Chapter 12

Inference in Hidden Markov Models

A hidden Markov model (HMM) is a graphical model of the form shown below. The top chain is a Markov chain representing the state of some system. Typically the state cannot be observed directly. However, we can observe some (probabilistic) function of the state. For example, the Markov chain can represent the health status of a patient and the observations are symptoms such as temperature, blood pressure, etc. As another example, the Markov chain can represent the part of speech of words in a text, and the observation is the actual word.

The probability distribution for this model factorizes as

$$p(x_1^T, y_1^T; \theta) = p(x_1) \prod_{t=2}^T p(x_t | x_{t-1}) \prod_{t=1}^T p(y_t | x_t).$$

Assuming the Markov chain and the observations are both on discrete spaces, we can complete the model by specifying $\theta = (\pi, A, B)$, where:

• The probability distribution π for x_1 ,

$$\pi_i = p(x_1 = i)$$

• The *transition matrix* A of the Markov chain,

$$A_{ij} = p(x_{t+1} = j | x_t = i).$$

• The *emission matrix* B describing the probabilities of the observations given the state,

$$B_{ij} = p(y_t = j | x_t = i).$$

Below are three common inference problems associated with HMMs and the methods for solving them. We will not derive the solutions but they can be found in [1].

- Evaluation: $p(x_t|y_1^T; \theta) \rightarrow forward-backward algorithm$ (sum-product).
- Decoding: $\arg \max_{x_1^T} p(x_1^T | y_1^T; \theta) \rightarrow Viterbi \ algorithm \ (max-product).$
- Learning: $\arg \max_{\theta} p(y_1^T; \theta) \to Baum$ -Welch algorithm (EM).

Below are HMM notes from a previous class. Unless I get a chance to go over these in class, they are not part of the course material and are here for self-study. But note that the methods are sum-product, max-product, and EM algorithms, which are part of the course and so reviewing the material below can be helpful in understanding those.

$$\theta = (\pi, A, B) \qquad \pi_{i} = p(3_{i} = i | \theta)$$

$$A_{ij} = p(3_{i} = j | 3_{i} = i, \theta)$$

$$B_{ij} = p(3_{i} = j | 3_{i} = i, \theta)$$

Three HMM problems:
* Evaluation:
$$p(\mathcal{F}_{2} | \mathcal{Y}_{1}, \theta)$$

- Forward - Back word (Sum-product)
* Deroding: ang max $p(\mathcal{F}_{1}^{T} | \mathcal{Y}_{1}^{T}, \theta)$
 $\overline{\mathcal{F}_{1}}$ - Viterbi Alg (Max-product)
Coforder & Qualcom
* Learnig: ang max $p(\mathcal{Y}_{1}^{T} | \theta)$
 $- Baum-Welch Alg (EM)$

6-Markov Model Page 2

$$\begin{array}{l} \text{Define} \\ a_{t}^{(i)} = \int_{\mathcal{A}_{t}, \mathcal{B}_{t}}^{M} (\mathfrak{F}_{t}^{(i)}) & t \gg 2 \\ a_{t}^{(i)} = T_{t}^{*} \\ \beta_{t}^{(i)} = T_{t}^{*} \\ \text{If can be shown (by induction)) that : \\ a_{t}^{(i)} = P(\mathfrak{F}_{t}^{(i)}, \mathfrak{F}_{t}^{(i)}| \theta) , \quad \mathfrak{F}_{t}^{(i)} = P(\mathfrak{Y}_{t+1}^{T} \mid \mathfrak{F}_{t}^{(i)}, \theta) \\ a_{t}^{(i)} = \sum_{j}^{M} a_{t}^{(j)} \beta_{j} \mathfrak{H}_{t}^{(j)} A_{j}^{(i)} \\ \beta_{t}^{(i)} = \sum_{j}^{M} a_{t}^{(j)} \beta_{j} \mathfrak{H}_{t}^{(j)} A_{j}^{(i)} \\ \beta_{t}^{(i)} = \sum_{j}^{M} a_{t}^{(j)} \beta_{j} \mathfrak{H}_{t}^{(j)} A_{j}^{(i)} \\ p(\mathfrak{F}_{t}^{(i)}) = \sum_{j}^{M} a_{t}^{(j)} \beta_{j} \mathfrak{H}_{t}^{(j)} A_{j}^{(i)} \\ p(\mathfrak{F}_{t}^{(i)}, \mathfrak{F}_{t}^{(i)}) = f_{t}^{(i)} \propto a_{t}^{(i)} \beta_{t}^{(i)} \beta_{i} \mathfrak{H}_{t} \\ p(\mathfrak{F}_{t}^{(i)}, \mathfrak{F}_{t}^{(i)}) \mathfrak{H}_{t}^{(j)} = f_{t}^{(i)} \propto a_{t}^{(i)} \beta_{t}^{(i)} \\ p(\mathfrak{F}_{t}^{(i)}, \mathfrak{F}_{t}^{(i)}) \mathfrak{H}_{t}^{(j)} \\ p(\mathfrak{F}_{t}^{(i)}, \mathfrak{F}_{t}^{(i)}) = f_{t}^{(i)} \approx a_{t}^{(i)} \beta_{t}^{(i)} \\ p(\mathfrak{F}_{t}^{(i)}, \mathfrak{F}_{t}^{(i)}) \mathfrak{H}_{t}^{(j)} \\ p(\mathfrak{F}_{t}^{(i)}, \mathfrak{F}_{t}^{(i)}) = f_{t}^{(i)} \\ p(\mathfrak{F}_{t}^{(i)}, \mathfrak{F}_{t}^{(i)}) = f_{t}^{(i)} \\ p(\mathfrak{F}_{t}^{(i)}, \mathfrak{F}_{t}^{(i)}) \\ p(\mathfrak{F}_{t}^{(i)}, \mathfrak{F}_{t}^{(i$$

$$\overline{a}_{t}(i) = \sum_{j} \overline{a}_{t}(j) A_{ji} B_{i} \overline{a}_{t}$$

$$\overline{f}_{t}(i) = \overline{f}_{t}(i) A_{j}(i)$$

$$M_{M'} - product: Check 3_{T} as root.$$

$$Define S_{t}(i) = M_{3_{t-1}} (3_{t-1}^{-i}), t \neq 2$$

$$S_{t}(i) = m_{ax} P(3_{t-1}^{-1} 3_{t-1}^{-i}, y_{t-1}^{-1} 0)$$

$$\overline{a}_{t}^{(i)} = m_{ax} P(3_{t-1}^{-1} 3_{t-1}^{-i}, y_{t-1}^{-1} 0)$$

$$\overline{a}_{t}^{(i)} = m_{ax} S_{t-1}(i) B_{j} y_{t-1} A_{ji}$$

$$Pob q the mercipolic peth = max S_{t}(i) B_{j} y_{t-1}$$

$$Hearmy : EM / Barn- Welch$$

$$Assume complete deta: g_{t}^{-i}, g_{t-1}^{-i}$$

$$\overline{f}_{i} = \begin{cases} 1 & g_{t-1}^{-i}, g_{t-1}^{-i} \\ 0 & dse \end{cases}$$

$$\overline{f}_{i} = \begin{cases} 1 & g_{t-1}^{-i}, g_{t-1}^{-i} \\ 0 & dse \end{cases}$$

$$\overline{f}_{i} = \begin{cases} 1 & g_{t-1}^{-i}, g_{t-1}^{-i} \\ 0 & dse \end{cases}$$

6-Markov Model Page 4

$$\begin{array}{c}
A_{ij} = \frac{\sum_{t=1}^{T} (q_{t}^{2} + i)}{\sum_{t=1}^{T} I(q_{t}^{2} + i)} \\
A_{ij} = \frac{\sum_{t=1}^{T} I(q_{t}^{2} + i)}{\sum_{t=1}^{T} I(q_{t}^{2} + i)} \\
B_{ij} = \frac{\sum_{t=1}^{T} I(q_{t}^{2} + i)}{\sum_{t=1}^{T} I(q_{t}^{2} + i)}
\end{array}$$

Jog Likelihood of the complete data

$$\int_{u \neq 0} \left(s_{1}^{T}, y_{1}^{T} \mid \theta \right) = \ln \pi_{3} + \sum_{t=2}^{T} \ln A_{3} + \sum_{t=1}^{T} \ln B_{3} y_{t}$$

$$E - \frac{4p}{Q(\theta|\theta')} = E \left[Q_{n} p(\overline{s}_{1}^{T}, y_{1}^{T}, |\theta) \mid \overline{y}_{1}^{T}, \theta' \right]$$

$$E \left[Q_{n} \overline{y}_{1} \mid \overline{y}_{1}^{T}, \theta' \right] = \sum_{i} (Q_{n} \overline{y}_{i}) p(\overline{y}_{1} = i \mid \overline{y}_{1}^{T}, \theta') = \sum_{i} \overline{y}_{i}^{(i)} \overline{y}_{n}, \overline{y}_{i}$$

$$E \left[\sum_{t=2}^{T} U_{n} \overline{A}_{\overline{s}_{t-1}} \overline{y}_{t} \mid \overline{y}_{1}^{T}, \theta' \right] = \sum_{t=2}^{T} \sum_{i} \sum_{j} (Q_{n} A_{ij}) p(\overline{y}_{t} = \overline{y}, \overline{y}_{t-1} \mid \overline{y}_{n}, \theta')$$

$$= \sum_{i} \sum_{j} \left(\sum_{t=2}^{T} \sum_{t} (i, j) \right) L_{n} A_{ij}$$

$$E \left[\sum_{t=1}^{T} U_{n} \overline{B}_{\overline{s}_{t}} \overline{y}_{t} \mid \overline{y}_{1}^{T}, \theta' \right] = \sum_{i} \sum_{t=1}^{T} p(\overline{y}_{t} = i \mid \overline{y}_{1}^{T}, \theta') L_{n} \overline{B}_{i} \overline{y}_{t}$$

$$M L_{n} p \quad if \quad H_{n} \ LL = \sum_{j} n_{j} \sum_{t=1}^{n} p(\overline{y}_{t} = i \mid \overline{y}_{1}^{T}, \theta') L_{n} \overline{B}_{i} \overline{y}_{t}$$

$$M L_{n} p \quad if \quad H_{n} \ LL = \sum_{j} n_{j} \sum_{t=2}^{T} \sum_{t=1}^{T} p(\overline{y}_{t} = i \mid \overline{y}_{1}^{T}, \theta') L_{n} \overline{B}_{i} \overline{y}_{t}$$

$$= \sum_{i} \sum_{j} \left(\sum_{t=1}^{T} \gamma_{i}^{i}(i) - A_{ij}^{i} \propto \sum_{t=2}^{T} \sum_{t=1}^{T} (i, j) \right) L_{n} \overline{B}_{ij} \Rightarrow \overline{B}_{ij} \propto \sum_{t=1}^{T} \gamma_{i}^{i}(i) \Gamma(\overline{y}_{t} = j)$$

Bibliography

- [1] B. Hajek, Random Processes for Engineers. 2014.
- [2] T. T. Nguyen and S. Sanner, "Algorithms for direct 0-1 loss optimization in binary classification," in Proceedings of the 30th International Conference on International Conference on Machine Learning -Volume 28, ICML'13, (Atlanta, GA, USA), pp. III-1085-III-1093, JMLR.org, June 2013.
- [3] C. Shannon, "A mathematical theory of communication," The Bell System Technical Journal, vol. 27, pp. 379–423, July 1948.
- [4] A. Furman, "WHAT IS . . . a Stationary Measure?," Notices of the AMS, vol. 58, no. 9.