
Chapter 14

Markov Chains

14.1 Introduction

A Markov chain (MC) is a stochastic process whose future is independent from its past and can be
represented as the following Bayesian network:

x0 x1 · · · xt�1 xt xt+1 · · ·

The value of xt is called the state of the Markov chain at time t. The set of all possible states is the state

space. For example,

• We may represent daily weather with the state space: {sunny, cloudy, rainy}

• The state of the disease in a patient may be represented by a MC with two states: {remission, relapse}.

• The number of animals of a certain species can be represented with states {0, 1, 2, . . . }.

Uncountable state spaces are also possible (e.g., temperature) and we will rely on them for sampling later.
But for simplicity, we focus on finite-state MCs. Also, note that a MC is usually an approximation of the
world since we like to have a small number of states.

To complete the characterization of a MC, we also need to know the CPDs,

p(x0 = i), p(xt+1 = j|xt = i).

We refer to p(x0) as the initial distribution and to the CPD p(xt+1 = j|xt = i) as transition probabilities.
We are interested in time-homogeneous MCs only, in which p(xt+1 = j|xt = i) is independent of t, i.e., the
same for all time instances. In such MCs, we can represent the transition probabilities as a transition matrix
A with

Pij = p(xt+1 = j|xt = i),

which is particularly useful if the state space is a finite set.

Example 14.1. In a Markov chain representing the health of a patient, if we let 1 represent ‘remission’ and
2 represent ‘relapse,’ we may have

P =

✓
0.8 0.2
0.5 0.5

◆
.
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4

Given that the important features of a time-homogeneous MC are its state space and transition probabilities,
it is useful to represent the chain as graph, called the state-transition graph, whose nodes are the states
and edges represent transitions and their probabilities. For example, for a disease, we may have

Remission Relapse0.8

0.2

0.5

0.5

Here are some other examples of common MCs:

• Random walk on a grid (1D, 2D, ...). For example, in the 1-dimensional case, we can move left or
right at random. This extends to n dimensions. In this context, “a drunk man will find his way home,
but a drunk bird may get lost forever.”

• Page-rank. This is closely related to the previous chain, except that this time the states are webpages,
and we click on a link in the current page to transition to another one. This was the main idea behind
Google search’s ranking of web pages, using stationary probabilities (more on these below).

• DNA mutations. There are four states {A, C, G, T} and due to mutations, a position in the genome
may change from one state to another. Several variations are used in phylogenetics.

As stated before, MCs are usually approximations of real phenomena because we cannot include all relevant
information in the state. As an example, consider a MC for weather. Suppose our chain represents a short
period where seasonal effects are negligible and so we can assume the chain to be time-homogeneous. Each
state of the MC could be the total amount of precipitation. This is already useful since a rainy day is more
likely after a rainy day than after a sunny day. But if we add information about temperature, cloud cover,
air pressure, etc., the model becomes more accurate and useful.

Another way that MCs can be extended is by allowing dependence on more than previous state, i.e., allowing
the order to be larger than 1. Graphical examples of zeroth-order, first-order, and second-order MCs are
shown below:

0-order: x0 x1 x2 x3 x4 x5 · · ·

0th-order: x0 x1 x2 x3 x4 x5 · · ·

1st-order: x0 x1 x2 x3 x4 x5 · · ·

· · ·

Example 14.2 ([3]). More accurate models can produce more realistic data, as shown in the following
example from Shannon on modeling English text as a MC.

1. Zero-order approximation with uniform distribution (symbols are independent and equally probable).
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XFOML RXKHRJFFJUJ ZLPWCFWKCYJ FFJEYVKCQSGXYD QPAAMKBZAACIB-
ZLHJQD

2. Zero-order approximation (symbols independent but their probability is the same as English text).

OCRO IlLI RGWR NMIELWIS EU LL NBNESEBYA TH EEl ALHENHTTPA OOBTTVA
NAH BRL

3. First-order approximation (digram structure; the conditional probability of each symbol given the pre-
vious is like English).

ON IE ANTSOUTINYS ARE T INCTORE ST BE S DEAMY ACHIN D ILONASIVE TU-
COOWE AT TEASONARE FUSO TIZIN ANDY TOBE SEACE CTISBE

4. Second-order approximation (trigram structure as in English).

IN NO 1ST LAT WHEY CRATICT FROURE BIRS GROCID PONDENOME OF DEMON-
STURES OF THE REPTAGIN IS REGOACTIONA OF CRE

5. Zero-Order Word approximation; words are chosen independently but with their appropriate frequencies.

REPRESENTING AND SPEEDILY IS AN GOOD APT OR COME CAN DIFFERENT
NATURAL HERE HE THE A IN CAME THE TO OF TO EXPERT GRAY COME TO
FURNISHES THE LINE MESSAGE HAD BE THESE.

6. First-Order Word approximation; the word transition probabilities are as in English text.

THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH WRITER THAT THE CHAR-
ACTER OF THIS POINT IS THEREFORE ANOTHER METHOD FOR THE LETTERS
THAT THE TIME OF WHO EVER TOLD THE PROBLEM FOR AN UNEXPECTED

4

14.2 State distribution as a function of time

Consider a MC with m states. Let ⇡t = (⇡t1, ⇡t2, . . . , ⇡tm) denote the probability distribution over the states
at time t, where ⇡tj = p(xt = j). Usually, ⇡0, or equivalently, p(x0) is given. We have the following recursion,

⇡tj =
mX

i=1

p(xt�1 = i)p(xt = j|xt�1 = i) =
mX

i=1

⇡t�1,iPij ,

or more compactly
⇡t = ⇡t�1P and ⇡t = ⇡0P

t.

Furthermore, the ijth element of P t, shown as (P t)ij , is the probability of ending up in state j in t steps if
we start from state i.

Example 14.3 (Example 14.1 continued). Suppose ⇡0 = (1, 0)T , i.e., the patient starts in remission. Then,

⇡1 = (1, 0)

✓
0.8 0.2
0.5 0.5

◆
= (0.8, 0.2), ⇡2 = ⇡1

✓
0.8 0.2
0.5 0.5

◆
= (0.74, 0.26)

⇡5 = ⇡0P
5 = (0.71498, 0.28502), ⇡10 = ⇡0P

10 = (0.71429, 0.28571)

So after 10 days, the probability of being in remission is about 71%.
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Now suppose the patient starts in relapse. Then

⇡1 = (0.5, 0.5), ⇡2 = (0.65, 0.35)

⇡5 = (0.71255, 0.28745), ⇡10 = (0.71428, 0.28572)

We can see that, interestingly, ⇡5 and ⇡10 are very close to each other and almost independent of ⇡0. We
will study this further in the next section. 4

14.3 Long-term Behavior of Markov Chains

What happens to a MC if we let it run for a long time? This problem is of interest in a variety of contexts,
e.g., the Page-rank algorithm above and sampling methods discussed later. We saw in the previous example
that as t grows the distribution over the states appears to settle down on a certain distribution, which is
called the limiting distribution. In the example, the limiting distribution was independent of the initial
distribution. In this section, we will study when and why this happens.

A stationary distribution of a MC is a distribution � that satisfies

� = �P.

Any finite-state Markov chain has at least one stationary distribution [4]. The limiting distribution, if it
exists, must be a stationary distribution.

Example 14.4 (Example 14.3 continued). The stationary distribution � = (�1, �2) is obtained by solving
(�1, �2) = (�1, �2)P and �1 + �2 = 1. It can be shown that the unique solution to these equations is

� = (5/7, 2/7) = (0.71429, 0.28571),

which indeed appears to be the limiting distribution regardless of the initial distribution. 4

Graph vs. transition matrix. Whether or not a MC converges to a unique limiting distribution is deter-
mined by P . This dependence is only on Pij being zero or nonzero but not how large the values are otherwise.
The zero/positive status of each transition probability is given by the MC graph—an edge from states i to
state j exists if and only if Pij > 0. So the graph is sufficient to decide whether the MC will converge to a
unique stationary distribution.

First, let us see some examples when the stationary distribution is not unique:

1 2 3 1 2 3

On the left, the limiting distribution depends on the initial distribution. This arises because of a lack of
connectivity between the states. On the right a limiting distribution does not exist because the chain is
periodic in a certain sense.

We can eliminate both of these possibilities by defining regular Markov chains. A Markov chain is regular

if there is a positive integer k such that for all i and j it is possible to go from state i to state j in k steps.
This is equivalent to (P k)ij > 0 for all i, j and also equivalent to the existence of a path of length k between
any two states. In Example 14.1, we have k = 1.
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Theorem 14.5. If a MC with transition matrix P is regular, then there exists a unique distribution � such

that � = �P and for any ⇡0, we have ⇡t = ⇡0P t ! � as t ! 1.

The above theorem guarantees that regular MCs converge to their unique stationary distributions. Further-
more, since we can choose ⇡0 to have a 1 in any position, the theorem also implies that each row of P t

converges to �.

Example 14.6 (Example 14.4 continued). Indeed, � = (5/7, 2/7) = (0.71429, 0.28571) is the stationary
distribution of

P =

✓
0.8 0.2
0.5 0.5

◆

and ⇡t ! � regardless of ⇡0 as we saw in Example 14.1. Furthermore,

P 2 =

✓
0.74 0.26
0.65 0.35

◆
, P 5 =

✓
0.71498 0.28502
0.71255 0.28745

◆
, P 10 =

✓
0.71429 0.28571
0.71428 0.28572

◆

4

14.3.1 How often does the Markov Chain visit each state?

For a regular MC with stationary distribution �, we know if t is large, at time t, the probability of being in
state j is �j . But in a time period of length N , how many times state j is visited? The answer is approximately
N�j if N is large. (While this seems natural, similar statements do not necessarily hold for other random
processes.)

For example, for a chain with transition matrix,

P =
1

5

0

BBBB@

1 1 1 1 1
0 4 0 1 0
1 1 1 1 1
1 1 1 2 0
0 1 0 1 3

1

CCCCA
,

whose graph is shown in Figure 14.1 (left), a simulation of length 1000 time units produced an empirical
distribution close to the stationary distribution. The first 20 samples are as follows: 32244322242222244122.

14.4 Balance Properties and Finding the Stationary Distribution

14.4.1 Global Balance

A distribution ⇡ over the states of the MC satisfies the Global Balance Property (GBP) if for any
partition1 {R, L} of the states of the MC, we have

X

i2L

⇡i

X

j2R

Pij =
X

j2R

⇡j

X

i2L

Pji.

In particular, for any node i,
⇡i

X

j 6=i

Pij =
X

j 6=i

⇡jPji.

1
A partition of a set S is a collection of disjoint sets whose union is equal to S.
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Figure 14.1: In the Markov chain (left), edges between different nodes have probability 1/5 and the probability
of self loops is such that the outgoing probabilities sum to 1. The stationary distribution and an empirical
(time-averaged) distribution are given on the right.

It is not difficult to show mathematically that any stationary distribution � of the Markov chain satisfies
the global balance property. To see this intuitively, imagine Alice performs a random walk over the state-
transition graph, going from state to state according to the transition probabilities P . Assume that ⇡0 = �,
i.e., Alice chooses her initial position according to �. It follows that ⇡t = �. During N steps, where N is large,
the number of times that Alice goes from a state in L to a state in R is approximately N

P
i2L ⇡i

P
j2R Pij .

Similarly, the number of times that Alice goes from R to L is about
P

j2R ⇡j
P

i2L Pji. Sinece Alice cannot
disapparate, we must have

P
i2L ⇡i

P
j2R Pij =

P
j2R ⇡j

P
i2L Pji.

We can use the GBP to find the stationary distribution as shown in the next example.

Example 14.7 (Example 14.6 continued). For this chain we can set L ={Remission} and R ={Relapse}.
Then the GBP says

�1 ⇥ 0.2 = (1 � �1) ⇥ 0.5 ) 7�1 = 5 ) �1 = 5/7, �2 = 2/7 ) � = (0.71429, 0.28571),

which is indeed the stationary distribution. 4

14.4.2 Detailed Balance

A distribution ⇡ satisfies the Detailed Balance Property (DBP) if

⇡iPij = ⇡jPji.

Time-reversibility and DBP. Consider the Markov chain
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x0 x1 · · · xt�1 xt xt+1 · · · xT

and assume that ⇡t = �, where � is a stationary distribution. suppose that we run the chain backward in
time (or play a movie of it backward). Note that the Markov property still holds as

p(xt|xt+1, . . . , xT ) = p(xt|xt+1)

So what are the transition probabilities P� for the reversed MC? We have

P�
ij = p(xt = j|xt+1 = i) =

p(xt = j, xt+1 = i)

p(xt+1 = i)
=

⇡jPji

⇡i
.

The MC is called time-reversible if P� = P , which is equivalent to ⇡iPij = ⇡jPji for all i, j, which are the
detailed balance equations.

Based on the following theorem, it is easy to find the stationary distribution for Time reversible MCs, and
for this reason, they are commonly used in Markov Chain Monte Carlo (MCMC) methods which we discuss
later.
Theorem 14.8. For a regular MC, if a vector ⇡ satisfies the detailed balance property, then ⇡ is the unique

stationary distribution (⇡ = �) and the MC is time-reversible.

Exercise 14.9. Using DBP, find the stationary distribution for the following MCs.

1 21� ↵

↵

1� �

�

1 2 31/2

1/2

1/2

1/2 1/2

1/2

4
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