y, y)

= 4 Var(x) + 12 Cov(x, y) + 9 Var(y),

which completely characterizes the distribution of z. 4

For an m dimensional Gaussian vector x, the elements of x are independent if and only if the
covariance matrix is diagonal.

For anm-dimensional Gaussian random vector x, assuming that the covariance matrix K = Cov(x)
is invertible, we have

p(x) =
1

(2π)m/2|K|1/2 exp

(
−1

2
(x− µ)TK−1(x− µ)

)
.
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4.4 Maximum likelihood for Gaussian Random Vectors
Let z be a Gaussian random vector of dimension d with mean µ and covariance matrix K. If K is
invertible, the pdf of z can be written as

p(z|µ,K) =
1√

(2π)d|K|
exp

(
−1

2
(z − µ)TK−1(z − µ)

)
,

µ = E[z], K = E[(z − µ)(z − µ)T ],

where |K| is the determinant of K.

Given a set of n iid samples D = {z1, z2, . . . ,zn}, where each zi is a d-dimensional vector, how
can we estimate µ and K using maximum likelihood? Estimating these quantities allows us to find
the distribution. In particular, if we can view zd as the output variable and z1, . . . , zd−1 as input
variables, then we can estimate zd based on z1, . . . , zd−1 as E[zd|z1, . . . , zd−1].

To estimate µ and K, we write

`(µ,K) = ln p(D;µ,K) =

n∑
i=1

ln p(zi;µ,K)

.
=
n

2
ln |K−1| − 1

2

n∑
i=1

(zi − µ)TK−1(zi − µ),

where we have used the fact that |K−1| = 1
|K| .

As seen in the appendix (last chapter), for a symmetric matrix A, we have d
dv (yTAy) = 2yTAdy

dv .
Hence,

∂`

∂µ
= −1

2

n∑
i=1

2(zi − µ)TK−1(−I) =

n∑
i=1

(zi − µ)TK−1.

Setting this equal to zero yields

µ̂ML = z̄ =
1

n

n∑
i=1

zi.

Exercise 4.4. Using the facts

∂

∂A
xTAx = xxT ,

∂

∂A
ln |A| = A−T

prove that

K̂ML =
1

n

n∑
i=1

(zi − z̄)(zi − z̄)T

4
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Chapter 5

Linear Regression

5.1 Introduction
The goal of regression is to predict a real value y as a function of the input variable x. For
example, we may be interested in predicting blood pressure given age, sex, weight, exercise, and
calorie intake. Applications include prediction as well as understanding the relationship between
inputs and output, for example, identifying the most important input components.

Linear regression relies on the assumption that y ' xTθ, where x and θ are elements of Rd. We
formulate the problem as follows: Find

θ̂ = arg min
θ

E[L(y,xTθ)],

for a given loss function L. We typically do not have the joint distribution for x, y. Thus, given a
training set {(x1, y1), . . . , (xn, yn)}, we aim to find

θ̂ = arg min
θ

1

n

n∑
i=1

L(yi,x
T
i θ). (5.1)

The linear form, which assumes yi '
∑d
j=1 θjxij , may appear restrictive since it apparently excludes

dependence on, for example, x2
ij . This, however, is not the case since we can transform the input

variable using a set of functions g1, . . . , ge and reformulate our assumption as yi '
∑e
j=1 θjgj(xi),

where gj are any function of xi such as x2
i1 and xi1xi2xi4.

Notation. Define X ∈ Rn×d and y as

X =

x
T
1
...
xTn

, y =

y
T
1
...
yTn



60



ESL Chapter 5. Linear Regression

Furthermore, let ε be such that
y = Xθ + ε,

and ŷ = Xθ. With this notation, our goal is to find θ such that ‖y − ŷ‖2 = ‖ε‖2 is minimized,
where, for a vector v ∈ Rd,

‖v‖22 = vTv =

d∑
j=1

v2
j .

Example 5.1. Suppose

x1 =

(
0
1

)
, x2 =

(
2
0

)
, x3 =

(
1
1

)
,

y1 = −1, y2 = 1, y3 = 0.

Then

X =

0 1
2 0
1 1

, ŷ = Xθ = θ1

0
2
1

+ θ2

1
0
1

, y − ŷ =

−1− θ2

1− 2θ1

−θ1 − θ2

. (5.2)

4

5.2 Least-squares
A common choice for the loss function is

L(yi,x
T
i θ) = (yi − xTi θ)2,

This choice is relatively easy to deal with from a computational perspective and also has the same
solution as the MLE for a common probabilistic model, thus providing an additional rationale for
the resulting approach.

This choice leads to mean squared loss minimization:

L(θ) = ‖y −Xθ‖22, θ̂ = arg min
θ
L(θ).

We define
ŷ = Xθ̂

as the predicted value or estimate based on the model.

Projection onto the column space of X. Our first observation is that ŷ is in the column
space of X, i.e., it is a linear combination of the columns of X. We can thus restate our goal as
finding ŷ in the column space of X such that ‖y − ŷ‖ is minimized. Hence, ŷ is the projection of
y onto the column space of X as shown in Figure 5.1. Then, from Lemma 4.1, y − ŷ is orthogonal
to each column of X.
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Figure 5.1: Error is minimized by projecting y onto the column space of X, Span(col(X)).

This orthogonality can be written as XT (y − ŷ) = 0. Then

XT (y − ŷ) = 0 ⇐⇒ XT (y −Xθ̂) = 0

⇐⇒ XTy = XTXθ̂

⇐⇒ θ̂ = (XTX)−1XTy

Here we have assumed that XTX is invertible. This holds if the columns of X are linearly inde-
pendent. To see this, suppose that XTX is not invertible. Then there exists a nonzero vector α
such that XTXα = 0 and hence

XTXα = 0⇒ αTXTXα = 0⇒ (Xα)T (Xα) = 0⇒ Xα = 0⇒ α = 0,

where the last step follows from the fact that the columns of X are linearly independent. But
this contradicts α 6= 0. If the columns of X are not linearly independent, then the solution is not
unique.

Example 5.2. From Example 5.1, we have

X =

0 1
2 0
1 1

, y =

−1
1
0

,
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and so

XTX =

(
5 1
1 2

)
, (XTX)−1 =

1

9

(
2 −1
−1 5

)
(XTX)−1XT =

1

9

(
−1 4 1
5 −2 4

)
θ̂ =

(
5/9
−7/9

)

ŷ =

−7/9
10/9
−2/9

, y − ŷ =

−2/9
−1/9
2/9

.
4

Gradient descent. Alternatively, we can take the derivative of the loss to minimize it. Let
∇L(θ) =

(
dL
dθ

)T
be the gradient of L. Recall that the direction of the gradient indicates the

direction of maximum increase and its magnitude represents the slope of the increase. We have

L = (y −Xθ)T (y −Xθ),

∇L = 2
[
(y −Xθ)T (−X)

]T
= −2XT (y −Xθ).

Setting the gradient equal to 0 again gives θ̂ = (XTX)−1XTy. (Note that the Hessian is XTX,
which is positive-semi-definite.)

Computing (XTX)−1 may be prohibitively expensive computationally. An alternative approach is
to start from an arbitrary value θ(0) and move towards the solution in steps:

θ(t+1) = θ(t) + ρXT (y −Xθ(t))

= θ(t) + ρ

n∑
i=1

xi(yi − xTi θ(t)),

where ρ is the learning rate. This approach gets to the lowest point by moving in the direction of
the steepest descent as shown in figure below for Example 5.1.

5.3 Probabilistic Models for Regression
So far we haven’t made any assumptions regarding the statistics of the data. Let us now assume
that y = Xθ + ε, where E[ε] = 0 and Cov(ε) = E[εεT ] = σ2I. (This is the case if yi = xTθ + εi,
where εi are iid with mean 0 and variance σ2.) Then

E[θ̂] = E[(XTX)−1XTy]

= (XTX)−1XT E[y]

= (XTX)−1XT E[Xθ + ε]

= θ,
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Figure 5.2: Gradient descent for linear regression

using the properties of covariance given in the appendix, so θ̂ is unbiased. The covariance is given
by

Cov(θ̂) = Cov((XTX)−1XTy)

= (XTX)−1XT Cov(y)X(XTX)−1

= (XTX)−1σ2.

The Gauss-Markov theorem. The Gauss-Markov theorem states that under the assumptions
that E[ε] = 0 and Cov(ε) = σ2I, θ̂ is the best linear unbiased estimator. More precisely, for any1

vector u, uT θ̂ is an unbiased estimator of uTθ with the smallest possible variance.

Gaussian model
Let us further assume that εi are iid with distribution N (0, σ2), i.e., ε ∼ N (0, σ2I). In other words,
we have:

p(y;θ, σ2) ∼ N (Xθ, σ2I).

Exercise 5.3. Prove that if p(y;θ, σ2) ∼ N (Xθ, σ2I), then for all i, p(yi;θ, σ2) ∼ N (xTi θ, σ
2)

and the yi are independent. 4

Now we have a probabilistic model with unknown parameters θ and σ2.
1This isn’t entirely precise!

Farzad Farnoud 64 University of Virginia



ESL Chapter 5. Linear Regression

Maximum Likelihood

Given that the covariance matrix is σ2I and assuming that y is n-dimensional, the density and the
likelihood are

p(y;θ, σ2) =
1√

(2πσ2)
n exp

(
− 1

2σ2
(y −Xθ)T (y −Xθ)

)
∝ 1

σn
exp

(
−‖y −Xθ‖

2
2

2σ2

)
`(θ, σ2)

.
= −n ln(σ)− 1

2σ2
‖y −Xθ‖22.

So maximizing for θ leads to minimizing ‖y − Xθ‖22 =
∑n
i=1(yi − xTi θ)2 which we already know

the solution to:
θ̂ML = θ̂ = (XTX)−1XTy.

We can similarly show that

σ̂2
ML =

1

n

n∑
i=1

(yi − xTi θ̂)2.

The mean and variance of θ̂ are the same as before. But now we also know that θ̂ is Gaussian.
This is because the linear combination of Gaussian variables is Gaussian. Hence,

θ̂ ∼ N (θ, σ2(XTX)−1).

Cramer-Rao Lower Bound. With the additional Gaussian assumption in this section, using
Cramer-Rao lower bound, a stronger result compared to the Gauss-Markov theorem can be obtained.
Namely, θ̂ is the best unbiased estimator (not just the best linear unbiased estimator). To see this,
note that, for Fisher information I(θ), we have

`(θ, σ2)
.
= −n ln(σ)− 1

2σ2
(y −Xθ)T (y −Xθ).

∇θ` =

(
− 1

σ2
(y −Xθ)T (−X)

)T
=

1

σ2
XT (y −Xθ)

Hθ` =
d∇θ`
dθ

= − 1

σ2
XTX.

and so I(θ) = 1
σ2X

TX. Hence, I(θ)−1 = σ2(XTX)−1, which matches the variance of covariance
of θ̂.

Bayesian Linear Regression

In Bayesian linear regression, the Gaussian likelihood

y|θ, σ2 ∼ N (Xθ, σ2I)
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is a common choice. But we also need to choose priors for θ and σ2. A possible non-informative
choice is

p(θ, σ2) ∝ 1/σ2,

or equivalently, p(σ2) ∝ 1
σ2 , p(θ) ∝ 1 and σ2, and θ are independent.

We are interested in finding
p(θ, σ2|y) = p(θ|σ2,y)p(σ2|y)

We start with

p(θ|y, σ2) =
p(θ,y|σ2)

p(y|σ2)
∝ p(y|θ, σ2)p(θ|σ2) ∝ exp

(
− (Xθ − y)T (Xθ − y)

2σ2

)
.

This is quadratic in θ. So we’ll try to see if we can write it in terms of a Gaussian distribution.
With foresight, let the mean and the covariance of this distribution be denoted θ̂ and Kσ2. We
need

(θ − θ̂)TK−1(θ − θ̂)
.
= (Xθ − y)T (Xθ − y).

Ignoring terms that are constant in θ, we require

θTK−1θ − 2θTK−1θ̂
.
= θTXTXθ − 2θTXTy,

which is satisfied by K−1 = XTX and

−2θTK−1θ̂ = −2θTXTy,

−2θTXTXθ̂ = −2θTXTy,

XTXθ̂ = XTy,

θ̂ = (XTX)−1XTy.

So it suffices to set θ̂ = (XTX)−1XTy and K = (XTX)−1,

p(θ|y, σ2) ∼ N (θ̂,Kσ2).

Now we need to find p(σ2|y). It turns out this is a distribution called a scaled inverse-χ2,

p(σ2|y) ∼ Inv-χ2(n−m, s2),

where m is the dimension of xi and

s2 =
1

n−m (y −Xθ̂)T (y −Xθ̂).

While we can continue analytically and find p(θ|y), in practice, we proceed computationally by
generating samples from p(σ2|y) and then p(θ|y, σ2). With this sampling approach we can also
perform prediction for a given input vector xn+1 of by producing samples from p(yn+1|θ, σ2) ∼
N (xTn+1θ, σ

2).
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Standardization
In some texts, an intercept term is also included in the loss function. For ease of notation, we
instead assume that X is standardized, meaning that each column v is shifted and scaled such that
vT1 = 0 and vTv = 1 and that y is centered so that yT1 = 0. This assumption also holds in the
following sections.

5.4 Regularized Linear Regression
Sometimes we are interested in reducing the flexibility of the model to avoid over-fitting, especially
when the size of the data set is small. Alternatively, we may be interested in putting restrictions
(e.g., forcing small coefficients to become 0) so that only the most important aspects of the data
appear in the learned model, thus increasing its interpretability. These can be done by altering the
loss function by adding a regularization term.

Ridge Regression
Ridge regression adds a penalty for the magnitude of the coefficients. Specifically, the loss function
is

L(θ) = ‖y −Xθ‖22 + λ‖θ‖22,

where λ is a parameter determining the relative importance of the square error versus the regular-
ization loss term ‖θ‖22. The problem of minimizing this loss,

θ̂ = arg min
θ
‖y −Xθ‖22 + λ‖θ‖22, (5.3)

can be shown to be equivalent to

θ̂ = arg min
θ
‖y −Xθ‖22,

subject to : ‖θ‖22 ≤ t,

for some t. There is a one-to-one correspondence between λ and t. The second form is perhaps
easier to understand because of the explicit constraints on ‖θ‖22.
From (5.3),

∇L(θ) = −2XT (y −Xθ) + 2λθ,

∇L(θ̂) = 0 ⇐⇒ XT (y −Xθ̂) = λθ̂

⇐⇒ θ̂ = (XTX + λI)−1XTy.

Exercise 5.4. Prove that for λ > 0, XTX + λI is invertible, even if the columns of X are not
linearly independent. 4
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Bayesian Interpretation

We will now view the regularization penalty from a Bayesian point of view. As before assume the
Gaussian likelihood

y|θ, σ2 ∼ N (Xθ, σ2I).

For simplicity, we focus on estimating only θ and not σ2. For the prior on θ, let

p(θ|σ2) ∼ N (0, (σ2/λ)I) ∝ e−λθ
T θ

2σ2 .

Then

p(θ|y, σ2) ∝ p(y|θ, σ2)p(θ|σ2) ∝ exp

(
− (Xθ − y)T (Xθ − y) + λθTθ

2σ2

)
.

Based on the previous discussion, it is immediately clear that the mode of the posterior distribution
for θ is (XTX +λI)−1XTy. Furthermore, since the distribution is quadratic, and hence Gaussian,
this is also the mean of the posterior. Hence the formulation for ridge regression is equivalent to
assuming a zero-mean Gaussian distribution for θ, which assigns high prior probabilities to smaller
length of θ.

Lasso
In lasso, the regularization penalty has the form of the `1 norm,

‖θ‖1 =

m∑
i=1

|θi|,

where m is the length of θ. The problem is to find

θ̂ = arg min
θ
‖y −Xθ‖22 + λ‖θ‖1,

or equivalently

θ̂ = arg min
θ
‖y −Xθ‖22,

subject to : ‖θ‖1 ≤ t.
Lasso does not have a closed form solution but efficient computational methods exist.

From a Bayesian point of view, lasso is equivalent to finding themode of the posterior for θ assuming
the same model as above but with the double exponential (Laplace) prior

p(θ|σ2) ∝ e−
λ‖θ‖1
2σ2 .

Discussion and generalization
In general we could choose the regularization penalty to be of the form2

‖θ‖qq =

m∑
i=1

|θi|q,

2‖θ‖q =
(∑m

i=1 |θi|q
)1/q is called the `q-norm of θ.
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where m is the length of θ. For q = 1 and q = 2, we get lasso and ridge regression, respectively.

The effect of the regularization can be viewed from a Bayesian framework, by setting the prior

exp

(
− λ

2σ2
‖θ‖qq

)
.

The contours for the priors for different values of q are given below.

In all cases, as we get further from the origin, the prior probability drops. But when q is small, the
probability falls slower along the axes, encouraging solutions in which some of the coordinates are
small or zero.

5.5 Bias-Variance Trade-off
If our goal is to minimize the square of the prediction error, why would we use a different loss
function for empirical risk minimization, as we did for ridge regression and lasso?

Our goal is to predict a value y given an input vector x. Let the prediction/estimate ŷ for y given
x be denoted by ŷ = f(x), where f is the estimator. For linear regression this is of the form
f(x) = xT θ̂, so finding the estimator is the same as finding θ̂. For a specific estimator f (e.g., a
specific value for θ̂), assuming quadratic loss, we have

L(f) = E[(y − f(x))2]. (5.4)

Recall from Section 1.4.3 that

L(f) = E
[
(y − ȳ(x))

2
]

+ E
[
(ȳ(x)− f(x))

2
]
,

where ȳ(x) = E[y|x].

An important observation is that the second term in the expected loss for f is a function of f while
the first term is not. The first term is an intrinsic noise term which we cannot reduce by choosing
a better f or by collecting more data. This term can be viewed as the accumulated effect of all
factors that are not included in x. Given that this terms is not a function of f , define

L̄(f) = E
[
(f(x)− ȳ(x))2

]
. (5.5)

This compares our estimator to the best possible. So we should choose f to minimize the above
quantity.

Let us consider how f is chosen:
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1. Determine a set F from which f can be chosen, e.g., all linear functions.

2. Define an empirical loss function that is related to the expected loss (5.4), but not necessarily
identical, e.g., ridge loss.

3. Collect data, D = {(x1, y1), . . . , (xn, yn)}, and find f ∈ F that minimizes the empirical loss.

Consider a thought experiment in which this process is repeated many times. In each trial, the set
F and the definition of the empirical loss stay the same, while D and, by extension, f are random.
Since f is a function of D, let us denote it as fD. Let M denote the fixed components of this
process, i.e., the set F and the definition of the empirical loss. We are interested to find the loss as
a function of M, which is under our control, averaged over all possible datasets (which is outside
our control). In this context, we write the loss as

L̄(M) = E
[
(fD(x)− ȳ(x))2

]
= E

[
(fD(xn+1)− ȳ(xn+1))2

]
,

where we have added the subscript n+1 to emphasize that the loss can be viewed as the prediction
loss for the next sample. With a similar trick as above, we have

L̄(M) = E
[
(fD(x)− ȳ(x))2

]
= E

[
(fD(x)− E[fD(x)] + E[fD(x)]− ȳ(x))2

]
= E

[
(fD(x)− E[fD(x)])2

]
+ E

[
(E[fD(x)]− ȳ(x))2

]
+

2E[(fD(x)− E[fD(x)])(E[fD(x)]− ȳ(x))].

= E
[
(E[fD(x)]− ȳ(x))2

]
+ E

[
(fD(x)− E[fD(x)])2

]
,

where the last equality follows from conditioning on x.

We can understand this loss better by assuming a given value of x (or more precisely, a given value
of xn+1). The loss then becomes3

(E[fD(x)]− ȳ(x))2 + E
[
(fD(x)− E[fD(x)])2

]
= (bias)2 + variance

Now, the loss is written as the sum of squared bias term, which compares the average prediction
across all possible datasets with the best possible predictor, and a variance term, which quantifies
how different the estimate for each dataset is from the average, across all datasets.

Typically, as model complexity/flexibility4 increases, bias decreases, while variance increases, since
it has more freedom to vary based on the dataset. Simple/rigid models on the other hand typically
have high bias and low variance. The bottom line is that neither unbiased models nor low variance
predictors are necessary the best in terms of minimizing prediction error.

Example 5.5 (Regularization). Regularization allows us to control the flexibility of the model. In
ridge regression as λ increases, the model becomes more constrained. For λ > 0 it can be shown to

3Technically the expectation terms need to be conditioned on x. But I have dropped those for simplicity.
4By flexibility, I mean its responsiveness to changes in the data, i.e., the extent to which the results change when

data changes.
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be biased. In particular, with D = (X,y), if XTX = I, then

E[ŷn+1] = E[xTn+1θ̂]

= xTn+1(XTX + λI)−1E[XTy]

= xTn+1(XTX + λI)−1E[XTXθ]

=
xTn+1θ

1 + λ

6= xTn+1θ

= E[yn+1].

But it can be shown to have lower variance. If the choice of λ is appropriate, it will have a smaller
total loss. 4

Example 5.6 (Overfitting and Underfitting). Suppose the true relationship between two scalar
variables x and y is

y = ax+ w, w ∼ N (0, σ2).

We assume that σ < ax for typical values of x since otherwise, we cannot predict y accurately even
if a is known (the irreducible error is large relative to the best predicted value).

The data available to us consists of two points

D = {(x1 = 1, y1), (x2 = 2, y2)}.

We consider three predictors of the forms

• ŷ(x) = 0,

• ŷ(x) = θx,

• ŷ(x) = θ1x+ θ2x
2,

and find θ, θ1, θ2 to minimize the square loss for our data,

1

2

[
(y1 − ŷ(x1))2 + (y2 − ŷ(x2))2

]
.

We then find the error for the expected error for the training data and for a test data point (x3, y3),
where we assume x3 = 3. The expectation is taken over the randomness in y1, y2, y3. The results
are given in the table below.

Prediction Expected
Train Err

Expected Test Error for x3 = 3

Irred. Bias2 Var. Total

ŷ(x) = 0 5a2

2 + σ2 σ2 9a2 0 9a2 + σ2

ŷ(x) = y1+2y2
5 x σ2

2 σ2 0 9
5σ

2 14
5 σ

2

ŷ(x) = 4y1−y2
2 x

− 2y1−y2
2 x2 0 σ2 0 18σ2 19σ2
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As we go down the table, the model complexity increases. This allows the model to fit the training
data better, leading to smaller expected training (square) error. The irreducible component of the
test error stays the same, regardless of the model. The prediction bias for the test data point
decreases, while its variance increases.

Given the assumption that σ is small relative to a, the smallest total error is obtained by the middle
predictor. The zero predictor is not complex enough to be able to fit even the training data well.
This situation is referred to as underfitting. The quadratic predictor is so complex that it can fit
the training data, including the noise in the data, perfectly. But it does not generalize well due to
its susceptibility to noise and high variance. This is called overfitting. In other words, the model
memorizes this specific dataset rather than looking for patterns in it.

It is important to note models could perform poorly for reasons other than over- and under-fitting.
For example, if the true distribution of the data is y = a sinx + w, no polynomial predictor will
perform well for a wide range of inputs due to the poor match between the true distribution and
the learning model. 4

5.6 Stochastic Gradient Descent
Even though that gradient descent is sometimes less computationally expensive than directly finding
the solution, its cost may still be high. In such cases, using stochastic gradient descent (SGD) may
be helpful. SGD tries to improve the estimate by considering one data point (or a small batch of
data points) at a time.

First, let’s consider finding the root of a function f(θ) with a simple method. We assume that f(θ)
is bounded and there is a unique root θ∗ such that f is increasing at θ∗.

Suppose that we start from a point θ(0) that is appropriately close to θ∗. We proceed iteratively as

θ(t+1) = θ(t) − atf(θ(t)),

where at satisfies
∞∑
t=1

at =∞,
∞∑
t=1

a2
t <∞.

For example, at = 1/t is a good choice while at = 1/t2 isn’t. It can then be shown that θ(t)

converges to θ∗.
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But what if we cannot compute f(θ) but instead we have access to a noisy version F (θ) that satisfies
f(θ) = E[F (θ)], where F (θ) is bounded. It turns out that if we let

θ(t+1) = θ(t) − atF (θ(t)),

where in each iteration we sample F (θ), then θ(t) again converges to θ∗.

Now let us consider the loss function for linear regression (note that we are using the expected loss
as opposed to empirical loss)

L(θ) = E[(y − xTθ)2],

where we are also assuming that x is random with some distribution. To minimize this loss, we
compute the gradient:

∇L(θ) = E[−2(y − xTθ)x]

We would like to find θ such that the gradient above is zero.

Let

f(θ) = E[−2(y − xTθ)x]

F (θ) = −2(y − xTθ)x,

so that f(θ) = E[F (θ)]. Now the elements of the data set {(x1, y1), . . . , (xn, yn)} can be used to
produce samples for F (θ). So we let

θ(t+1) = θ(t) + at(yi − xTi θ(t))xi,

which is the stochastic gradient descent algorithm for linear regression.
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Chapter 6

Linear Classification

In a classification problem, we have an input vector x together with a corresponding label y. Based
on a data set {(x1, y1), (x2, y2), . . . , (xn, yn)}, our goal is to predict y given a new value for x. If y
is a continuous variable the problem is that of regression, whereas in classification problems, y will
represent a set of discrete class labels. For example, we may wish to classify images of handwritten
digits. In this case, x is a vector providing the values of pixels of the image and y ∈ {0, 1, . . . , 9} is
the label indicating what digit the image represents.

6.1 Overview of probabilistic models
The probabilistic approach to classification requires us to learn the distribution p(y|x), which for
any given x provides the probability of belonging to different classes. We can identify the class for
a given x as the class that has the maximum probability,

ŷ(x) = arg max
j
p(y = j|x).

This choice minimizes the probability of predicting the wrong class

L = Pr(ŷ(x) 6= y) = E[I(y 6= ŷ(x))].

To find the distribution p(y|x), our first step is developing a model that relates x and y. There are
two possible approaches.

We may develop a generative model, i.e., a model that is capable of generating data and also
helping us predict y for a given x. A generative model has two components, both of which must be
learned from data:

• Prior class probabilities: p(y)

• Class-conditional probabilities: p(x|y)
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From these, using Bayes’ theorem we can find p(y|x) as

p(y|x) =
p(y)p(x|y)

p(x)
∝ p(y)p(x|y).

We can often estimate p(y = j) simply by computing the fraction of class j in our training data. For
p(x|y), a common approach is to represent it parametrically and then learn the parameters from
the data. For example, we may assume that given class j, x is distributed normally with mean µj
and covariance matrix Kj and then learn these parameters from data.

Alternatively, we can develop a discriminative model. In this case, we directly model p(y|x)
since this is the distribution that we need to decide which class x belongs to.

6.2 Generative Probabilistic Models

6.2.1 Gaussian Class-Conditionals
Let us denote

p(y = j) = πj .

We further assume p(x|y = j) is Gaussian with mean µj and covariance matrix Σj . For our purpose,
it suffices to consider ln p(x|y = j),

ln p(x|y = j)
.
= −1

2
ln |Σj | −

1

2
(x− µj)TΣ−1

j (x− µj).

From these, we can find ln p(x|y = j) and then decide ŷ(x) as

ŷ(x) = arg max
j

ln p(y = j|x).

More specifically,

ln p(y = j|x)
.
= lnπj −

1

2
ln |Σj | −

1

2
(x− µj)TΣ−1

j (x− µj)

.
= xT

(
−1

2
Σ−1
j

)
x+

(
µTj Σ−1

j

)
x+

(
−1

2
µTj Σ−1

j µj −
1

2
ln |Σj |+ lnπj

)
(6.1)

.
= xTAjx+ βTj x+ γj ,

For an appropriately defined symmetric matrix Aj , vector βj , and scalar γj .

6.2.2 Linear Discriminant Analysis
First, let us suppose all classes have the same covariance matrix Σj = Σ. Then, the terms
xT
(
− 1

2Σ−1
)
x and − 1

2 ln |Σj | in (6.1) become independent of the class and we thus have

ln p(y = j|x)
.
= βTj x+ γj , (6.2)

where
βTj = µTj Σ−1, γj = −1

2
µTj Σ−1µj + lnπj ,

Farzad Farnoud 75 University of Virginia



ESL Chapter 6. Linear Classification

Suppose we have only two classes, y = 0 and y = 1, with p(y = 1) = π = 1 − p(y = 0). We can
then divide the space into two regions,

ln p(y = 1|x)
ŷ=1

≷
ŷ=0

ln p(y = 0|x).

What is the decision boundary between them? We can find it by solving ln p(y = 1|x) = ln p(y =
0|x),

βT1 x+ γ1 = βT0 x+ γ0 ⇐⇒ (β1 − β0)Tx+ γ1 − γ0 = 0 ⇐⇒ βTx+ γ = 0,

where
βT = (µ1 − µ0)TΣ−1, γ = ln

π

1− π −
1

2
(µ1 − µ0)TΣ−1(µ1 + µ0). (6.3)

Hence, the decision boundary is the hyperplane βTx+ γ = 0. On one side of this plane, we predict
class 1 (we let ŷ(x) = 1) and on the other side, we declare class 0:

ŷ(x) =

{
1, βTx+ γ > 0

0, βTx+ γ < 0

Since the boundary is linear (i.e., a hyperplane such as a line, 2-D plane, etc), this method is called
Linear Discriminant Analysis (LDA).

As a special case, consider, π = 1
2 ,Σ = I. The the boundary becomes

(µ1 − µ0)T
(
x− µ1 + µ0

2

)
= 0,

which implies that the boundary is the plane that passes through the midpoint of the line connecting
µ1 and µ0 and is perpendicular to it.

What about the probability p(y|x) of each class for a given x, which can tell us about the certainty
of belonging to each class? From (6.2), we have p(y = j|x) ∝ eβTj x+γj and so for two classes

p(y = 1|x) =
eβ

T
1 x+γ1

eβ
T
1 x+γ1 + eβ

T
0 x+γ0

=
1

1 + e−(βTx+γ)
= σ(βTx+ γ),

where β and γ are given in (6.3), and σ(u) = 1
1+e−u is the sigmoid (logistic) function.

If there are c > 2 classes, decision hyperplanes between pairs of classes will divide the space into c
regions. And the conditional probability of class j is given by

p(y = j|x) =
eβ

T
j x+γj∑c

k=1 e
βTk x+γk

= σj(β
T
1 x+ γ1, . . . ,β

T
c x+ γc),

where σj(v) = evj∑
k e

vk
is the softmax function.
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Figure 6.1: LDA vs QDA for when Σ1 = Σ2 (left) and when Σ1 6= Σ2 (right).

6.2.3 Quadratic Discriminant Analysis
Let us now assume that each class has a different covariance matrix Σj . To decide between two
classes, say y = 0 and y = 1, the decision boundary is given by ln p(y = 1|x) = ln p(y = 0|x). This
will lead to a quadratic equation of the form xTAx + βTx + γ = 0, which leads to a nonlinear
decision boundary. As a result, this method is called Quadratic Discriminant Analysis (QDA).

Figure 6.1 demonstrates LDA and QDA when Σ1 = Σ2 (left) and when Σ1 6= Σ2 (right). Here
the boundaries are learned from data (see Section 6.2.2). On the left the data is generated by
distributions that match the assumption made by LDA and so LDA and QDA perform similarly.
However, on the right the covariances are different and so, as expected, QDA performs better.
Note however that we could augment our feature vectors as (x1, x2, x1x2, x

2
1, x

2
2) instead of just

(x1, x2) and then apply LDA, allowing a decision boundary that is not linear in x1, x2. In that
case, the performance of LDA would generally be similar to that of QDA (Hastie et al,. Elements
of Statistical Learning).

6.2.4 Maximum Likelihood Solution to LDA
Once we specified a parametric form for the class-conditional densities p(x|y = j), we can determine
the values of the parameters, together with the prior class probabilities p(y = j), using maximum
likelihood.

Data: Our data set comprises of observations of x along with their corresponding class labels.
Let the n independent samples be denoted by D = {(x1, y1), (x2, y2), . . . , (xn, yn)}, where xi ∈ Rm
and yi ∈ {0, 1} for all i.
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Model:

p(y = j) =

{
π, j = 1

1− π, j = 0

p(x|y = 0) ∼ N (µ0,Σ),

p(x|y = 1) ∼ N (µ1,Σ),

for some π,µ0,µ1 and diagonal matrix Σ = diag(σ2
1 , σ

2
2 , . . . , σ

2
m). Note that since we assume both

classes have the same covariance matrix, the decision boundary will be linear (i.e., LDA). Also,
we have assumed given the class, features are independent (since Σ is diagonal); this is called the
Naive Bayes model.

Likelihood:

p(D|π,µ0,µ1,Σ) =
n∏
i=1

p(yi)p(xi|yi) =

 ∏
i:yi=0

p(yi)p(xi|yi)

 ∏
i:yi=1

p(yi)p(xi|yi)


=
∏
i:yi=0

(1− π)

m∏
j=1

1√
2πσ2

j

exp(−(xi,j − µ0,j)
2/2σ2

j )

×
∏
i:yi=1

π m∏
j=1

1√
2πσ2

j

exp(−(xi,j − µ1,j)
2/2σ2

j )

,
where xi,j is the jth component of xi and µ0,j , µ1,j are the jth components of µ0 and µ1, respectively.
The maximum likelihood solution is (exercise)

π̂ML =

∑
yi
n

,

( ˆµ0,j)ML =

∑
i:yi=0 xi,j∑
(1− yi)

, ( ˆµ1,j)ML =

∑
i:yi=1 xi,j∑

yi
,

(σ̂2
j )ML =

1

n

 ∑
i:yi=0

(xi,j − µ̂0,j)
2 +

∑
i:yi=1

(xi,j − µ̂1,j)
2


6.2.5 Generative Model for Discrete Features **
If a features is categorical, for example, type of a vehicle or genre of a movie, we can encode them as
binary vectors. For example, if there are three categories, with the vector (1, 0, 0) we can indicate
belonging to the first category. This is called one-hot or dummy encoding. In this case, our data is
still denoted by (x1, y1), . . . , (xn, yn), where each xi is composed of vectors, that is1

xi = (xi1, . . . ,xim),

1All vectors in this section are column vectors and all concatenations are also along the vertical dimension.
However, for simplicity of notation, we write xi = (xi1, . . . ,xim) instead of xTi = (xTi1, . . . ,x

T
im)T
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and each xij = (xij1, . . . , xijl, . . .) is a binary vector of finite length which represents a one-hot
encoding of a feature.

Example 6.1 (One-hot encoding). Suppose x1,x2, . . . ,xm provide information about a set of
movies, where x1 = (x11, . . . ,x1m),x2 = (x21, . . . ,x2m), . . ., with x1,x2, . . . ,xm denoting in or-
der the genre of the movie, the director of the movie, etc. Explicitly, for the genre, if we order
them as (comedy, horror, drama, scifi, action), and for five directors A,B,C,D,E, order them as
(A,B,C,D,E), then x11 = (0, 0, 1, 0, 0),x12 = (0, 0, 0, 1, 0) means movie 1 is a drama directed by
director D, and x21 = (1, 0, 0, 0, 0),x22 = (1, 0, 0, 0, 0) means that movie 2 is a comedy directed by
director A. 4

Model: We model this classification problem in the following way:

p(xijl = 1|yi = k) = ηkjl,
∑
l

ηkjl = 1,

and all xijl are independent from one another. For two vectors a, b with the same length, we define
ab =

∏|a|
i=1 a

bi
i . Let ηkj = (ηkj1, . . .). We have

p(xij |yi = k) = η
xij
kj ,

and then

p(xi|yi = k) =

m∏
j=1

p(xij |yi = k) =

m∏
j=1

η
xij
kj = ηxik ,

where ηk = (ηk1, . . . ,ηkm). It follows that

p(yi = k|xi) ∝ p(xi|yi = k)p(yi = k) = πkη
xi
k ∝ exp(lnπk + xTi lnηk).

For a new data point (x, y), we similarly have

ln p(y = k|x)
.
= βTk x+ γk, (6.4)

where βk = lnηk and γk = lnπk. The log-probabilities are again linear in x, an fact that as we
will see contributes to the motivation for logistic regression.

6.2.6 Class-conditionals from the exponential family
The exponential family of distributions includes common distributions such as Gaussian, exponen-
tial, gamma, beta, Dirichlet, Bernoulli, Poisson, and geometric. Distributions from this family have
the following form

p(x|θ) = exp[b(θ)Ta(x) + f(x) + g(θ)].

Let us consider the case in which a(x) = x, and parameters are functions of class y. So instead of
θ we write θj , when considering the jth class. Then the class-conditional distribution will become

p(x|y = j) = exp[b(θj)
Tx+ f(x) + g(θj)].

Furthermore, let p(y = j) = πj . Given x, the log-probability of each class is given as

ln p(y = j|x)
.
= lnπj + ln p(x|y = j)

.
= lnπj + b(θj)

Tx+ g(θj)
.
= βTj x+ γj , (6.5)

where βj = b(θj) and γj = lnπj + g(θj). So for a large class of class-conditional probabilities, the
log-probabilities of classes given the feature vector x is linear in x.
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6.3 Discriminative Models and Logistic Regression
In the discriminative approach, we model p(y = j|x) directly. But what is a good model? As we
have seen in (6.2), (6.4) and (6.5), in many generative cases, the log-probabilities of classes given
data is linear in x,

ln p(y = j|x)
.
= βTj x+ γj .

And based on Section 6.2.2, this form leads to linear class boundaries and posterior class probabil-
ities of the logistic form for two classes,

p(y = 1|x) =
1

1 + e−(βTx+γ)
, p(y = 0|x) =

e−(βTx+γ)

1 + e−(βTx+γ)
,

where β = β1 − β2 and γ = γ1 − γ2.

Limiting ourselves to two classes, this observation raises the following question: “Why not assume
from the beginning that p(y|x) is of the logistic form and learn this distribution instead of learning
first p(x|y) and p(y)?” Doing so leads to a discriminative model resulting in logistic regression.

Let h(x) = p(y = 1|x) and assume that the data consists of n iid samples, D = {(x1, y1), . . . , (xn, yn)}.
We have

p(D;β, γ) =

n∏
i=1

h(xi)
yi(1− h(xi))

1−yi

and the negative log-likelihood loss is given by

L(β, γ) =

n∑
i=1

(
yi ln

1

h(xi)
+ (1− yi) ln

1

1− h(xi)

)
. (6.6)

We can use gradient descent to minimize this loss (maximize the likelihood). For simplicity, let

θ =

(
β
γ

)
, x̃ =

(
x
1

)
, and hθ = p(y = 1|x) = 1

1+e−θT x̃
. Then

θ(t+1) = θ(t) + ρt∇θL(θ),

where

∇θL(θ) =

n∑
i=1

(yi − hθ(x̃i))x̃i.

When we find θ and thus β, γ we have the decision boundary as βTx+ γ = 0. Points x for which
βTx+ γ > 0 are classified as class y = 1.

6.4 Risk minimization and loss functions for classification
An alternative approach to generative models and logistic regression we discussed before is directly
minimizing an empirical loss,

1

n

n∑
i=1

L(yi,xi, ŷ(xi)),
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Figure 6.2: A linear classifier defined by the vector β and scalar γ. Squares represents points with
y = +1 and circles y = −1. For a point xi, many loss functions can be viewed as a function of the
signed distance di of xi to the decision hyperplane.

where ŷ(x) is the predictor of the class for input vector x. For ease of exposition, instead of
assuming y ∈ {0, 1}, we assume y ∈ {−1, 1}.
Our attention will be limited to linear classifiers, determined by a vector β and a constant γ, which
define the hyperplane βTx+ γ = 0. On one side of the hyperplane, we decide class 1 and the other
side class -1,

ŷ(x) = sign(βTx+ γ) =

{
1, if βTx+ γ > 0,

−1, if βTx+ γ < 0,

where the dependence of ŷ on β, γ is implicit.

One such linear classifier is shown in Figure 6.2. Below, we will use the fact that for any point xi
with label yi and prediction ŷ(xi), the loss contributed by it can often be viewed as a function of
its signed distance di to the decision hyperplane. Without loss of generality, assume that yi = 1
and xi = x0 + diβ/‖β‖ for some x0 on the decision boundary. If di is positive, then this point is
classified correctly, since βTxi + γ > 0. The distance between xi and the decision boundary equals
|di|.

6.4.0.1 Zero-one loss

The most natural loss function for classification is the 0-1 loss,

L01(y, ŷ(x)) =

{
1, if y 6= ŷ(x)

0, if y = ŷ(x)

}
=

{
1, if y(βTx+ γ) < 0,

0, if y(βTx+ γ) > 0.

Figure 6.3 shows the 0-1 loss for a point in the positive class. Note that how far the point is from
the boundary does not affect how much it contributes to the loss.
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Figure 6.3: Loss functions for a data point (xi, yi = 1) as a function of the distance of xi from the
boundary (in terms of the length of β).

Unfortunately, minimizing this loss function is computationally difficult (NP-hard) [2]. So in prac-
tice, we use differentiable loss-functions for which efficient algorithms exist. Here we will consider
two such loss functions. First, we view logistic regression in terms of empirical risk minimization
and then we will consider the hinge loss in the context of support vector machine (SVM) classifiers.

6.4.0.2 Logistic regression

Let us re-examine the logistic regression loss function (6.6). The loss incurred by a data point xi
at signed distance di from the decision hyperplane (i.e., xi = x0 + diβ/‖β‖) is

ln(1 + e−(βTxi+γ)) = ln(1 + e−di‖β‖).

The figure below shows this loss: For di < 0, where the input is misclassified, the loss is larger,
and it increases as the point gets farther from the boundary. But even for points that are classified
correctly, there is a loss, which decreases as we get farther from the boundary.

6.4.0.3 Hinge loss (SVM)

Hinge loss results from penalizing misclassified points as well as those that are classified correctly,
but are within a certain margin close to the decision boundary. The expression for hinge loss is

max(0, 1− yi(βTxi + γ)).

Letting yi = 1 and xi = x0 + diβ/‖β‖ as before, results in

max(0, 1− di‖β‖).
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which is shown in Figure 6.3. So the penalty for misclassified points is larger the farther away they
are from the boundary. In addition, even points classified correctly are penalized if they are within
a margin of width 1/‖β‖ of the decision boundary.

In addition to penalizing points within the margin, we would like to ensure that the margin is not
very small. This can be done by ensuring 1/‖β‖ is large or equivalently ‖β‖2 is small. Both of
these goals can be achieved with the loss

1

n

n∑
i=1

max(0, 1− yi(βTxi + γ)) + λ‖β‖2, (6.7)

where λ is a constant that balances the two components of the loss. This results in the so called
support vector machine classifier (SVM).

SVM as maximum-margin classifier. Let us consider the case in which the data is linearly
separable, i.e., there exists a hyperplane that correctly classifies all data points. In such a case, as
shown in Figure 6.4a, there are typically an infinite number of separating hyperplanes. This leads
to the question of which one should be chosen. The SVM loss given in (6.7) provides a solution.
Assume λ is positive but very small. So we are primarily concerned about the first term in the
loss, i.e., the hinge loss. Between choices that incur the same hinge loss, we must pick the one that
maximizes the margin, i.e., minimizes ‖β‖2. Thus:
• We can make the hinge loss term zero by choosing any separating hyperplane that makes no

mistakes and choosing any margin (length of ‖β‖) that is small enough such that there no
points within the margin.

• Now the second term ensures that among the hyperplanes that perfectly separate the data,
we should pick the one that has the maximum margin, as shown in Fig. 6.4b.
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(b) The maximum-margin classifier is the clas-
sifier that maximizes the distance between the
decision boundary and the closest points to it.

Figure 6.4: SVM for separable data
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Chapter 7

Expectation-Maximization *

7.1 Overview
Expectation-maximization (EM) is a method for dealing with missing data. For example, for
classification, the complete data consists of the features x and labels y, as shown in the left panel
of Figure 7.1. With a probabilistic model for this data, we can find the parameters for each class
through maximum likelihood, where the log-likelihood function is

log p(x,y;θ),

where x = (x1, . . . ,xn) and y = (y1, . . . , yn) and θ represents the parameters of class-conditional
distributions for each of the classes.

But what if the class labels are not given as in the right panel of Figure 7.1? The problem becomes
more difficult, but doesn’t seem hopeless as we can still distinguish two clusters and assign points
to these with various degrees of confidence.

Figure 7.1: Data from two classes, with labels given as colors (left) and not given (right).
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We thus formulate this problem as finding θ that maximizes

log p(x;θ) = log
∑
y

p(x,y;θ)

In this case, (x,y) is the complete data, for which computing the likelihood is easy, but a compo-
nent of this data, namely y, is missing. Now computing the likelihood is difficult because of the
summation, which is typically over a large number of possibilities. Expectation-maximization is a
method for handling missing data.

EM is an iterative method that given the current estimate for the parameter, finds a new estimate.
The idea behind EM is finding lower bounds on the log-likelihood of the observed data and maxi-
mizing these lower bounds. This is illustrated in Figure 7.2 (see Example 7.1). Suppose our current
estimate of θ is θ′. In each iteration, we find a lower bound B(θ, θ′) on log p(x; θ) that coincides
with it at θ = θ′, i.e.,

log p(x; θ) ≥ B(θ, θ′), for all θ,
log p(x; θ) = B(θ, θ′), for θ = θ′.

(7.1)

Now let our new estimate be
θ′′ = arg max

θ
B(θ, θ′).

Note that we have not used log p(x; θ) to find θ′′. It follows that

log p(x; θ′′) ≥ log p(x; θ′).

So our new estimate is at least as good as the old one, and under certain conditions, it is going to
be strictly better. We then use θ′′ in place of θ′ and repeat. Note that if log p(x; θ) is bounded,
since the sequence log p(x; θ′) is non-decreasing, it will converge. Under appropriate conditions,
this means that θ′ also converges to a stationary point of p(x; θ). See [1] for details.

It remains to find a lower bound that satisfies (7.1). For the likelihood of the observation and for
any y such that p(y|x; θ) > 0,

`(θ) = ln p(x; θ) = ln
p(x, y; θ)

p(y|x; θ)
.

Then, for any distribution q for the missing data y,

`(θ) =
∑
y

q(y) ln
p(x, y; θ)

p(y|x; θ)

≥
∑
y

q(y) ln
p(x, y; θ)

p(y|x; θ)
−D(q(y)||p(y|x; θ))

=
∑
y

q(y) ln
p(x, y; θ)

p(y|x; θ)
−
∑
y

q(y) ln
q(y)

p(y|x; θ)

=
∑
y

q(y) ln p(x, y; θ)−
∑
y

q(y) ln q(y),
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Figure 7.2: The log-likelihood of the observation and consecutive EM lower bounds and estimates.
In each iteration, the current value of θ is denoted by ◦ and the new value by ∗. Here, θ(0) =
1, θ(1) = 1.5, θ(2) = 2.04, θ(3) = 2.472. Continuing in the same manner, we would obtain estimates
2.740, 2.880, 2.946, 2.976, . . . , where 3 is the true maximum.

where for two distribution p1 and p2, D(p1(z)‖p2(z)) is the relative entropy (also called the Kull-
back–Leibler divergence or KL divergence) between p1 and p2 defined as∑

z

p1(z) log
p1(z)

p2(z)
.

Relative entropy is a measure of dissimilarity between distributions and can be shown to be non-
negative and is equal to 0 if and only if p1 = p2.

Thus for any distribution q, we have a lower bound on `(θ). Suppose our current guess for θ is θ(t).
We would like this lower bound to be equal to `(θ) at θ = θ(t). For this to occur, we need

D(q(y)||p(y|x; θ(t))) = 0 ⇐⇒ q(y) = p(y|x; θ(t)),

resulting in

`(θ) ≥
∑
y

p(y|x; θ(t)) ln p(x, y; θ)−
∑
y

p(y|x; θ(t)) ln p(y|x; θ(t)) = B(θ, θ(t)).

Now instead of maximizing `, we can maximize B. We note however that the second term in B is
not a function of θ. So we instead define the following expectation

Q(θ, θ(t)) =
∑
y

p(y|x; θ(t)) ln p(x, y; θ),
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and find
θ(t+1) = arg max

θ
Q(θ, θ(t)).

For simplicity of notation, I often use θ′ to denote θ(t) and θ′′ to denote θ(t+1). Also, let E′ be
expected value assuming the value of θ′. We can then describe the EM algorithm as

• The E-step:

Q(θ; θ′) =
∑
y

ln p(x, y; θ)p(y|x; θ′) = E[ln p(x, y; θ)|x; θ′] = E′[ln p(x, y; θ)|x]

• The M-step:
θ′′ = arg max

θ
Q(θ; θ′).

Update θ′ ← θ′′ and repeat.

Roughly speaking, EM can be viewed as alternatively finding an estimate for the missing data
through expectation by assuming a value for the parameters (the E-step) and finding a new estimate
for the parameter based on the estimate of the data.

7.2 Clustering with EM
For classification the complete data is {(xi, yi)}ni=1. When the labels yi are missing, the problem
becomes clustering.

We assume Gaussian class-conditionals:

p(yi = 1) = π, xi|yi = 1 ∼ N (µ1,K1)

p(yi = 0) = 1− π, xi|yi = 0 ∼ N (µ0,K0)

Let θ = (π,µ0,µ1,K0,K1). Ideally, we would want to maximize the likelihood for the observed
data {(xi)}ni=1,

`(θ) = ln p(xn1 |θ) = ln
∑
yn1

p(xn1 , y
n
1 |θ).

But this is difficult to do because of a lack of an analytical solution due to the summation. Instead,
we can use a computational method such as EM.

We will proceed as follows:

• Set-up: It is helpful to start with the log-likelihood of the complete data and simplify it
before proceeding to the EM algorithm. We have

ln p(xn1 , y
n
1 ; θ) =

n∑
i=1

ln p(xi, yi; θ),
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(d) t = 10
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(e) t = 15
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(f) t = 20
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(g) t = 30
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(i) t = 50

Figure 7.3: EM clustering of a mixture of two Gaussian datasets. In (a) the raw data is shown and
in (b-i), steps of the EM algorithm are shown. To compare with the underlying distributions and
clusters, the points from each of the Gaussian distributions are shown with triangles and circles.
However, the EM algorithm does not have access to this data. The contour plots represent the
current estimate for the parameters of each of the Gaussian distributions and the color of each data
point represents the estimate of the EM algorithm for the probability that the point belongs to the
clusters (γ′i = p(yi = 1|xi; θ′)). A video of the clustering can be found here.
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and for each term in this sum,

ln p(xi, yi; θ) = ln
(

(πp(xi|yi = 1; θ))
yi((1− π)p(xi|yi = 0; θ))

1−yi
)

= yi ln(πp(xi|yi = 1; θ)) + (1− yi) ln((1− π)p(xi|yi = 0; θ)).

• The E-step: Let θ′ be the current estimate for θ and let E′ denote expected value operator
with respect to the distribution p(y|x; θ′). We have

Q(θ; θ′) = E′[ln p(xn1 , yn1 ; θ)|xn1 ]

= E′
[

n∑
i=1

ln p(xi, yi; θ)|xn1

]

=

n∑
i=1

E′[ln p(xi, yi; θ)|xi]

And for each term in the sum,

E′[ln p(xi, yi; θ)|xi] = E′[yi ln(πp(xi|yi = 1; θ)) + (1− yi) ln((1− π)p(xi|yi = 0; θ))|xi]
= E′[yi|xi] ln(πp(xi|yi = 1; θ)) + E′[1− yi|xi] ln((1− π)p(xi|yi = 0; θ))

= γ′i lnπ + (1− γ′i) ln(1− π) + γ′i ln p(xi|yi = 1; θ)

+ (1− γ′i) ln p(xi|yi = 0; θ),

where

γ′i = E′[yi|xi]
= p(yi = 1|xi; θ′)

=
p(xi, yi = 1; θ′)

p(xi, yi = 1; θ′) + p(xi, yi = 0; θ′)

=
π′N (xi;µ

′
1,K

′
1)

π′N (xi;µ′1,K
′
1) + (1− π′)N (xi;µ′0,K

′
0)
.

Here, γ′i has a significant meaning. It represents the probability that a given point xi belongs
to class 1 given the current estimate of the parameters. Instead of computing the likelihood
based on a known value for yi, in the E-step, we compute the likelihood by partially assigning
xi to class 1 and to class 0.

• The M-step: To find π′′:

∂Q

∂π
=

n∑
i=1

(
γ′i
π
− 1− γ′i

1− π

)
= 0⇒ π′′ =

∑n
i=1 γ

′
i

n
.
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To find µ′′1 :

∂Q

∂µ1
=

∂

∂µ1

n∑
i=1

γ′i ln p(xi|yi = 1; θ)

=
∂

∂µ1

n∑
i=1

γ′i

(
−1

2
(xi − µ1)

T
K−1

1 (xi − µ1)

)

=

n∑
i=1

γ′iK
−1
1 (xi − µ1) = 0⇒ µ′′1 =

∑n
i=1 γ

′
ixi∑n

i=1 γ
′
i

.

To find K ′′1 :

∂Q

∂K−1
1

=
∂

∂K−1
1

n∑
i=1

γ′i

(
1

2
ln
∣∣K−1

1

∣∣− 1

2
(xi − µ1)

T
K−1

1 (xi − µ1)

)

=
1

2
K1

n∑
i=1

γ′i −
1

2

n∑
i=1

γ′i(xi − µ1)(xi − µ1)
T

= 0

⇒ K ′′1 =

∑n
i=1 γ

′
i(xi − µ1)(xi − µ1)

T∑n
i=1 γ

′
i

.

Several steps of an EM clustering of a dataset are shown in Figure 7.3. In essence, the EM algorithm
uses the current estimates of posterior class probabilities of a point as labels and updates the
distributions. Having updated the distributions, it updates the posterior class probabilities and
repeats.

7.3 EM with general missing data **
So far, we have considered problems in which data can be divided into an observed component x
and a hidden component y, with the expectation given by

Q(θ;θ′) =
∑
y

p(y|x;θ′) ln p(x, y;θ)

But we can use EM to solve a more general class of problems, where this division may not be
possible. Specifically, we assume that the complete data is given by z and the observed data is
given by x, where x is a function of z. In this case, the expectation is given by

Q(θ;θ′) =
∑
z

p(z|x;θ′) ln p(z;θ)

Example 7.1 ([1]). Let

x = s+ ε,

s ∼ N (0, θ), θ ≥ 0

ε ∼ N (0, σ2) σ2 > 0,
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where s and ε are independent, σ is known, and θ is unknown. Our goal is to estimate θ. In this
case, the complete data is z = (s, ε) and observed data is x = s+ ε.

We can solve this problem directly by noting that

x ∼ N (0, θ + σ2),

where we have used
Var(x) = Cov(s+ ε, s+ ε) = σ2 + θ.

The maximum likelihood estimate for the variance of x is then

θ̂ML =

{
x2 − σ2 if x2 ≥ σ2,

0 if x2 < σ2.

With EM:

• The E-step:

Q(θ; θ′) = E′[ln p(z; θ)|x]

= E′[ln p(s; θ) + ln p(ε; θ)|x]
.
= E′[ln p(s; θ)|x]

.
= E′

[
− ln θ

2
− s2

2θ
|x
]

= − ln θ

2
− E′

[
s2|x

]
2θ

• The M-step:

∂Q

∂θ
= − 1

2θ
+

E′
[
s2|x

]
2θ2

= 0⇒ θ′′ = E′[s2|x].

This is a very intuitive result.

With some manipulation (HW), this results in

θ′′ =

(
θ′

θ′ + σ2

)2

x2 +
θ′σ2

θ′ + σ2
.

The plot for the log-likelihood and the EM estimates, starting from θ(0) = 1, is given in Figure 7.2,
where σ2 = and x = 2 and thus θ̂ML = 3. 4

7.4 The MM Algorithm
The idea behind the EM algorithm, i.e., finding a lower bound with certain properties, can be
generalized, leading to the Minorization-Maximization (MM) algorithm MM algorithm. Specifically,
EM provides a certain way of finding a lower bound, but if we find a lower bound by another method
that still satisfies appropriate equality and inequality conditions, we can still maximize the function
we are interested in. We illustrate this by applying MM to rank aggregation.
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7.4.1 Rank Aggregation from Pairwise Comparisons via MM
Rank aggregation refers to combining a set of full or partial rankings of a set of alternatives in order
to obtain a consensus ranking. For example, we may be interested in ranking sport teams based on
match results. In this case, the input data is a set of pairwise comparisons (i.e., a partial ranking
involving two items) and the desired output is a ranking of all the teams.

The data: There are n teams. We are given a dataset D = {w12, w13, . . . , wn−1,n}, where wij is
the number of times team i beats team j. It will be helpful to assume wii = 0 rather than leaving
it undefined.

The model: For two teams i and j, we assume

Pr(i beats j) =
esi

esi + esj
,

where si is a score reflecting the strength of team i. Denote s = (s1, . . . , sn).

This leads to the log-likelihood

L(s) =
∑
i,j

wij(si − ln(esi + esj ))

As an aside, note that for a differentiable convex function f(x), we have

f(x) ≥ f(x′) + f ′(x′)(x− x′), for all x′,
f(x) = f(x′) + f ′(x′)(x− x′), for x′ = x.

Since − lnx is a convex function,

− lnx ≥ − lnx′ − x− x′
x′

= − lnx′ − x

x′
+ 1.

Hence, if we define

Q(s, s′) =
∑
i,j

wij

(
si − ln

(
es
′
i + es

′
j

)
− esi + esj

es
′
i + es

′
j

+ 1

)
,

then,

L(s) ≥ Q(s, s′), for all s′,
L(s) = Q(s, s′), for s = s′.

We can simplify Q by ignoring terms that do not involve s, and then separating the parameters
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(the latter was not possible for L)

Q(s, s′) =
∑
i,j

wij

(
si −

esi + esj

es
′
i + es

′
j

)
=
∑
i

si
∑
j

wij −
∑
i

esi
∑
j

wij

es
′
i + es

′
j

−
∑
i

∑
j

wij
esj

es
′
i + es

′
j

=
∑
i

si
∑
j

wij −
∑
i

esi
∑
j

wij

es
′
i + es

′
j

−
∑
i

∑
j

wji
esi

es
′
i + es

′
j

=
∑
i

si
∑
j

wij −
∑
i

esi
∑
j

wij + wji

es
′
i + es

′
j

.

Given the current estimate s′, we can now find the next estimate s′′ by differentiating Q, and
setting it equal to 0,

∂Q

∂si
=
∑
j

wij − esi
∑
j

wij + wji

es
′
i + es

′
j

= 0

s′′i = ln

∑
j wij∑

j
wij+wji

es
′
i+e

s′
j

.

This allows us to estimate the scores si. When convergence is achieved or after a set number of
iterations, we sort the scores and thus find a ranking of the n teams.
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Chapter 8

Basics of Graphical Models

8.1 Introduction
Graphical models (GMs) are used to represent distributions on graphs. They enable us to repre-
sent conditional independencies and factorization of distributions facilitate probabilistic inference
through message passing algorithms. There are different types of GMs:

• Bayesian Networks (BN, aka Directed Graphical Models): Natural for representing causal
relationships

• Markov Random Fields (MRF, aka Undirected Graphical Models): Suitable for representing
co-influence or non-causal relationships among a subsets of variables, e.g., friendship in social
networks and pixels in an image (adjacent pixels are likely to have similar colors).

• Factor Graphs: A flexible type of GM that can represent distributions reperesented by BNs
and MRFs.

8.2 Bayesian Networks
A Bayesian network is a directed acyclic graph (DAG) with some additional attributes. A DAG
is a graph whose edges have direction and in which there is no cycle if one follows the edges based
on their direction. In a DAG, a parent of a node y is a node x such that there is an edge from x
to y. A child of y is a node z such that y is the parent of z. An ancestor is a parent, parent of a
parent, etc., and a descendant is a child, child of a child, etc. A complete DAG is a DAG such
that with an edge between each pair of vertices. An example of a DAG with four nodes is shown
below.

96



ESL Chapter 8. Basics of Graphical Models

x1 x2

x3 x4

In a Bayesian network represented by a DAG G:

• Nodes x1, . . . , xm represent variables or quantities (can be scalar or vector)

• Edges represent causal relationships

• The probability distribution over xm1 = x1, . . . , xm can be expressed as:

p(xm1 ) =

m∏
i=1

p(xi|pa(xi))

where pa(xi) are the parents of xi in G, i.e., nodes with an edge to xi.

We then say that the distribution p factorizes with respect to G. For example, for a distribution
p that factorizes with respect to the graph shown above, we have

p(x1, x2, x3, x4) = p(x1)p(x2|x1)p(x3|x1)p(x4|x1, x3). (8.1)

What does (8.1) tell us about the distribution? Recall that based on the chain rule of probability,
we always have

p(x1, x2, x3, x4) = p(x1)p(x2|x1)p(x3|x1, x2)p(x4|x1, x2, x3).

It is straightforward to show that (8.1) is equivalent to

p(x3|x1, x2) = p(x3|x1),

p(x4|x1, x2, x3) = p(x4|x1, x3).
(8.2)

These two expressions are conditional independence statements, which we can restate as x3⊥⊥x2 |x1

and x4⊥⊥x2 |x1, x3. Thus saying that p factorizes with respect to the graph above is equivalent to
assuming (8.2). This is in general true. The set of missing incoming edges for each node in the
graph represents a conditional independence assumption.

The complete graph, shown for four nodes below, represents the factorization given (8.2), which
holds for any distribution and thus the graph can represent any distribution. But such a graph is not
particularly useful since the power of graphical models results from the independence assumptions
that they encode.
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x1 x2

x3 x4

Note that the complete graph is acyclic as it imposes an ordering over the nodes (in this case,
x1, x2, x3, x4). We can view any Bayesian network as being obtained from such a complete graph
by removing edges. So every Bayesian network is also acyclic.

Example 8.1. Alice and Bob are employees of a business in Charlottesville, both of whom take
29S to get to work. We are interested in whether they arrive on time or late. We assume their
arrival time is affected by traffic, which leads to dependence, but there aren’t any other factors
that can affect both of them. Let A = 0 and A = 1 denote Alice being on time and being late
A1, respectively and similarly for Bob (B = 0 and B1). Traffic is either normal (T = 0) or heavy
(T = 1). We use X0 and X1 as shorthand for X = 0 and X = 1 for our random variables.

The Bayesian Network that models the probability distribution is shown below.

T

A B

This graph implies that A ⊥⊥ B|T and that p(ABT ) = p(T )p(A|T )p(B|T ). We now have the
structure of our model. But we still need the conditional probability distributions to complete
the model. Suppose these distributions are as below:

T

P (T0) = 0.65

A B

P (B0|T0) = 0.82

P (B0|T1) = 0.15

P (A0|T0) = 0.9

P (A0|T1) = 0.5

Taking the example a step further, suppose that Bob has a son, Charlie (C0 and C1) who has to
be dropped off at school. Charlie being late has an effect on Bob being late. We will adjust the
Bayesian Network below and use the joint probability distribution in the following table.
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T

A B

C

P (C0) = 0.9

CT P (B0|CT ) P (B1|CT )
C0T0 0.9 0.1
C0T1 1/6 5/6
C1T0 0.1 0.9
C1T1 0 1

Note that this new conditional distribution does not change any previously calculated probabilities
involving Traffic, Alice, and Bob, but the numbers were chosen specifically to achieve this—this is
not always the case.

Based on this graph, the joint probability distribution is:

p(ABTC) = p(T )p(C)p(A|T )p(B|CT ).

It is easy to show that T ⊥⊥ C but as we will see below T 6⊥⊥ C|B.

Bayesian networks facilitate certain kinds of reasoning. In causal reasoning, we draw conclusions
about unobserved effects base on observed causes. For example, if we know there was heavy traffic,
then it is more likely that Bob was late, p(B1|T1) = 0.85 > p(B1) = 0.41. Evidential reasoning
allows us to say something about the cause by observing the effects. For example,

p(T1|B1) =
p(B1|T1)p(T1)

p(B1)
= 0.7177 > p(T1) = 0.35,

tells us that heavy traffic is more likely when Bob is late, even though we have no direct information
about the traffic.

We also have p(T1|B1C1) < P (T1|B1), which makes intuitive sense. Bob being late provides evidence
for traffic being heavy. But if we know Charlie is late, then we have an alternative explanation
for Bob being late, lessening the need for traffic being heavy as a reason for Bob’s tardiness. This
type of reasoning, where given an effect, occurrence of one cause lessens the probability of another
cause, is called explaining away. 4

8.2.1 Markov Model
A Markov Model or a Markov chain is a Bayesian network whose graph consists of a single
path. Such a model can, for example, represent the total winning of a gambler as a function of
time, where each game is independent. The main assumption is that given the present, the future
is independent of the past : how much money you’ll have after the next game is independent of
past games, if your current worth is known. Another, idealized example is the forecast: given that
we know today’s weather, days before that are irrelevant for tomorrow’s forecast. As an example,
consider
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x1 x2 x3 x4

which corresponds to
p(x4

1) = p(x1)p(x2|x1)p(x3|x2)p(x4|x3).

Consider a set of n random variables each of which can take on k different values. The most general
probability distribution over these variables will have kn − 1 parameters (the −1 comes from the
fact that we know the probabilities must sum to one). In practice, this is such a huge number even
for k = 2 and relatively small n, e.g., n = 100, that we can’t even store the distribution, let alone
learn it from data. The Markov model, however, has (k − 1) + (n − 1)k(k − 1) parameters, which
is much more manageable. This is an example of graphical models making modeling more feasible.

A closely related model is the hidden Markov model (HMM):

x1 x2 x3 x4

y1 y2 y3 y4

An HMM is used when the true state of the system cannot be directly observed but we can observe
some function of the state. For example, xi can represent if cancer is in remission or not and yi can
represent observations from medical tests.

Like Markov random fields, Markov and hidden Markov models are named after Russian math-
ematician Andrey Markov, but Markov models are Bayesian Networks and not Markov Random
Fields.

8.2.2 Why graphical models?
Graphical models, such as Bayesian networks are useful for several reasons.

• They provide a simple but flexible way to encode conditional independencies, enabling us to
answer questions about independence based on graphs.

• GMs help constructing tractable models. As an example, see the number of parameters for a
Markov chain versus an unrestricted model described above.

• Restriction to GMs has computational benefits, allowing us to draw conclusions about hidden
quantities based on observations efficiently using algorithms such as belief propagation.

8.3 Markov Random Fields
Definition 8.2 (Clique and maximal clique). The following definitions from graph theory will be
used in this section. In an undirected graph, a clique is a subset of nodes such that there is an edge
between any two of them. A maximal clique is a clique such that there are no nodes not in the
clique that connected to all the nodes already in the clique.
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Suppose that we are interested in developing a political party affiliation for a group of 5 people (or
millions of people if we have social network data). Let’s assume their friendships are given by the
following graph

x1 x2

x3x4

x5

in which each node xi represents the party of person i and an edge between xi and xj means that
i and j are friends. How can we develop a probability distribution that can help us in this task?

We would like to encode the following observations in our distribution. We know that if two people
are friends (e.g., 1 and 2), then it is more likely for them to have a common political alignment.
Furthermore, for three friends that are all friends (2,3,5), it is perhaps even more likely that they
share the same political views. Let party affiliation be denoted by 0 or 1. We define

ψij(xi, xj) =

{
1, xi = xj

1/2, xi 6= xj
(8.3)

and

ψijk(xi, xj , xk) =

{
1, xi = xj = xk

1/2, if two of the three are equal
(8.4)

So agreements are assigned a higher value. Now we can define a probability distribution as

p(x1, . . . , x5) ∝ ψ12(x1, x2)ψ14(x1, x4)ψ34(x3, x4)ψ235(x2, x3, x5), (8.5)

which assigns higher probability to configurations in which cliques of friends are in the same parties,
as we wanted. For example, the probability of the left configuration is 16 times as likely to occur
as the one on the right.

1 1

11

1

1 0

10

1

Note that there is no guarantee that the right side of (8.5) sums to 1 when going over all possible
configurations so we need a normalization factor, which in this context is called the partition
function,

Z =
∑
x5
1

ψ12(x1, x2)ψ14(x1, x4)ψ34(x3, x4)ψ235(x2, x3, x5).

We can then write

p(x1, . . . , x5) =
1

Z
ψ12(x1, x2)ψ14(x1, x4)ψ34(x3, x4)ψ235(x2, x3, x5).
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In our example, it turns out that Z = 8.5, and thus p(1, 1, 1, 1, 1) = 0.11765 while p(1, 0, 1, 0, 1) =
0.0073529.

Finally, we note while we chose the potential function for each pair and triple to be the same
regardless of the identity of the nodes, this is not a necessity; for example, we could have chose
different different functions for ψ12 and ψ3,4.

We can now consider the general case. A Markov random field (MRF) or an undirected
graphical model consists of an undirected graph G with nodes xm1 = x1, . . . , xm, and a probability
distribution p that factorizes with respect to G, i.e.,

p(xm1 ) =
1

Z

∏
C is a clique in G

ψC(xC), (8.6)

where for each clique C in G, xC is the set of nodes in that clique, ψC is a potential function,
which assigns non-negative values to all configurations of xC , and Z is the partition function, which
ensures that the right side is a proper distribution. Without loss of generality, we may assume
the cliques are maximal by absorbing the potential functions for smaller cliques into the maximal
clique. For our political party example above, for the clique with nodes x2, x3, x5, we can either
have 4 potential functions over all the sub-cliques,

ψ′(x2, x3)ψ′(x3, x5)ψ′(x2, x5)ψ′(x2, x3, x5)

or a single potential function
ψ(x2, x3, x5).

Both are valid and equally powerful in terms of representation.

When designing an MRF we incorporate local information into the potential functions, but the
final result is that we learn about the global view of the entire system. Also, in an MRF, the
relationships between nodes are symmetric rather than causal or directed.

8.3.1 Energy-based models
When for all configurations x = xm1 , the probability p(x) is positive, it is helpful to represent the
distribution as

p(x) ∝ e−E(x),

where E(·) is called the energy function. Such a distribution is also called a Boltzmann distri-
bution. The terminology comes from statistical physics. In that context, lower energy corresponds
to higher stability and thus higher probability for a system. For a graphical model, the energy
function can be written as the sum of terms each of which correspond to a clique in the graph,

E(x) =
∑

C is a clique in G

−φC(xC) ⇒ p(x) ∝
∏

eφC(xC)

A Boltzmann machine is such a graphical model, typically with both nodes that can be observed
and nodes that are hidden (latent).
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Example 8.3 (An MRF for denoising Images). The figure below shows an MRF for a noisy
black and white image. Here x1, x2, · · · , x6 represent the true B/W status of the pixels and
y1, y2, · · · , y6 the noisy values (e.g., due to noise of a camera). We denote ‘Black’=-1 and ‘White’
= 1.

x1

x2

x3

x4

x5

x6

y1

y2

y3

y4

y5

y6

The energy function can be written as

E(x,y) = −
m∑
i

αixi −
∑

(i,j)∈E(G)

βi,jxixj −
m∑
i

ζixiyi,

where E(G) is the set of edges between neighboring pixels and βi,j > 0 and ζi > 0. The αi
control how likely a pixel is to be white without considering other pixels. The interaction between
neighboring pixels is controlled by βij ; since each is positive, it is more likely for adjacent pixels to
have the same status. We assume that it is more likely for the noisy pixel to match the true pixel
and so ζi > 0 as well.

In a denoising task, we are given y and our goal is to recover x. A reasonable solution is

arg max
x

p(x,y).

If we can output fractional values (if the denoised image can be grayscale), another possible solution
is

E[x|y].

4

8.4 Moralization: Converting BNs to MRFs
In a BN, there is a term for each node xi of the form

p(xi|pa(xi)).

To be able to have the same term in an MRF, we need to have a clique containing xi and its parents.
So to design an MRF that can represent the same distribution as the BN, we first connect all the
parents of each nodes with each other and then remove all directions from the edges.

Example 8.4. As an example, consider:

Farzad Farnoud 103 University of Virginia



ESL Chapter 8. Basics of Graphical Models

T

A B

C

⇒

T

A B

C

⇒

T

A B

C

4

We have

p(A,B, T,C) = p(T )p(C)p(A|T )p(B|T,C) ⇒ p(A,B, T,C) = ψ(T )ψ(C)ψ(A, T )ψ(B, T,C),

where, for example, ψ(B, T,C) = p(B|T,C).

8.5 Latent Dirichlet Allocation**
(**)

Latent Dirichlet Allocation is commonly used for topic modeling - e.g. classifying documents based
on their content or topic.

Suppose there are two topics, cats and dogs. The words that appear under any document are
represented as probabilities in a matrix β:

Cats: "cat": 50%, "kitten": 20%, "litter": 20%, "paw": 10%
Dogs: "dog": 40%, "puppy": 20%, "bark": 20%, "chew": 10%, "paw": 10%

Each document is a mixture of topics:

document1: 80% cats, 20% dogs
document2: 100% cats
document3: 50% cats, 50% dogs

θ represents a topic mixture for a document and is generated from some distribution with parameter
α.

Each word in the document has a topic, and the probability of that topic is given by θ.

Let Z be the topics for each word in document1: cats, cats, dogs, cats, dogs, cats.

We can choose each word in the document based on the word distribution for its topic:

document1: "cat litter dog kitten bark cat"
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Chapter 9

Independence in Graphical Models

Graphical models encode independence assumptions. In this chapter, we will study algorithms that
enable us to answer questions of the form “Is S1 ⊥⊥ S2 | S3?” where S1, S2, S3 are subsets of the
nodes in the graph.

Recall that we construct Bayesian network by assuming certain independence assumptions that
allow us to remove edges from a complete DAG. The topic of this section is study of all independence
properties, which is more general than assumptions used to construct Bayesian networks.

9.1 Independence for sets of random variables
We know that for three random variables x, y, z, x is independent of z given y, denoted x ⊥⊥ z | y,
if and only if

p(x, z | y) = p(x|y)p(z|y).

This extends to sets of random variables and random vectors. For example, {x, y} ⊥⊥ {z, w} | {t, u},
or simply x, y ⊥⊥ z, w | t, u, if and only if

p(x, y, z, w | t, u) = p(x, y | t, u)p(z, w | t, u)

Using this we can show that if x, y ⊥⊥ z, w | t, u, then x ⊥⊥ z | t, u and x, y ⊥⊥ z | t, u. For example,

p(x, z | t, u) =
∑
y′,w′

p(x, y′, z, w′ | t, u)

=
∑
y′,w′

p(x, y′ | t, u)p(z, w′ | t, u)

=
∑
y′

p(x, y′ | t, u)
∑
w′

p(z, w′ | t, u)

= p(x | t, u)p(z | t, u).
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Note however that if x ⊥⊥ z and y ⊥⊥ z it does not follow that x, y ⊥⊥ z. For a counter-example, set
x ∼ Ber(1/2), y ∼ Ber(1/2) and z = x+ y.

Exercise 9.1. Show that for three disjoint sets of random variables A,B,C, if for some functions
f and g,

p(A,B | C) ∝ f(A,C)g(B,C),

where the constant of proportionality may depend on C, then A ⊥⊥ B | C. 4

9.2 Independence in Bayesian Networks
In the last chapter that we saw that we can obtain a Bayesian Network by starting from a complete
graph, representing the chain rule of probability, and then relying on independence assumptions,
remove certain edges. Conversely, these independence assumptions are implied by the graphical
model. But, in addition, to these, many other independence statements are implied by the net-
work. In this section, we will introduce the concept of d-separation, using which we can find all
independence statements satisfied by every distribution that factorizes with respect to the Bayesian
network. We start by considering several simple networks that will help us describe d-separation.

9.2.1 Simple Bayesian networks
Independence analysis in BNs relies on determining when information flows along paths in the
graph. As a preliminary step, we study whether information about x affects our belief about z in
the graphs of the form given below

yx z

with various directions on the edges and with y or one of its descendants being known or unknown.

Example 9.2. Given three random variables x, y, and z with relationships shown below, is x ⊥⊥ z?
yx z

The answer: not in general. The only thing we know from the GM is p(x, y, z) = p(y)p(x|y)p(z|y).
We thus have

p(x, z) =
∑
y

p(x, y, z) =
∑
y

p(y)p(x|y)p(z|y)

and this is not necessarily equal to p(x)p(z). Exercise: Find a counter example, i.e., find p such
that it factorizes with respect to the graph but x 6⊥⊥ z. 4

Example 9.3. Is x ⊥⊥ z | y in the graph below?

yx z
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The answer: yes. We need to show p(x, z | y) = p(x|y)p(z|y),

p(x, z | y) =
p(x, y, z)

p(y)
=
p(y)p(x|y)p(z|y)

p(y)
= p(x|y)p(z|y).

4

Example 9.4. Is x ⊥⊥ z in the graph below?

yx z

The answer: not in general since

p(x, z) =
∑
y

p(x)p(y|x)p(z|y) = p(x)
∑
y

p(y|x)p(z|y)

is not necessarily equal to p(x)p(z). Exercise: Provide a counter example for x ⊥⊥ z. 4

Example 9.5. Is x ⊥⊥ z | y in the graph below?

yx z

The answer: yes. We have

p(x, z | y) =
p(x, y, z)

p(y)
=
p(x)p(y|x)p(z|y)

p(y)
=
p(y)p(x|y)p(z|y)

p(y)
= p(x|y)p(z|y).

4

Example 9.6. Is x ⊥⊥ z in the graph below?

yx z

Yes: p(x, z) =
∑
y p(x, y, z) =

∑
y p(x)p(z)p(y | x, z) = p(x)p(z)

∑
y p(y | x, z) = p(x)p(z). 4

Example 9.7. Is x ⊥⊥ z | y in the graph below?

yx z

Not in general. Exercise: Verify that for x ∼ Ber( 1
2 ), z ∼ Ber( 1

2 ) and y = x+ z, p(x, y, z) factorizes
with respect to the graph above and x 6⊥⊥ z | y. 4

In graphs of Examples 9.8 and 9.9, if y has a descendant, that will also affect the independence
relationship between x and z. These cases are considered next.

Example 9.8. Is x ⊥⊥ z in the graph below?
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yx z

w

Yes: p(x, z) =
∑
y,w p(x, y, z, w) =

∑
y,w p(x)p(z)p(y | x, z)p(w|y) = p(x)p(z)

∑
y,w p(y | x, z)p(w|y) =

p(x)p(z). 4

Example 9.9. Is x ⊥⊥ z | y in the graph below?

yx z

w

Not in general. Exercise: Verify that for x ∼ Ber( 1
2 ), z ∼ Ber( 1

2 ), y = x+z, and w = y, p(x, y, z, w)
factorizes with respect to the graph above and x 6⊥⊥ z | w. 4

9.2.2 d-separation
Based on our analysis in the previous section, we can summarize whether information flows from x
to z in a graph of the form x− y − z in Table 9.1. The table is organized by the direction of edges
at y, with H (Head) representing an incoming edge and T (Tail) representing an outgoing edge. We
can see that for the HT, TH, and TT configurations, y blocks the path from x to z if it is known
(given) and for HH, it blocks the path if it is not known and neither are any of its descendants.

We can generalize this observation to decide, for three disjoint sets A, B, and C, of nodes, whether
A ⊥⊥ B | C.
Definition 9.10. For disjoint sets A, B, and C, we say that A and B are d-separated given C if
every path between a node in A and a node in B is blocked if we assume the nodes in C are known.
A path is blocked if it has a node v such that the nodes incident to v are:

• HT,TH, or TT and v ∈ C;
• HH, and neither v nor its descendants are in C.

Theorem 9.11. For three disjoint sets of nodes, A, B, and C, in a graph G, such that A and B
are d-separated given C, then A ⊥⊥ B | C according to any probability p that factorize with respect
to G.

Remark ** The converse of the theorem also holds in the sense that any distribution p that
satisfies all independencies implied by d-separation factorizes with respect to the graph.

Remark ** Could a distribution p that factorizes with respect to G satisfy independencies that
are not implied by d-separation? Indeed, yes. The distribution p =

∏n
i=1 p(xi) factorizes with

respect to any graph G and for any non-trivial G, p satisfies independencies that are not implied by

Farzad Farnoud 108 University of Virginia



ESL Chapter 9. Independence in Graphical Models

Table 9.1: Flow of information between x and z. Nodes with style y are knwon.

Passing through Blocked

HT/TH

yx z

yx z

yx z

yx z

TT yx z yx z

HH

yx z

yx z

w u

yx z

yx z

w u

d-separation in G. However, for any independency A ⊥⊥ B | C not implied by d-separation, there is
a probability distribution factorizing with respect to G for which A 6⊥⊥ B | C.

Example 9.12. In the traffic graphic from last chapter, shown below, we want to find all inde-
pendences of the form x ⊥⊥ y and x ⊥⊥ y | z for vertices x, y, z. For those that do not follow form
d-separation, we write x 6⊥⊥ y and x 6⊥⊥ y | z. We have

• No conditioning: T ⊥⊥ C, T 6⊥⊥ A, T 6⊥⊥ B, C ⊥⊥ A, C 6⊥⊥ B, A 6⊥⊥ B.

• Given T : A ⊥⊥ B | T , A ⊥⊥ C | T , B 6⊥⊥ C | T .
• Given C: A 6⊥⊥ B | C, A 6⊥⊥ T | C, B 6⊥⊥ T | C.
• Given A: T 6⊥⊥ B | A, T ⊥⊥ C | A, B 6⊥⊥ C | A.
• Given B: T 6⊥⊥ A | B, T 6⊥⊥ C | B, A 6⊥⊥ C | B.

T

A B

C

In addition, we have A ⊥⊥ {B,C} | T but {T,A} 6⊥⊥ C | B. 4

Example 9.13 (The Naive Bayes model). The graph for the naive Bayes classification model
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is

y

x1 x2 · · ·

· · ·

xm

where y denotes the class and x1, . . . , xm denote the dimensions of the input vector. Given y the
dimensions are independent, i.e., xi ⊥⊥ xj | y for i 6= j. But if the class y is not known, generally
speaking, xi 6⊥⊥ xj . 4

Example 9.14. For four nodes w, x, y, and z, shown below, assume y is given. We can determine
that none of the independencies w ⊥⊥ z | y, x ⊥⊥ z | y, x ⊥⊥ w | y follow from d-separation. In fact,
we can find a counter example, i.e., a distribution that factorizes with respect to the graph below
and does not satisfy these independencies. Specifically, let w ∼ Ber(1/2), z ∼ Ber(1/2), y = w + z
and x = y + z. Note however that y ⊥⊥ n | y for n ∈ {x,w, z} by the definition of independence.

y

w z

x

4

9.2.3 Markov Blanket in Bayesian Networks
In a graphical model, the Markov blanket of a node y is the set of nodes S such that y ⊥⊥ U | S
for any set U . In other words, the set S isolates y from the rest of the graph. In a Bayesian
network, the Markov blanket of y consists of its parents, its children, and the immediate parents of
its children. The proof of this statement is left as an exercise. An example is shown in Figure 9.1.

9.3 Independence in MRFs
The set of independencies implied by an MRF are more straightforward as separation is the naive
graph-theoretic separation. As an example, consider the friendship graph of the previous chapter
and assume we know the political affiliation of x2,x3.
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y

b acd

e

f

x

g

z w

Figure 9.1: The Markov blanket of node y are the set of nodes colored red.

x1 x2

x3x4

x5

Then intuitively, we can expect that knowing x5 does not provide any relevant information about
x1,x4 and so we must have x1, x4 ⊥⊥ x5 | x2, x3.

In an MRF G, suppose xA, xB , and xC are disjoint subsets of vertices such that xA ∪xB ∪xC = G,
as shown in Figure 9.2. If every path from xA to xB travels through xC , then xA ⊥⊥ xB | xC . To
see that this is the case, note that

p(xA, xB | xC) = P (xA | xC)P (xB | xC)

=
p(xA, xB , xC)

p(xC)
∝ p(xA, xB , xC)

∝
∏

Q is a clique in G

ψQ(xQ) =
∏

Q∈xA∪xC

ψ(xQ)
∏

Q∈xB∪xC

ψ(xQ).

The last equality follows from the fact that there is no clique in G that has a node in both xA, and
xB since xC separates xA and xB . The result follows from Exercise 9.1.

Examples are given in Figure 9.3.

The Markov Blanket of a node in an MRF is the set of neighbors as shown in Figure 9.4.

9.4 In-class activity
Given the graph in Figure 9.5, find the largest set A such that x1 ⊥⊥ xA | x2, x3.

Solution: A = {x4, x5, x10}.
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Figure 9.2: MRF Theorem

Figure 9.3: Two examples of MRFs

Farzad Farnoud 112 University of Virginia



ESL Chapter 9. Independence in Graphical Models

Figure 9.4: As example of a Markov Blanket

Figure 9.5: In-class activity
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Chapter 10

Parameter Estimation in Graphical
Models

10.1 Introduction
A graphical model has two components: the graph structure (the nodes and their connections),
and the conditional probability distributions/potential functions, which are usually expressed in
parametric form. In this chapter:

• We will consider the problem of estimating the parameters in graphical models. The problem
is simpler in the case of Bayesian networks and for simplicity, that is were our attention will
be focused.

• However, we will not consider the more challenging problem of learning the structure of a
network. The best case scenario is that you have good reason to design a graph in a certain
way, e.g., based on causality.

10.2 Maximum Likelihood Estimation in Bayesian Networks
Consider a BN with known graph with m nodes x1, . . . , xm in which the parameters of the condi-
tional distribution are unknown. There are m conditional probability distributions (CPDs)1, one
for each node, and each of these has an unknown parameter vector. We denote the concatenated
vector of all parameters as θ = (θ1, . . . ,θm). To determine the parameters, we collect a dataset
D = {x1, . . . ,xn} of n iid samples, where xi = (xi1, . . . , xim).

Example 10.1. As an example, we may consider the network from previous chapters with the
vector of parameters θ = (θT , θC ,θA,θB).

1Some of the nodes do not have any parents so their distribution is not conditioned on any other nodes. We
view these as conditioned on the empty set and thus refer to all probability distributions in a Bayesian Network as
conditional probability distributions.
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T

P (T = 0; θT ) = θT

A B

P (B = 0|C = 0, T = 0;θB) = θB00

P (B = 0|C = 0, T = 1;θB) = θB01

P (B = 0|C = 1, T = 0;θB) = θB10

P (B = 0|C = 1, T = 1;θB) = θB11

C

P (C = 0; θC) = θC

P (A = 0|T = 0;θA) = θA0

P (A = 0|T = 1;θA) = θA1

Our goal is to determine θ by collecting data and determine the conditional probability distributions,
thereby determining the network. To collect data, on n days, we record whether there is heavy
traffic and whether Alice, Bob, and/or Charlie are late. 4 4

We can find the parameters through maximum likelihood. Given that our network can have many
nodes, the size of the parameter vector may be very large. This would create computational
difficulties since it would require maximizing a function of many variables. Fortunately, in the
case of Bayesian networks, the problem decomposes to estimating the parameters for each nodes
separately as we will show. To see why this is helpful, suppose that we optimize by grid search, i.e.,
trying a set of values at regular intervals. If we try K points for one dimension, for m dimensions we
need to try Km points to get the same precision. However, if we optimize m parameters separately,
then we only need to try mK points, typically a significantly smaller number.

Decomposability of likelihood. For the ith data sample, the likelihood function is

p(xi;θ) =

m∏
j=1

p(xij |pa(xij);θj)

and thus the log-likelihood of the whole dataset is

`(θ) =

n∑
i=1

ln p(xi;θ) =

n∑
i=1

m∑
j=1

ln p(xij |pa(xij);θj) =

m∑
j=1

n∑
i=1

ln p(xij |pa(xij);θj).

Thus for a given j, θj only appears in the term
∑n
i=1 ln p(xij |pa(xij);θj) and no other θk ap-

pears in this term. So each θj , and thus each conditional probability distribution, can be learned
independently of the others.

Exercise 10.2. For the TABC network above, what would our data look like? What is the ML
estimate for each parameter based on this data? 4

10.3 Bayesian Parameter Estimation in Bayesian Networks
Suppose that we want to estimate the parameters of the conditional probability distributions of a
Bayesian network using Bayesian inference. Since in the Bayesian view, parameters are considered
random, we can augment the Bayesian network by adding the parameters as nodes. In particular,
we can recast Bayesian estimation problems that we have seen before as Bayesian networks.
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10.3.1 Bayesian Estimation formulated as Bayesian Networks
Example 10.3. As a simple example, consider the Bayesian network consisting of a singe node y
whose distribution has an unknown parameter θ. We can transform this to a network with node θ
and y, in which the conditional distributions are the prior p(θ) and the likelihood p(y|θ).

y

p(y|θ)

=⇒
y p(y|θ)

θ p(θ)

The joint distribution resulting from the network is p(θ, y) = p(θ)p(y|θ), which indeed factorizes
with respect to the network on the right. Now, if y is given (which we show by a hatched pattern),
we can find p(θ|y) using Bayes rule,

y p(y|θ)

θ p(θ)

p(θ|y) = p(y,θ)
p(y)

= p(θ)p(y|θ)
p(y)

4

Example 10.4. The problem in Example 10.3 becomes more interesting when we have n indepen-
dent samples, D = {y1, y2, . . . , yn}, from the distribution. We can simplify the network with the
plate notation, by representing nodes that have the same conditional probability distribution (and
are independent) using plates, as shown below.

θ

y1 y2 · · ·

· · ·

yn

≡

yi

n

θ

The joint distribution of θ and yn1 can be written as

p(yn1 , θ) = p(θ)

n∏
i=1

p(yi|θ),

and the posterior distribution for θ as

p(θ|yn1 ) ∝ p(yn1 , θ) = p(θ)

n∏
i=1

p(yi|θ).

4
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Example 10.5. Following Example 10.4, suppose we have n independent samplesD = {y1, y2, . . . , yn}
from the distribution. We want to predict the distribution of the next sample p(yn+1|yn1 ). The graph
is shown below.

θ

yi

n

yn+1

We have

p(yn+1|yn1 ) =

ˆ
p(yn+1, θ|yn1 )dθ =

ˆ
p(θ|yn1 )p(yn+1|θ, yn1 )dθ =

ˆ
p(θ|yn1 )p(yn+1|θ)dθ

where in the last step we have used yn+1 ⊥⊥ yn1 | θ, which follows from d-separation. Furthermore,

E[yn+1|yn1 ] = E[E[yn+1|θ, yn1 ]|yn1 ] = E[E[yn+1|θ]|yn1 ]. (10.1)

Roughly speaking, to learn about yn+1 given yn1 , we must first learn about θ since this is the node
that connects yn1 and yn+1.

For example, assume p(θ) ∝ 1, yi|θ ∼ Ber(θ), and that out of the n samples yi, there s 1s and f
0s. Then

p(yn+1 = 1|yn1 ) = E[yn+1|yn1 ] = E[E[yn+1|θ]|yn1 ] = E[θ|yn1 ] =
s+ 1

s+ f + 2
.

4

10.3.2 Estimating Parameters of CPDs in Bayesian Networks
So far for the most part, we have cast Bayesian inference problems that we had seen before as
Bayesian networks. In the next example, we consider the problem of estimating the parameters of
the conditional probability distributions (CPDs) of Bayesian network.

Similar to Section 10.2, consider a BN with m nodes x1, . . . , xm in which the parameters θ =
(θ1, . . . ,θm) of the CPDs are unknown. Our dataset is D = {x1, . . . ,xn} consisting of n iid
samples, where xi = (xi1, . . . , xim). We are interested in determining p(θ|D) and p(xn+1|D).

Example 10.6. Let us consider a simpler version of the network given in Example 10.1, with
unknown parameter vector θ = (θT ,θA,θB),

T

P (T = 0|θT ) = θT

A B

P (B = 0|T = 0,θB) = θB0

P (B = 0|T = 1,θB) = θB1

P (A = 0|T = 0,θA) = θA0

P (A = 0|T = 1,θA) = θA1

Farzad Farnoud 117 University of Virginia



ESL Chapter 10. Parameter Estimation in Graphical Models

Given n samples D = {(T1, A1, B1), . . . , (Tn, An, Bn)}, and our goal is to estimate the posterior we
augment the network as

so that we can learn about p(θA,θB , θT |D) and p(Tn+1, An+1, Bn+1|D). 4 4

Decomposability of posterior and predictive posterior. Consider a Bayesian network with
n×m nodes for the data D = {x1, . . . ,xn} where xi = (xi1, . . . , xim); m nodes for θ1, . . . ,θm; and
m nodes for the future observation xn+1,1, . . . , xn+1,m as shown below (see also the second graph
in Example 10.6 for a concrete example)

Let us start by trying to decompose p(θ|D). First, note that by d-separation

p(θ|D) =

m∏
j=1

p(θj |D).

Next, define
Nj = {x1j , . . . , xnj ,pa(x1j), . . . ,pa(xnj)}, (10.2)

i.e., the set of children and parents of children of θj among the nodes of D. Similar to Markov
blankets, we see that θj ⊥⊥ D \Nj | Nj . That is, given Nj , θj is independent of all other nodes in
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D, and so p(θj |D) = p(θj |Nj). Hence,

p(θ|D) =

m∏
j=1

p(θj |D) =

m∏
j=1

p(θj |Nj). (10.3)

This is good news, because it means we can find the posterior for the parameters of each CPD can
be computed separately.

Exercise 10.7. Using the Bayesian network above, prove that the last two equalities in the ex-
pression below hold:

p(θ,xn+1 | D) = p(θ|D)p(xn+1 | D,θ) = p(θ|D)p(xn+1|θ) (10.4)

= p(θ|D)

m∏
j=1

p(xn+1,j |θj ,pa(xn+1,j)). (10.5)

We can find the posterior predictive p(xn+1|D) by integrating the above expression with respect to
θ. 4 4

Example 10.8. Getting back to Example 10.6, let us find p(θA|D) and p(An+1, Bn+1|D). As
in (10.2), the set of children and parents of children of θA among data nodes areNA = {A1, . . . , An, T1, . . . , Tn}
and

p(θA|D) = p(θA|An1 , Tn1 ).

This makes intuitive sense: to estimate the probability of Alice being late as a function of traffic,
only the part of data that deals with Alice’s arrival time and traffic is relevant.

Assuming that the prior satisfies p(θA) = p(θA0)p(θA1),

p(θA|An1 , Tn1 ) ∝ p(θA)p(Tn1 |θA)p(An1 |Tn1 ,θA)

= p(θA)p(Tn1 )p(An1 |Tn1 ,θA)

∝ p(θA)p(An1 |Tn1 ,θA)

= p(θA)

n∏
i=1

p(Ai|Tn1 ,θA)

= p(θA)

n∏
i=1

p(Ai|Ti,θA)

=

(
p(θA0)

∏
i:Ti=0

p(Ai|Ti = 0, θA0)

)(
p(θA1)

∏
i:Ti=1

p(Ai|Ti = 1, θA1)

)
.

Since the terms depending on θA0 and θA1 separate, they are conditionally independent and we can
estimate them separately: Hence, the estimators of θ0

A and θ1
A are

p(θA0|D) ∝ p(θA0)
∏
i:Ti=0

p(Ai|Ti = 0, θA0),

p(θA1|D) ∝ p(θA1)
∏
i:Ti=1

p(Ai|Ti = 1, θA1).
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Suppose p(θ0
A) ∼ Beta(1, 1) and out of 100 days with no traffic, in 40 days Alice was on time.

Hence,
θA0|D ∼ Beta(41, 61).

Furthermore, the posterior probability of the next sample (An+1, Bn+1) is

p(An+1, Bn+1|D) =

ˆ
θ

p(An+1, Bn+1,θ|D)dθ

=

ˆ
θ

p(θ|D)p(An+1, Bn+1|θ)dθ.

In general, such integrals may be difficult to find analytically. In practice, we rely on computational
methods such as Markov Chain Monte Carlo (MCMC). Alternatively, to predict future values, we
can use a Bayesian point estimate for θ, and then assume that they are known as shown below.

T

P (T = 0) = θ̂T

A B

P (B = 0|T = 0) = θ̂B0

P (B = 0|T = 1) = θ̂B1

P (A = 0|T = 0) = θ̂A0

P (A = 0|T = 1) = θ̂A1

4

10.4 Parameter Estimation in MRFs
Recall that for an MRF G, the probability distribution is given as

p(x;θ) =
∏

c is a clique in G

ψθ(xc)/Z(θ),

where Z(θ) =
∑
x

∏
c ψθ(xc) is the partition function. Let us consider the frequentist estimation

of θ, e.g., maximum likelihood. Unfortunately, the log-likelihood function does not decompose into
terms each depending on one component of θ. This is due to the presence of the partition func-
tion, which generally depends on all the components of θ, leading to a high-dimensional problem.
Furthermore, computing the partition function is a computationally difficult task since it involves
computing a sum with possibly exponentially many terms.
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Chapter 11

Inference in Graphical Models

11.1 Introduction
Inference refers to drawing conclusions about unknown quantities based on observations and a
model. In the context of graphical models assume, our goal is to learn about a set of query nodes
given observed nodes.

For example, consider the following graph with nodes for background information about a patient
(e.g., diet, exercise, genetics, etc.), diseases (diabetes, hypertension, etc.), and symptoms/test re-
sults (blood pressure, etc). Our goal is assign probabilities to disease based on our observations.
Alternatively, we may be interested in identifying the disease that is most likely.

Background

Diseases

Symptoms

? ? ?

In such a graph, we deal with three types of nodes, evidence (observed) nodes, xE , query nodes,
xQ, and other nodes, xO.

Without having made any observations, we can find the probability of the query nodes through
marginalization:

p(xQ) =
∑
xO,xE

p(xQ, xO, xE),

and with observations, through conditioning :

p(xQ|xE) ∝
∑
xO

p(xQ, xO, xE).
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Since we can view the latter case as doing summation over xE that only consists of a single set of
values, from this point on, we will only consider marginalization. Note that we need to compute∑
xO
p(xQ, xO, xE) for all values of xQ to be able to find p(xQ|xE).

11.2 The Elimination Algorithm
Suppose that in a Markov chain x1 → x2 → x3 → x4 → x5, we need to find p(x4),

p(x4) =
∑

x1,x2,x3,x5

p(x1)p(x2|x1)p(x3|x2)p(x4|x3)p(x5|x4).

Assume each node can take k different values. In the naive approach, we need to compute and add
O(k4) terms, and we need to do so for each possible value of x4. So finding the distribution of x4

has complexity O(k5).

Alternatively, we could eliminate each variable, which can be done in different orders. The equalities
below represent computation performed by an algorithm:

p(x4) =
∑
x1

∑
x2

∑
x3

∑
x5

p(x1)p(x2|x1)p(x3|x2)p(x4|x3)p(x5|x4)

=
∑
x1

∑
x2

∑
x3

p(x1)p(x2|x1)p(x3|x2)p(x4|x3)
∑
x5

p(x5|x4)

=
∑
x1

∑
x2

∑
x3

p(x1)p(x2|x1)p(x3|x2)p(x4|x3)

=
∑
x1

∑
x2

p(x1)p(x2|x1)
∑
x3

p(x3|x2)p(x4|x3)

=
∑
x1

∑
x2

p(x1)p(x2|x1)M1(x2, x4)

=
∑
x1

p(x1)
∑
x2

p(x2|x1)M1(x2, x4)

=
∑
x1

p(x1)M2(x1, x4)

= p(x4)

The function M1(x2, x4) is defined as the result of the sum
∑
x3
p(x3|x2)p(x4|x3), and a similar

statement holds for M2. We can think of M1(x2, x4) as a table stored in computer memory after
it is computed. Computing M1(x2, x4) needs to be done for k different values of x2 and each of
these requires computing and adding k terms, one for each possible value of x3. The computational
complexity for a specific value of x4 is O(k2), i.e., we need of the order of k2 computations. The
total computational complexity of finding the distribution p(x4) is O(k3) since we need to repeat
all operations for the k different values that x4 can take. More generally, for a Markov chain with n
nodes, the complexity is O(nk3) for computing the distribution p(xn). But with the naive approach
it is O(kn).

Note that in Bayesian networks, we can ignore downstream nodes since their probability marginal-
izes to 1 (but not in MRFs).
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We could also choose the following ordering, which would lead to a different complexity:

p(x4) =
∑
x1

∑
x3

∑
x2

p(x1)p(x2|x1)p(x3|x2)p(x4|x3)

=
∑
x1

∑
x3

p(x1)p(x4|x3)
∑
x2

p(x2|x1)p(x3|x2)

=
∑
x1

∑
x3

p(x1)p(x4|x3)T1(x1, x3)

=
∑
x1

p(x1)
∑
x3

p(x4|x3)T1(x1, x3)

=
∑
x1

p(x1)T2(x1, x4)

= p(x4).

Here, computing T1(x1, x3) has complexity O(k3), which is also the complexity for one value of x4.
For the distribution, the complexity is O(k4) for this ordering.

The problem of finding the best ordering for elimination is NP-hard (i.e., computationally difficult)
for general graphs.

Now let us find p(x0|x4) in the following network:

x0 x1

x2

x3

x4

x5

We have

p(x0|x4) ∝
∑

x1,x2,x3

p(x0)p(x1|x0)p(x2|x1)p(x3|x1)p(x4|x2, x3)

=
∑
x1,x3

p(x0)p(x1|x0)p(x3|x1)
∑
x2

p(x2|x1)p(x4|x2, x3)

=
∑
x1,x3

p(x0)p(x1|x0)p(x3|x1)K1(x1, x3, x4)

=
∑
x1

p(x0)p(x1|x0)
∑
x3

p(x3|x1)K1(x1, x3, x4)

=
∑
x1

p(x0)p(x1|x0)K2(x1, x4)

= p(x0)
∑
x1

p(x1|x0)K2(x1, x4)

= p(x0)K3(x0, x4).

The complexity is dominated by K1(x1, x3, x4), which is O(k3), assuming each node can take on k
values, leading to a total complexity of O(k4) for the conditional distribution of x0.
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11.3 The Sum-Product Algorithm
The sum-product algorithm, also known as belief propagation and sum-product message passing,
provides a simple way of doing exact inference on trees. It is also commonly used on graphs that
are not trees since it often provides good approximations.

We need to clarify what we mean by trees. For Markov random fields, the algorithm works on trees,
in the graph-theoretic sense. But for Bayesian networks, it works for graphs whose equivalent MRF
(the moralized graph) is a tree. In particular, no node can have more than one parent. Given the
straightforward equivalence between these two categories, we only consider Markov random field
trees.

Consider the the following MRF, where we are interested in p(x4), with

p(x4
1) ∝ ψ(x1, x3)ψ(x2, x3)ψ(x2)ψ(x3, x4)ψ(x4)ψ(x4, x5)

x3

x1

x2

x4 x5

Let’s look at this graph as a rooted tree,

x4

x3

x1 x2

x5

and perform elimination starting from the leaves to the roots:

p(x4) ∝
∑

x1,x2,x3,x5

ψ(x1, x3)ψ(x2, x3)ψ(x2)ψ(x3, x4)ψ(x4)ψ(x4, x5)

=
∑
x3

ψ(x3, x4)ψ(x4)

(∑
x1

ψ(x1, x3)

)(∑
x2

ψ(x2, x3)ψ(x2)

)(∑
x5

ψ(x4, x5)

)
=
∑
x3

ψ(x3, x4)ψ(x4) m13(x3) m23(x3) m54(x4)

= ψ(x4)m54(x4)
∑
x3

ψ(x3, x4) m13(x3) m23(x3)

= ψ(x4)m54(x4)m34(x4)

(11.1)
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We can view this computation as being done on each node and then messages being passed to
neighbors:

x4

x3

x1 x2

x5

m
13
(x

3
)

−−
−−
−→

m
34
(x

4
)

−−
−−
−→

m
23 (x

3 )

←−−−−−

m
54 (x

4 )

←−−−−−

where

m13(x3) =
∑
x1

ψ(x1, x3),

m23(x4) =
∑
x2

ψ(x2, x3)ψ(x2),

m54(x4) =
∑
x5

ψ(x4, x5),

m34(x4) =
∑
x3

ψ(x3, x4) m13(x3) m23(x3).

and then at the root, we can find p(x4) as

p(x4) ∝ ψ(x4)m54(x4)m34(x4).

Recall that this also works for conditioning. Specifically, if we are interested in the conditional
probability p(x4|x3 = a), we would compute

m34(x4) = ψ(x3 = a, x4) m13(a) m23(a),

p(x4) ∝ ψ(x4)m54(x4)m34(x4).

We can state the sum-product algorithm for a rooted tree as follows. At each node xj with parent
xk,

• Product step: After receiving messagesmij(xj) from all children xi of xj , compute the product
of all messages and any potential functions containing xj ,

ψ(xj)ψ(xj , xk)
∏
i

mij(xj).

Note that not all potentials are always present.

• Sum step: Sum over all possible values of xj to produce the message

mjk(xk) =
∑
xj

ψ(xj)ψ(xj , xk)
∏
i

mij(xj), (11.2)

and send to xk.
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A critical point in the correctness of the sum-product algorithm is that the messages received by
each node are functions of the value of that node. This is easy to see by induction. After the
product step, we get a function of both the current node xj and its parent xk. The sum eliminates
the current node and so the parent node xk receives a message that is only a function of xk.

Complexity of computing each message: Suppose each node can take on K different values, namely
{1, 2, . . . ,K}. So the sum in (11.2) contains K terms. Furthermore, mjk(xk) needs to be computed
for xk = 1, 2, . . . ,K. We can imagine a vector

mjk =


mjk(1)
mjk(2)

...
mjk(K)


being sent to the node xk. So the complexity at each node is O(K2) and for n nodes the complexity
is O(nK2).

Computing marginals at all nodes. We can easily extend this algorithm to computing all
marginals rather than a single node. We note that the messages sent by the nodes do not depend
on the location of the root. Each node sends a message when it receives messages from all but one
of its neighbors. We can extend this by not sending a message only once, but sending a message to
each neighbor based on the messages received by the other neighbors:

x3

x1

x2

x4 x5

m
13 (x

3 )

−−−−−→
←−−−−−
m
31 (x

1 )
m34(x4)−−−−−→
←−−−−−
m43(x3)

m
32
(x

2
)

←−
−−
−−

−−
−−
−→

m
23
(x

3
)

m54(x4)←−−−−−
−−−−−→
m45(x5)

Here the order of messages is color-coded: 1, 2, 3. We can now find the marginal at each node. For
example,

p(x2) ∝ m32(x2)ψ(x2),

p(x3) ∝ m13(x3)m23(x3)m43(x3).

Example 11.1. An example for the sum-product algorithm is given at the end of the document.
4

11.4 The Max-Product Algorithm
The max-product algorithm is used to identify the configuration that has the maximum probability.
Examples include part-of-speech tagging, voice recognition, decoding (communication), and image
denoising. The last example is shown below:
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x11 x12 x13 x14 x15

x21 x22 x23 x24 x25

x31 x32 x33 x34 x35

x11 y12 y13 y14 y15

y21 y22 y23 y24 y25

y31 y32 y33 y34 y35

where xij are true image pixels and yij are observed pixels, e.g., from a camera. Our goal is to find

arg max
x

p(x,y).

Note that the local maximum-probability configuration does not necessarily agree with the global
maximum-probability configuration. As an example, consider

p(x1, x2) x1 = 0 x1 = 1
x2 = 0 .3 .4
x2 = 1 .3 0

We have

arg max
x1,x2

p(x1, x2) = (1, 0)

arg max
x1

p(x1) = arg max
x1

(p(x1, x2 = 0) + p(x1, x2 = 1)) = 0.

To see the max-product algorithm, suppose we want to find

arg max
x5
1

p(x5
1)

for the tree given in the previous section. To solve this problem, let us start with solving

max
x5
1

p(x5
1)

We proceed similar to (11.1). For clarity, we make the partition function Z explicit, but we don’t

Farzad Farnoud 128 University of Virginia



ESL Chapter 11. Inference in Graphical Models

actually need to find it. We replace each summation in the previous derivation with max and write:

max p(x5
1) = max

x1,x2,x3,x4,x5

Zψ(x1, x3)ψ(x2, x3)ψ(x2)ψ(x3, x4)ψ(x4)ψ(x4, x5)

= Z max
x4

max
x3

ψ(x3, x4)ψ(x4)

(
max
x1

ψ(x1, x3)

)(
max
x2

ψ(x2, x3)ψ(x2)

)(
max
x5

ψ(x4, x5)

)
= Z max

x4

max
x3

ψ(x3, x4)ψ(x4) m13(x3) m23(x3) m54(x4)

= Z max
x4

ψ(x4)m54(x4) max
x3

ψ(x3, x4) m13(x3) m23(x3)

= Z max
x4

ψ(x4)m54(x4)m34(x4)

This is the same as the sum-product algorithm, except that we take the max of product terms. We
can again view this as message-passing, but using max instead of sum, with the following messages:

m13(x3) = max
x1

ψ(x1, x3),

m23(x4) = max
x2

ψ(x2, x3)ψ(x2),

m54(x4) = max
x5

ψ(x4, x5),

m34(x4) = max
x3

ψ(x3, x4) m13(x3) m23(x3).

If we have Z, we can find the maximum probability. But we are interested in the values x∗ of x
that achieve this maximum probability (also we don’t have Z). To find x∗, we simply need to keep
track of which values of xi maximize the message. Specifically, for a message mij(xj), we should
know for each value of xj what value of xi was used to obtain the maximum value of the message.
Then, when we find what value of x4 maximizes the probability at the last step, we backtrack and
find all the other xis.

11.5 Sum-product Example
In the example below, we are interested in the probability of each node given that B = 0, i.e., Bob’s
on time. Specifically, we are after p(T |B = 0), p(A|B = 0), p(B|B = 0).
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Chapter 12

Inference in Hidden Markov Models

A hidden Markov model (HMM) is a graphical model of the form shown below. The top chain
is a Markov chain representing the state of some system. Typically the state cannot be observed
directly. However, we can observe some (probabilistic) function of the state. For example, the
Markov chain can represent the health status of a patient and the observations are symptoms such
as temperature, blood pressure, etc. As another example, the Markov chain can represent the part
of speech of words in a text, and the observation is the actual word.

x1 · · · xt−1 xt xt+1 · · · xTStates (hidden):

y1 · · · yt−1 yt yt+1 · · · yTObservations:

· · · · · ·

The probability distribution for this model factorizes as

p(xT1 , y
T
1 ; θ) = p(x1)

T∏
t=2

p(xt|xt−1)

T∏
t=1

p(yt|xt).

Assuming the Markov chain and the observations are both on discrete spaces, we can complete the
model by specifying θ = (π,A,B), where:

• The probability distribution π for x1,

πi = p(x1 = i).

• The transition matrix A of the Markov chain,

Aij = p(xt+1 = j|xt = i).
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• The emission matrix B describing the probabilities of the observations given the state,

Bij = p(yt = j|xt = i).

Below are three common inference problems associated with HMMs and the methods for solving
them. We will not derive the solutions but they can be found in [1].

• Evaluation: p(xt|yT1 ; θ)→ forward-backward algorithm (sum-product).

• Decoding: arg maxxT1 p(x
T
1 |yT1 ; θ)→ Viterbi algorithm (max-product).

• Learning: arg maxθ p(y
T
1 ; θ)→ Baum-Welch algorithm (EM).

Below are HMM notes from a previous class. Unless I get a chance to go over these in class,
they are not part of the course material and are here for self-study. But note that the methods are
sum-product, max-product, and EM algorithms, which are part of the course and so reviewing the
material below can be helpful in understanding those.
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Factor Graphs and
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Chapter 14

Markov Chains

14.1 Introduction
A Markov chain (MC) is a stochastic process whose future is independent from its past and can
be represented as the following Bayesian network:

x0 x1 · · · xt−1 xt xt+1 · · ·

The value of xt is called the state of the Markov chain at time t. The set of all possible states is
the state space. For example,

• We may represent daily weather with the state space: {sunny, cloudy, rainy}

• The state of the disease in a patient may be represented by a MC with two states: {remission,
relapse}.

• The number of animals of a certain species can be represented with states {0, 1, 2, . . . }.
Uncountable state spaces are also possible (e.g., temperature) and we will rely on them for sam-
pling later. But for simplicity, we focus on finite-state MCs. Also, note that a MC is usually an
approximation of the world since we like to have a small number of states.

To complete the characterization of a MC, we also need to know the CPDs,

p(x0 = i), p(xt+1 = j|xt = i).

We refer to p(x0) as the initial distribution and to the CPD p(xt+1 = j|xt = i) as transition
probabilities. We are interested in time-homogeneous MCs only, in which p(xt+1 = j|xt = i) is
independent of t, i.e., the same for all time instances. In such MCs, we can represent the transition
probabilities as a transition matrix A with

Pij = p(xt+1 = j|xt = i),
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which is particularly useful if the state space is a finite set.

Example 14.1. In a Markov chain representing the health of a patient, if we let 1 represent
‘remission’ and 2 represent ‘relapse,’ we may have

P =

(
0.8 0.2
0.5 0.5

)
.

4

Given that the important features of a time-homogeneous MC are its state space and transition
probabilities, it is useful to represent the chain as graph, called the state-transition graph,
whose nodes are the states and edges represent transitions and their probabilities. For example, for
a disease, we may have

Remission Relapse0.8

0.2

0.5

0.5

Here are some other examples of common MCs:

• Random walk on a grid (1D, 2D, ...). For example, in the 1-dimensional case, we can move
left or right at random. This extends to n dimensions. In this context, “a drunk man will find
his way home, but a drunk bird may get lost forever.”

• Page-rank. This is closely related to the previous chain, except that this time the states
are webpages, and we click on a link in the current page to transition to another one. This
was the main idea behind Google search’s ranking of web pages, using stationary probabilities
(more on these below).

• DNA mutations. There are four states {A,C,G, T} and due to mutations, a position in the
genome may change from one state to another. Several variations are used in phylogenetics.

As stated before, MCs are usually approximations of real phenomena because we cannot include all
relevant information in the state. As an example, consider a MC for weather. Suppose our chain
represents a short period where seasonal effects are negligible and so we can assume the chain to
be time-homogeneous. Each state of the MC could be the total amount of precipitation. This is
already useful since a rainy day is more likely after a rainy day than after a sunny day. But if
we add information about temperature, cloud cover, air pressure, etc., the model becomes more
accurate and useful.

Another way that MCs can be extended is by allowing dependence on more than previous state,
i.e., allowing the order to be larger than 1. Graphical examples of zeroth-order, first-order, and
second-order MCs are shown below:
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0-order: x0 x1 x2 x3 x4 x5 · · ·

0th-order: x0 x1 x2 x3 x4 x5 · · ·

1st-order: x0 x1 x2 x3 x4 x5 · · ·

· · ·

Example 14.2 ([6]). More accurate models can produce more realistic data, as shown in the
following example from Shannon on modeling English text as a MC.

1. Zero-order approximation with uniform distribution (symbols are independent and equally
probable).

XFOML RXKHRJFFJUJ ZLPWCFWKCYJ FFJEYVKCQSGXYDQPAAMKBZAACIB-
ZLHJQD

2. Zero-order approximation (symbols independent but their probability is the same as English
text).

OCRO IlLI RGWR NMIELWIS EU LL NBNESEBYA TH EEl ALHENHTTPA
OOBTTVA NAH BRL

3. First-order approximation (digram structure; the conditional probability of each symbol given
the previous is like English).

ON IE ANTSOUTINYS ARE T INCTORE ST BE S DEAMY ACHIN D ILONA-
SIVE TUCOOWEAT TEASONARE FUSO TIZIN ANDY TOBE SEACE CTISBE

4. Second-order approximation (trigram structure as in English).

IN NO 1ST LAT WHEY CRATICT FROURE BIRS GROCID PONDENOME OF
DEMONSTURES OF THE REPTAGIN IS REGOACTIONA OF CRE

5. Zero-Order Word approximation; words are chosen independently but with their appropriate
frequencies.

REPRESENTING AND SPEEDILY IS AN GOOD APT OR COME CAN DIF-
FERENT NATURAL HERE HE THE A IN CAME THE TO OF TO EXPERT
GRAY COME TO FURNISHES THE LINE MESSAGE HAD BE THESE.

6. First-Order Word approximation; the word transition probabilities are as in English text.

THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH WRITER THAT
THE CHARACTER OF THIS POINT IS THEREFORE ANOTHER METHOD
FOR THE LETTERS THAT THE TIME OF WHO EVER TOLD THE PROB-
LEM FOR AN UNEXPECTED

4
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14.2 State distribution as a function of time
Consider a MC with m states. Let πt = (πt1, πt2, . . . , πtm) denote the probability distribution over
the states at time t, where πtj = p(xt = j). Usually, π0, or equivalently, p(x0) is given. We have
the following recursion,

πtj =

m∑
i=1

p(xt−1 = i)p(xt = j|xt−1 = i) =

m∑
i=1

πt−1,iPij ,

or more compactly
πt = πt−1P and πt = π0P

t.

Furthermore, the ijth element of P t, shown as (P t)ij , is the probability of ending up in state j in
t steps if we start from state i.

Example 14.3 (Example 14.1 continued). Suppose π0 = (1, 0)T , i.e., the patient starts in remis-
sion. Then,

π1 = (1, 0)

(
0.8 0.2
0.5 0.5

)
= (0.8, 0.2), π2 = π1

(
0.8 0.2
0.5 0.5

)
= (0.74, 0.26)

π5 = π0P
5 = (0.71498, 0.28502), π10 = π0P

10 = (0.71429, 0.28571)

So after 10 days, the probability of being in remission is about 71%.

Now suppose the patient starts in relapse. Then

π1 = (0.5, 0.5), π2 = (0.65, 0.35)

π5 = (0.71255, 0.28745), π10 = (0.71428, 0.28572)

We can see that, interestingly, π5 and π10 are very close to each other and almost independent of
π0. We will study this further in the next section. 4

14.3 Long-term Behavior of Markov Chains
What happens to a MC if we let it run for a long time? This problem is of interest in a variety
of contexts, e.g., the Page-rank algorithm above and sampling methods discussed later. We saw
in the previous example that as t grows the distribution over the states appears to settle down
on a certain distribution, which is called the limiting distribution. In the example, the limiting
distribution was independent of the initial distribution. In this section, we will study when and
why this happens.

A stationary distribution of a MC is a distribution σ that satisfies

σ = σP.

Any finite-state Markov chain has at least one stationary distribution [7]. The limiting distribution,
if it exists, must be a stationary distribution.
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Example 14.4 (Example 14.3 continued). The stationary distribution σ = (σ1, σ2) is obtained by
solving (σ1, σ2) = (σ1, σ2)P and σ1 + σ2 = 1. It can be shown that the unique solution to these
equations is

σ = (5/7, 2/7) = (0.71429, 0.28571),

which indeed appears to be the limiting distribution regardless of the initial distribution. 4

Graph vs. transition matrix. Whether or not a MC converges to a unique limiting distribution
is determined by P . This dependence is only on Pij being zero or nonzero but not how large the
values are otherwise. The zero/positive status of each transition probability is given by the MC
graph—an edge from states i to state j exists if and only if Pij > 0. So the graph is sufficient to
decide whether the MC will converge to a unique stationary distribution.

First, let us see some examples when the stationary distribution is not unique:

1 2 3 1 2 3

On the left, the limiting distribution depends on the initial distribution. This arises because of a
lack of connectivity between the states. On the right a limiting distribution does not exist because
the chain is periodic in a certain sense.

We can eliminate both of these possibilities by defining regular Markov chains. A Markov chain is
regular if there is a positive integer k such that for all i and j it is possible to go from state i to
state j in k steps. This is equivalent to (P k)ij > 0 for all i, j and also equivalent to the existence
of a path of length k between any two states. In Example 14.1, we have k = 1.

Theorem 14.5. If a MC with transition matrix P is regular, then there exists a unique distribution
σ such that σ = σP and for any π0, we have πt = π0P

t → σ as t→∞.

The above theorem guarantees that regular MCs converge to their unique stationary distributions.
Furthermore, since we can choose π0 to have a 1 in any position, the theorem also implies that each
row of P t converges to σ.

Example 14.6 (Example 14.4 continued). Indeed, σ = (5/7, 2/7) = (0.71429, 0.28571) is the
stationary distribution of

P =

(
0.8 0.2
0.5 0.5

)
and πt → σ regardless of π0 as we saw in Example 14.1. Furthermore,

P 2 =

(
0.74 0.26
0.65 0.35

)
, P 5 =

(
0.71498 0.28502
0.71255 0.28745

)
, P 10 =

(
0.71429 0.28571
0.71428 0.28572

)

4
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14.3.1 How often does the Markov Chain visit each state?
For a regular MC with stationary distribution σ, we know if t is large, at time t, the probability of
being in state j is σj . But in a time period of length N , how many times state j is visited? The
answer is approximately Nσj if N is large. (While this seems natural, similar statements do not
necessarily hold for other random processes.)

For example, for a chain with transition matrix,

P =
1

5


1 1 1 1 1
0 4 0 1 0
1 1 1 1 1
1 1 1 2 0
0 1 0 1 3

,
whose graph is shown in Figure 14.1 (left), a simulation of length 1000 time units produced an
empirical distribution close to the stationary distribution. The first 20 samples are as follows:
32244322242222244122.

14.4 Balance Properties and Finding the Stationary Distri-
bution

14.4.1 Global Balance
A distribution π over the states of the MC satisfies the Global Balance Property (GBP) if for
any partition1 {R,L} of the states of the MC, we have∑

i∈L
πi
∑
j∈R

Pij =
∑
j∈R

πj
∑
i∈L

Pji.

In particular, for any node i,
πi
∑
j 6=i

Pij =
∑
j 6=i

πjPji.

It is not difficult to show mathematically that any stationary distribution σ of the Markov chain
satisfies the global balance property. To see this intuitively, imagine Alice performs a random walk
over the state-transition graph, going from state to state according to the transition probabilities
P . Assume that π0 = σ, i.e., Alice chooses her initial position according to σ. It follows that
πt = σ. During N steps, where N is large, the number of times that Alice goes from a state
in L to a state in R is approximately N

∑
i∈L πi

∑
j∈R Pij . Similarly, the number of times that

Alice goes from R to L is about
∑
j∈R πj

∑
i∈L Pji. Sinece Alice cannot disapparate, we must have∑

i∈L πi
∑
j∈R Pij =

∑
j∈R πj

∑
i∈L Pji.

We can use the GBP to find the stationary distribution as shown in the next example.

Example 14.7 (Example 14.6 continued). For this chain we can set L ={Remission} andR ={Relapse}.
Then the GBP says

σ1 × 0.2 = (1− σ1)× 0.5⇒ 7σ1 = 5⇒ σ1 = 5/7, σ2 = 2/7⇒ σ = (0.71429, 0.28571),

1A partition of a set S is a collection of disjoint sets whose union is equal to S.
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Figure 14.1: In the Markov chain (left), edges between different nodes have probability 1/5 and the
probability of self loops is such that the outgoing probabilities sum to 1. The stationary distribution
and an empirical (time-averaged) distribution are given on the right.
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which is indeed the stationary distribution. 4

14.4.2 Detailed Balance
A distribution π satisfies the Detailed Balance Property (DBP) if

πiPij = πjPji.

Time-reversibility and DBP. Consider the Markov chain

x0 x1 · · · xt−1 xt xt+1 · · · xT

and assume that πt = σ, where σ is a stationary distribution. suppose that we run the chain
backward in time (or play a movie of it backward). Note that the Markov property still holds as

p(xt|xt+1, . . . , xT ) = p(xt|xt+1)

So what are the transition probabilities P− for the reversed MC? We have

P−ij = p(xt = j|xt+1 = i) =
p(xt = j, xt+1 = i)

p(xt+1 = i)
=
πjPji
πi

.

The MC is called time-reversible if P− = P , which is equivalent to πiPij = πjPji for all i, j,
which are the detailed balance equations.

Based on the following theorem, it is easy to find the stationary distribution for Time reversible
MCs, and for this reason, they are commonly used in Markov Chain Monte Carlo (MCMC) methods
which we discuss later.

Theorem 14.8. For a regular MC, if a vector π satisfies the detailed balance property, then π is
the unique stationary distribution (π = σ) and the MC is time-reversible.

Exercise 14.9. Using DBP, find the stationary distribution for the following MCs.

1 21− α

α

1− β

β

1 2 31/2

1/2

1/2

1/2 1/2

1/2

4
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Chapter 15

Sampling Methods

15.1 Introduction
In Bayesian inference, distributions are the ultimate tool for representing knowledge about un-
known quantities. This is the reason that we try to find p(θ|D). If we have the distribution, we can
find the expected value of various functions of the unknown quantity and in this way find point
estimates or the probability of an event,

θ̂Bayes = E[θ|D],

p(θ ∈ A|D) = E[1(θ ∈ A)|D],

where A is an event and 1(condition) equals 1 if the condition holds and is 0 otherwise.

If we find the posterior distribution in closed form and it turns out to be one of the common
distributions, e.g., Gaussian, Poisson, etc, then typically, we can easily compute expected values.
However, this is not always the case, and we may face two difficulties:

1. Sometimes all we have is a function q(θ) that is proportional to p(θ|D),

p(θ|D) ∝ p(θ)p(D|θ) = q(θ)

and we are not even able to compute p(θ|D) for a given θ because the normalization factor
is not known.

2. Even if we can compute p(θ|D), computing expected values requires integration, which may
be challenging.

In such cases, sampling from this distribution will be useful because sampling allows us to find
expected values. For example, for a function h,

E[h(x)] '
N∑
i=1

h(xi),

162



ESL Chapter 15. Sampling Methods

by the law of large numbers, where xi are independent samples drawn from the distribution with
respect to which the expected value is to be computed.

For example, recall that in Bayesian linear regression, a common likelihood is

y|θ, σ2 ∼ N (Xθ, σ2I),

with prior
p(θ, σ2) ∝ 1/σ2.

For this model, we found p(θ|D, σ2) and p(σ2|D) and stated that while it is possible to obtain p(θ|D)
analytically, doing so is complicated. In practice, we proceed computationally by generating samples
from p(σ2|y) and then p(θ|y, σ2). With this sampling approach we can also perform prediction for
a given input vector xn+1 of by producing samples from p(yn+1|θ, σ2) ∼ N (xTn+1θ, σ

2), and answer
question such as finding p(yn+1 > a|θ, σ2) for a given constant a.

In this chapter, we will discuss methods for generating samples from a distribution p(θ) which
we can only compute up to a multiplicative constant. The approach is identical for conditional
distributions such as p(θ|D). To emphasize the fact that the constant may not be known, we use
p to refer to the true distribution and q to the “distribution” without the constant. We will use Ep
to denote expectation with respect to distribution p. For a non-normalized distribution q we define
Eq = Ep.

15.2 Basic Sampling Techniques
In this section, we will review some basic but useful sampling techniques.

15.2.1 Deterministic Integration
This method is not actually a sampling method but rather tries to approximate the expected value
by approximating the corresponding integral over a grid,

Eq[h(θ)] =

ˆ
h(θ)q(θ)dθ '

∑N
i=1 h(θi)q(θi)∑N

i=1 q(θi)
,

where θi form a uniform grid covering the support of q. This method becomes computationally
prohibitive if the number of dimensions of θ is large.

15.2.1.1 The Inverse-CDF Method

Suppose θ is one dimensional and that we have the CDF F (θ). First, assume θ is continuous
and F (θ) is invertible. Inverse-CDF sampling relies on sampling from the uniform distribution to
generate samples for potentially more complex distributions. For i = 1, . . . , N ,

1. Generate Ui ∼ Uni[0, 1];

2. Let θi = F−1(Ui).
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Claim: If U ∼ Uni[0, 1], then θ = F−1(U) has CDF F . To see this observe that:

p(θ ≤ c) = p(F−1(u) ≤ c) = p(U ≤ F (c)) = F (c).

The algorithm is slightly modified if F has discontinuities or is not invertible. Specifically, we define
F−1(u) = min{x : F (x) ≥ u}.

15.2.2 Rejection Sampling
In rejection sampling, to produce samples for a distribution q, we first produce samples from
another distribution g but then only keep some of the samples produced in a way that the resulting
distribution is q. The distribution g needs to satisfy

g(θ) > 0, if q(θ) > 0,

q(θ) ≤Mg(θ) for some known M and for all θ.

We also need to sample u ∼ Uni(0, 1).

Rejection Sampling

1. Sample θ′ ∼ g.
2. Sample U ∼ Uni(0, 1).

3. θ ← θ′ if U ≤ q(θ′)
Mg(θ′) . (Accept θ

′ as a new sample if U ≤ q(θ′)
Mg(θ′) ; else reject the sample.)

We define the normalizing constants for the distribution,

Zq =

ˆ
q(θ)dθ, Zg =

ˆ
g(θ)dθ.

Note that the probability of a sample being accepted is

p(accepted) =

ˆ
p(θ′, accepted)dθ′ =

ˆ
p(θ′)p(accepted|θ′)dθ′

=

ˆ
g(θ′)

Zg
· q(θ′)

Mg(θ′)
dθ′ =

Zq
MZg

.

Let us now find the distribution for an accepted sample,

p(θ) = p(θ′|accepted)

=
p(θ′)p(accepted|θ′)

p(accepted)

=

g(θ′)
Zg
· q(θ′)
Mg(θ′)

Zq
MZg

=
q(θ′)

Zq
,

which is the desired distribution.
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Rejection sampling does not take advantage of all the samples, unlike importance sampling that we
will see next, so in some sense it is inefficient. In particular, if Zq = Zg = 1, then only a fraction
of 1

M of the samples will be accepted. If M is large, i.e., g is not a good match for q, then we lose
a lot of samples. But rejection sampling has a very important property: it is self-evaluating. If we
are doing poorly, it is easy to find out by considering the number of samples that are rejected. This
is a property that importance sampling lacks.

Example 15.1. Suppose we need to sample from Beta(3, 2) so we let q(θ) = θ2(1− θ). We would
like to do this by sampling from g(θ) = θ, which we can do using inverse-CDF sampling. First, let
us find the required value for M . Observe that

Mg(θ) ≥ q(θ) ⇐⇒ Mθ ≥ θ2(1− θ) ⇐⇒ M ≥ θ(1− θ).

So the smallest valid value for M is 1/4, which is what we will choose. Note that in practice, we
don’t need to find the smallest possible M . For example, here we could argue that the θ(1− θ) ≤ 1
and so it would have been sufficient to let M = 1. The plots of q, g are shown below.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

θ

q(θ)

Mg(θ)

To generate samples, first we generate samples from Uni(0, 1), obtaining S1 = {x1, . . . , xN}. To
generate samples from g, we use the inverse CDF method. The CDF of g is θ2 and its inverse is

√
θ.

So, our samples become S2 = {θ′1, . . . , θ′N}, where θ′i =
√
xi. We then accept/reject these based on

the rejection sampling rule to obtain S3, which are samples with distribution q. Specifically, for a
sample θ′i, we accept it with probability 4θ′i(1 − θ′i). Note that this step again requires generating
uniform samples, from Uni(0, 1). The graphs below show histograms for xi, θ′i and θi, as well as
the corresponding normalized pdfs. The histograms are normalized so that they are valid pdfs. In
this experiment, out of the N = 1000 generated samples, 6692 were accepted.
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15.2.3 Importance Sampling
Again, suppose we are interested in finding

Eq[h(θ)],

where Eq denotes expectation with respect to distribution q. Now if we q is a complicated distri-
bution, we may have a hard time sampling from it. Even if we can sample from q, another issue
may arise. The values of θ such that h(θ)q(θ) are large contribute to the expectation significantly.
But h(θ)q(θ) may be large in places where q(θ) is small. So unless we generate a lot of samples,
we may not produce one for which h(θ)q(θ) is large, and thus miss significant contributions to the
expectation from such points.

Suppose we have a second (possibly unnormalized) distribution g(θ), which is simpler and from
which we can produce samples. Ideally, g(θ) is large if q(θ)h(θ) is large. We have

Eq[h(θ)] =

´
h(θ)q(θ)dθ´
q(θ)dθ

=

´
h(θ)[q(θ)/g(θ)]g(θ)dθ´

[q(θ)/g(θ)]g(θ)dθ

=
Eg[h(θ)(q(θ)/g(θ))]

Eg[q(θ)/g(θ)]
.

So we have converted the problem into expectation with respect to g. Define w(θ) = q(θ)
g(θ) as the

importance weight or ratio at θ. Then we can estimate Eq[h(θ)] as

Eq[h(θ)] =
Eg[h(θ)w(θ)]

Eg[w(θ)]
'

1
N

∑N
i=1 h(θi)w(θi)

1
N

∑N
i=1 w(θi)

, with θi ∼ g(θ),

by producing samples from g rather than q.

Of course, if g is small where h×q is large, we may miss samples for which h(θ)g(θ) makes significant
contributions to the expectation; and this is a drawback of importance sampling.
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Example 15.2. Let h(x) = 1− x and q(x) = x for 0 ≤ x ≤ 1. Then

Eq[h(x)] =

ˆ 1

0

(1− x)(2x)dx =
(
x2 − 2x3/3

)1
0

= 1/3.

To estimate this computationally, let g(x) = 1. The weights become w(x) = x. Generating N = 100
samples xi ∼ Uni(0, 1) using MATLAB, we find

Eq[h(x)] '
∑N
i=1(1− xi)xi∑N

i=1 xi
= 0.34623,

which is close to 0.33 · · · . Of course, for such a simple q we wouldn’t resort to importance sampling.
4

15.3 Metropolis Monte Carlo
To generate samples from a distribution p(θ), one possible approach is to design a Markov chain
whose state space includes all possible values for θ and its stationary distribution σ = σ(θ) is equal
to the target distribution p(θ). In the long term, the number of times that the MC spends in a
given state is proportional to the probability of that state. Hence, we can generate samples from the
states of the Markov process by letting it run for a long time and record the states that are visited
as samples. The distribution of these samples is approximately the same as σ and thus the same
as p(θ). This is called Markov Chain Monte Carlo (MCMC).

In this section, we present elegant solutions to the challenging problem of finding a MC satisfying
σ(θ) = p(θ). In fact, these methods only need q ∝ p. While MCs can generate samples with the
same distribution, we note that the samples are not independent.

We will first discuss the Metropolis algorithm. This algorithm requires a jump distribution, J(θ′|θ),
which proposes a new state θ′ given that we are in state θ. We then either move to θ′ or stay at the
current state. The jump distribution is chosen in a way that it guarantees σ(θ) = p(θ). We next
describe the Metropolis algorithm more formally. We assume θ is one dimensional for simplicity of
notation but this is not a requirement.

Metropolis Algorithm:

1. Choose θ0 such that q(θ) > 0.

2. For t = 1, 2, 3, · · · , do
(a) Generate a proposal θ′ based on the jump distribution J(θ′|θt−1).

(b) Calculate

r =
p(θ′)

p(θt−1)
=

q(θ′)

q(θt−1)
,

where the q(θ) is known.

(c) Generate u ∼ Uni[0, 1].
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(d) The next state of the MC, θt, is given by

θt =

{
θ′, u ≤ r
θt−1, u > r

(15.1)

The transition probabilities. The rule (15.1) has interesting implications. Note that if r > 1,
or equivalently if q(θ′) > q(θt−1), then we will definitely move to θ′. Otherwise, we move to θ′ with
probability r = q(θ′)

q(θt−1) . Define D = {θ : p(θ) > 0} as the set of all possible values of θ based on
target distribution p. If the transition probability of θa → θb in the MC is denoted by Pr(θa → θb),
we have

Pr(θa → θb) = J(θb|θa) min

(
1,
p(θb)

p(θa)

)
.

The jump distribution. In the Metropolis algorithm, it is not necessary for the jump distribu-
tion to have p(θ) as a stationary distribution. However, the jump distribution J(θ′|θt−1) should
satisfy certain constraints, discussed below.

1. Reachability. To ensure that the MC is regular, we require that

J(θ′|θ) > 0, ∀θ, θ′ ∈ D. (15.2)

2. Symmetry. For θa, θb ∈ D, the detailed balance property with distribution π(θ) = p(θ) can
be written as

p(θa) Pr(θa → θb) = p(θb) Pr(θb → θa).

Assume without loss of generality that p(θa) < p(θb). Then, the DBP can be written as

p(θa)J(θb|θa) = p(θb)J(θa|θb)
p(θa)

p(θb)
.

which is satisfied if the jump distribution is symmetric, i.e.,

J(θ′|θ) = J(θ|θ′), ∀θ, θ′ ∈ D. (15.3)

If the jump distribution satisfies (15.2) and (15.3), then the MC is regular and σ(θ) = p(θ) satisfies
the DBP. Hence, p(θ) is the unique stationary distribution of the Markov chain.

Example 15.3. Consider a Bayesian regression problem where the data as in Figure 15.1a. The
data is generated using the distribution

yi|θ, σ ∼ N (θxi, σ
2),

where the true values are θ = 2, σ = 1. The figure provides a plot for the samples D = {(xi, yi)Ni=1},
where xi = 0, 0.1, 0.2, . . . , 5 as well as the line y = 2x.
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As we have seen, the Bayesian posteriors for this problem are rather complicated. But it is straight-
forward to obtain estimates using Metropolis sampling. Assuming the prior p(θ, σ) ∝ 1/σ2, the
posterior is

ln p(θ, σ|D) ∝ −(2 +N) lnσ − 1

2σ2
(y − θx)′(y − θx).

We use log-probability because probabilities may be very small and for numerical precision, it is
better to work with logs. We can convert these to probabilities if we need to. But in this problem,
since we are only interested in the samples, we can keep probabilities in log scale.

The samples produced by Metropolis are given in Figure 15.1b. As the jump proposal, we use a
product of independent Gaussians1:

J(θ′, σ′|θ, σ) = J(θ′|θ)J(σ′|σ),

J(θ′|θ) ∼ N (θ, 0.01),

J(σ′|σ) ∼ N (σ, 0.01).

Based on these samples, the posterior mean for θ is 1.9911 with posterior std 0.055163. The posterior
mean for σ is found to be 1.0198. It is also worth noting that the ML estimate for θ is 1.9896. In
this example, the estimates are very accurate, which is probably the result of a combination of low
noise in the data and chance. 4

Metropolis-Hastings algorithm. We can eliminate the symmetry property of the jump distri-
bution if we modify r in the Metropolis algorithm as

r =
p(θ′)/J(θ′|θt−1)

p(θt−1)/J(θt−1|θ′) .

Exercise 15.4. Prove that with this definition for r, DBP holds even if J is not symmetric. 4

Sampling from a MC. Ideally, we should keep only one sample from every m samples for m
“large enough” to ensure that the samples are nearly independent. However, there are two issues
here:

• It is not easy to determine how large is “large enough.”

• If m is too large, the process is inefficient.

However, as long as the empirical distribution (e.g., the histogram) is close to the target distribution,
we are not too concerned about independence and the sampling algorithm does not need to throw
away any samples, since the order of the samples is not considered. Because the samples at the start
states don’t satisfy the stationary distribution, it is a good idea to discard the samples produced
by the chain at the beginning.

1Technically, we should not choose J(σ′|σ) as we did because there is a possibility of producing σ′ < 0. But given
that the mass of probability for σ is far from 0, in this problem, this isn’t a big issue since negative σ′ is unlikely. A
more sound solution is to use a truncated Gaussian, but that would not be a symmetric proposal, so we will have to
use Metropolis-Hastings discussed next.
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(b) Metropolis sampling for θ and σ. The first 10
samples are marked with ∗.

Figure 15.1: Metropolis sampling for 1-D Bayesian linear regression.

Strong dependence between samples that are close to each other in time could be problematic. For
example, suppose we get N samples from a chain whose samples are strongly dependent during
intervals of duration not much smaller than N . While each of the N samples may individually
have the target distribution, due to strong dependence they all may be from the same area of the
probability space and thus the empirical distribution may not look like the target distribution,
necessitating obtaining a larger number of samples. This problem can be caused by choosing a poor
jump distribution as discussed next.

The Jump distribution. The jumps should be neither too small nor too large!

• When the jumps are large, a large number of proposals will be rejected (we’ll stay in the
current state) because it is likely that with a large jump, we’ll end up with a low probability
proposal. In this case, strong dependence manifests as many samples being likely to be equal.
An example is shown in Figure 15.2a, where most of the proposals are rejected, resulting in
a small number of distinct samples.

• If the jumps are too small, the sampling process is similar to a random walk, because most
proposals are accepted but we move only a small step. This means that the MC does not
explore the probability space efficiently, again necessitating a large number of samples. An
example is given in Figure 15.2b. To see why random walk behavior is not good, consider a
random walk with step size ε. How far from the starting point will we be after T steps? For
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(a) Large jumps cause many proposals to be re-
jected, making the chain stay in its current state.

(b) Small jumps exhibit a random walk behavior
which does not necessarily explore the space effi-
ciently.

Figure 15.2: Metropolis sampling with poorly designed jump distributions (4 runs for each case).

the random walk, let Xi be the movement in one step:

Xi =

{
ε, with p = 1

2 ;

−ε, with p = 1
2 .

After T steps, the expected distance L = E
[
|∑T

i=1Xi|
]
is difficult to find. But we can

approximate the distance as

L2 ' E

[
(

T∑
i=1

Xi)
2

]
= Tε2 (exercise).

In conclusion, after T steps, we will be approximately at distance
√
Tε, which is a case of

diminishing returns, and not very efficient. In other words, we need L2

ε2 steps to move distance
L. In the context of MCMC, this means if the probability space has a dimension in which
there is a high probability region with length L, we need to run the chain for at least L2

ε2 steps.

15.4 Gibbs Sampling
At each iteration of the Metropolis algorithm, all the components of θ are updated at the same time.
In Gibbs sampling, for θ = (θ1, θ2, · · · , θd), at each iteration, components are updated one-by-one
as

θtj ∼ p(θj |θt1, · · · , θt(j−1), θ
(t−1)
(j+1), · · · , θt−1

d ), for j = 1, . . . , d.

Gibbs sampling may be simpler and more efficient than Metropolis sampling if the joint distribution
is too complicated but we can easily sample from the conditional distributions. The components
do not need to be one-dimensional necessarily; we can group several dimensions and update each
the dimensions in each group simultaneously.
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Example 15.5. Suppose θ = (θ1, θ2) and the observation y = (y1, y2) are related by the likelihood(
y1

y2

)
|
(
θ1

θ2

)
∼ N

((
θ1

θ2

)
,

(
1 ρ
ρ 1

))
,

with the prior p(θ) ∝ 1. The posterior distribution p(θ|y) is:(
θ1

θ2

)
|
(
y1

y2

)
∼ N

((
y1

y2

)
,

(
1 ρ
ρ 1

))
We can use Gibbs sampling to produce samples for θ|y. The following fact is of use:(

x1

x2

)
∼ N

((
µ1

µ2

)
,

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

))
⇒ x1|x2 ∼ N

(
µ1 +

ρσ1

σ2
(x2 − µ2), (1− ρ2)σ2

1

)
Then, in the t-th iteration, the θt1 is sampled by

θt1|θt−1
2 ∼ N

(
y1 + ρ(θt−1

2 − y2), (1− ρ2)
)
.

Similarly, the θt2 can be updated by

θt2|θt1 ∼ N
(
y2 + ρ(θt1 − y1), (1− ρ2)

)
.

So we produce a new sample using 1-D distributions. 4

Stationary distribution. We prove that Gibbs sampling satisfies the DBP with distribution
p(θ).

Suppose we are in state θ and we update the jth component to get θ′. We have

θ′j ∼ p(θ′j |θ−j),

where θ−j = (θ1, . . . , θj−1, θj+1, . . . , θd). Furthermore, the θ′−j = θ−j .

To prove DBP for this step, we need to prove p(θ) Pr(θ → θ′) = p(θ′) Pr(θ′ → θ), which holds
since

p(θ) Pr(θ → θ′) = p(θ)p(θ′j |θ−j) = p(θ−j)p(θj |θ−j)p(θ′j |θ−j),
p(θ′) Pr(θ′ → θ) = p(θ′)p(θj |θ′−j) = p(θ−j)p(θ

′
j |θ−j)p(θj |θ−j).

Since the DBP holds for each sub-iteration, it holds for each iteration.

Gibbs sampling can be viewed as a special case of Metropolis-Hastings in which the proposal is
always accepted and where we don’t need to design a jump distribution. Gibbs can use the current
state to provide better proposals. An example is shown in Figure 15.3. Here, the dimensions
are highly correlated, with most of the probability concentrated in a narrow region. Because of
this, many of the Metropolis proposals are rejected. Gibbs, which produces samples based on the
conditional distribution given the current state, dose not suffer from this.

Note that θj may be independent from some dimensions of θ−j given others. In particular, if
θ denotes the nodes in a graphical model, given its Markov blanket, θj is independent of other
elements of θ−j .
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(a) Four runs of the Metropolis algorithm. (b) Four runs of the Gibbs algorithm.

Figure 15.3: Metropolis and Gibbs sampling for highly correlated dimensions. Many proposals for
Metropolis are rejected.

15.5 Hamiltonian Monte Carlo **
One problem with the Metropolis algorithm is that, in certain situations, the proposed θ′ by the
jump distribution may be rejected too often because p(θ′) is much smaller than p(θt−1), in which
case we will let θt = θt−1. While the stationary distribution is still p(θ), too many rejection
means that it will take a long time to get a sample whose empirical distribution is close to the true
distribution.

Let us write our target distribution p(θ) as

p(θ) ∝ e−E(θ)

and suppose that we can also compute ∇θE(θ). Note that as E(θ) decreases, the probability
increases.

Can we use the fact that we know the gradient to increase the chance of proposals being accepted?
At first glance it may seem that we could let θt = θt−1− ε∇E(θ), similar to gradient descent. But
this is a deterministic path rather than a probabilistic MC.

A bit of (questionable) physics. Instead, we use an idea from Hamiltonian Mechanics. We
can think of θ as location and of E(θ) as potential energy. Note that lower potential has a higher
probability (a river flows down the valley). Now let us also include momentum (speed) φ, which
has the same number of dimensions as θ, in our formulation and define the total energy as

H(θ,φ) = E(θ) +K(φ),

where K(φ) is the Kinetic energy

K(φ) =
1

2
φTφ.

Farzad Farnoud 173 University of Virginia



ESL Chapter 15. Sampling Methods

With this physical viewpoint, Hamilton’s equations describing the motion of an object with position
θ and momentum φ are

θ̇ =
∂θ

∂t
= φ

φ̇ =
∂φ

∂t
= −∇θE(θ)

(A more familiar form of these equations are obtained by representing position with x and speed
with v. Then, ẋ = v, v̇ = −∇xE(x).) It can then be shown that H, the total energy, stays constant
in time.

Back to Sampling. Instead of sampling from p(θ), let us define and sample from

p(θ,φ) ∝ e−H(θ,φ) = e−E(θ)e−K(φ),

where K(φ) = 1
2φ

Tφ. We will then discard the φ component of the samples.

The Hamiltonian Monte Carlo Algorithm is as follows:

1. Randomly choose θ0 from the domain and choose φ0 arbitrarily.

2. For t = 1, 2, ..., do

(a) Pick a random momentum φ′ according to the distribution p(φ) ∝ e−K(φ).

(b) Starting from (θt−1,φ′), simulate the dynamic system for a certain amount of time
according to

θ̇ = φ,

φ̇ = −∇θE(θ).

The final values of (θ,φ) are the new sample, (θt,φt).

It can be shown this process leads to a Markov chain whose stationary distribution is p(θ,φ). This
hinges on step (a) being reversible and step (b) keeping the Hamiltonian and thus the probability
constant.

In practice however, we cannot have a perfect simulation. So instead of step (b) above, we perform
the following:
(2.b)’ For i = 1, 2, . . . , L, perform the following steps, called leapfrog updates:

φ← φ− 1

2
ε∇E(θ)

θ ← θ + εφ

φ← φ− 1

2
ε∇E(θ)
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Let the final (θ,φ) be denoted by (θ∗,φ∗). If our simulation is perfect, then this can be accepted as
the new state. But because ε > 0, we have to perform an accept/reject check similar to Metropolis.
That is, we let

r =
e−H(θ∗,φ∗)

e−H(θt−1,φt−1)
.

If r ≥ 1, we let (θt,φt) = (θ∗,φ∗). If r ≤ 1, then we let (θt,φt) = (θ∗,φ∗) with probability r and
with probability 1− r, we let (θt,φt) = (θt−1,φt−1).

If ε is too large, our simulation will be too rough, leading to many rejections. In this case, we
decrease ε and increase L. On the other hand, if nearly all proposals are accepted, it may be a sign
of being too conservative and not exploring the state space as fast as we can, in which case we can
be more efficient by increasing ε and decreasing L.
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Appendix

16.1 Vector and matrix differentiation
Definition 16.1 (The three derivatives). For a matrix A, scalar z, and two vectors x,y (possibly
one-dimensional), let

dA

dz
=


∂A11

∂z · · · ∂A1n

∂z
...

. . .
...

∂Am1

∂z · · · ∂Amn
∂z

, dz

dA
=


∂z
∂A11

· · · ∂z
∂A1n

...
. . .

...
∂z

∂Am1
· · · ∂z

∂Amn

, dy

dx
=


∂y1
∂x1

· · · ∂y1
∂xm

...
. . .

...
∂yn
∂x1

· · · ∂yn
∂xm


Lemma 16.2. For a scalar a, vectors x,y,v, and constant matrices A and S,

dy

dv
=
dy

dx

dx

dv
,

d

dv
(ax) = a

dx

dv
+ x

da

dv
,

d

dv
(yTAx) = yTA

dx

dv
+ xTAT

dy

dv
,

d

dv
(yTSy) = 2yTS

dy

dv
, (S is symmetric)

d

dv
(Ax) = A

dx

dv
.

Lemma 16.3. For matrix A and constant vector x,

d

dA
(xTAx) = xxT

d

dA
ln |A| = A−T
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Definition 16.4. Let f : Rm → R. The gradient of f(x) with respect to x is defined as

∇xf(x) =

(
df(x)

dx

)T
=


∂f(x)
∂x1

...
∂f(x)
∂xm


and the Hessian of f(x) with respect to x is defined as

Hx(f(x)) =
d∇xf(x)

dx
=


∂f(x)
∂x1∂x1

· · · ∂f(x)
∂xm∂x1

...
. . .

...
∂f(x)
∂x1∂xm

· · · ∂f(x)
∂xm∂xm


Chain rule. Consider h : Rm → R, g : R→ R, and f(x) = g(h(x)). From Lemma 16.2,

∇f(x) = g′(h(x))∇h(x),

Hf(x) = g′(h(x))Hh(x) + g′′(h(x))∇h(x)∇Th(x)

since

Hf(x) =
d∇f
dx

=
d(g′(h(x))∇h(x))

dx

= g′(h(x))
d∇h(x)

dx
+∇h(x)

d(g′(h(x)))

dx

= g′(h(x))Hh(x) +∇h(x)∇Th(x)g′′(h(x))

Example 16.5. Let us find the derivatives of f(x) = log
∑m
i=1 e

xi . Let z = (exp(xi))
m
i=1 so that

f(x) = log 1Tz.

∇f(x) =
z

1Tz
,

Hf(x) =
diag(z)

1Tz
− zzT

(1Tz)2
.

4

Chain rule. Let h = (h1, . . . , hn) : Rm → Rn, g : Rn → R, and f(x) = g(h(x)). Then

∂f

∂xi
=

n∑
j=1

∂g

∂hj

∂hj
∂xi

=
dg

dh
· dh
dxi

= ∇T g · dh
dxi

,

df

dx
=
dg

dh

dh

dx
= ∇T g dh

dx
, ∇xf =

(
df

dx

)T
=

(
dh

dx

)T
∇g
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16.2 Properties of Expectation, Correlation, and Covariance
for Vectors
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