
Chapter 10

Parameter Estimation in Graphical

Models

10.1 Introduction

A graphical model has two components: the graph structure (the nodes and their connections), and the
conditional probability distributions/potential functions, which are usually expressed in parametric form. In
this chapter:

• We will consider the problem of estimating the parameters in graphical models. The problem is simpler
in the case of Bayesian networks and for simplicity, that is were our attention will be focused.

• However, we will not consider the more challenging problem of learning the structure of a network.
The best case scenario is that you have good reason to design a graph in a certain way, e.g., based on
causality.

10.2 Maximum Likelihood Estimation in Bayesian Networks

Consider a BN with known graph with m nodes x1, . . . , xm in which the parameters of the conditional
distribution are unknown. There are m conditional probability distributions (CPDs)1, one for each node,
and each of these has an unknown parameter vector. We denote the concatenated vector of all parameters
as ✓ = (✓1, . . . , ✓m). To determine the parameters, we collect a dataset D = {x1, . . . , xn} of n iid samples,
where xi = (xi1, . . . , xim).
Example 94. As an example, we may consider the network from previous chapters with the vector of
parameters ✓ = (✓T , ✓C , ✓A, ✓B).

1
Some of the nodes do not have any parents so their distribution is not conditioned on any other nodes. We view these as

conditioned on the empty set and thus refer to all probability distributions in a Bayesian Network as conditional probability

distributions.
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T

P (T = 0; ✓T ) = ✓T

A B

P (B = 0|C = 0, T = 0;✓B) = ✓B00

P (B = 0|C = 0, T = 1;✓B) = ✓B01

P (B = 0|C = 1, T = 0;✓B) = ✓B10

P (B = 0|C = 1, T = 1;✓B) = ✓B11

C

P (C = 0; ✓C) = ✓C

P (A = 0|T = 0;✓A) = ✓A0

P (A = 0|T = 1;✓A) = ✓A1

Our goal is to determine ✓ by collecting data and determine the conditional probability distributions, thereby
determining the network. To collect data, on n days, we record whether there is heavy traffic and whether
Alice, Bob, and/or Charlie are late. 4

We can find the parameters through maximum likelihood. Given that our network can have many nodes, the
size of the parameter vector may be very large. This would create computational difficulties since it would
require maximizing a function of many variables. Fortunately, in the case of Bayesian networks, the problem
decomposes to estimating the parameters for each nodes separately as we will show. To see why this is helpful,
suppose that we optimize by grid search, i.e., trying a set of values at regular intervals. If we try K points for
one dimension, for m dimensions we need to try Km points to get the same precision. However, if we optimize
m parameters separately, then we only need to try mK points, typically a significantly smaller number.

Decomposability of likelihood. For the ith data sample, the likelihood function is

p(xi; ✓) =
mY

j=1

p(xij | pa(xij); ✓j)

and thus the log-likelihood of the whole dataset is

`(✓) =
nX

i=1

ln p(xi; ✓) =
nX

i=1

mX

j=1

ln p(xij | pa(xij); ✓j) =
mX

j=1

nX

i=1

ln p(xij | pa(xij); ✓j).

Thus for a given j, ✓j only appears in the term
Pn

i=1 ln p(xij | pa(xij); ✓j) and no other ✓k appears in this
term. So each ✓j , and thus each conditional probability distribution, can be learned independently of the
others.
Exercise 95. For the TABC network above, what would our data look like? What is the ML estimate for
each parameter based on this data?

10.3 Bayesian Parameter Estimation in Bayesian Networks

Suppose that we want to estimate the parameters of the conditional probability distributions of a Bayesian
network using Bayesian inference. Since in the Bayesian view, parameters are considered random, we can
augment the Bayesian network by adding the parameters as nodes. In particular, we can recast Bayesian
estimation problems that we have seen before as Bayesian networks.
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10.3.1 Bayesian Estimation formulated as Bayesian Networks

Example 96. As a simple example, consider the Bayesian network consisting of a singe node y whose
distribution has an unknown parameter ✓. We can transform this to a network with node ✓ and y, in which
the conditional distributions are the prior p(✓) and the likelihood p(y|✓).

y

p(y|✓)

=)
y p(y|✓)

✓ p(✓)

The joint distribution resulting from the network is p(✓, y) = p(✓)p(y|✓), which indeed factorizes with respect
to the network on the right. Now, if y is given (which we show by a hatched pattern), we can find p(✓|y)
using Bayes rule,

y p(y|✓)

✓ p(✓)

p(✓|y) = p(y,✓)
p(y) = p(✓)p(y|✓)

p(y)

Example 97. The problem in Example 96 becomes more interesting when we have n independent samples,
D = {y1, y2, . . . , yn}, from the distribution. We can simplify the network with the plate notation, by repre-
senting nodes that have the same conditional probability distribution (and are independent) using plates, as
shown below.

✓

y1 y2 · · ·

· · ·

yn

⌘

yi

n

✓

The joint distribution of ✓ and yn
1 can be written as

p(yn
1 , ✓) = p(✓)

nY

i=1

p(yi|✓),

and the posterior distribution for ✓ as

p(✓|yn
1 ) / p(yn

1 , ✓) = p(✓)
nY

i=1

p(yi|✓).

Example 98. Following Example 97, suppose we have n independent samples D = {y1, y2, . . . , yn} from the
distribution. We want to predict the distribution of the next sample p(yn+1|yn

1 ). The graph is shown below.

✓

yi

n

yn+1

Farzad Farnoud 98 University of Virginia



Estimation and Statistical LearningCHAPTER 10. PARAMETER ESTIMATION IN GRAPHICAL MODELS

We have

p(yn+1|yn
1 ) =

ˆ
p(yn+1, ✓|yn

1 )d✓ =

ˆ
p(✓|yn

1 )p(yn+1|✓, yn
1 )d✓ =

ˆ
p(✓|yn

1 )p(yn+1|✓)d✓

where in the last step we have used yn+1 ?? yn
1 | ✓, which follows from d-separation. Furthermore,

E[yn+1|yn
1 ] = E[E[yn+1|✓, yn

1 ]|yn
1 ] = E[E[yn+1|✓]|yn

1 ]. (10.1)

Roughly speaking, to learn about yn+1 given yn
1 , we must first learn about ✓ since this is the node that

connects yn
1 and yn+1.

For example, assume p(✓) / 1, yi|✓ ⇠ Ber(✓), and that out of the n samples yi, there s 1s and f 0s. Then

p(yn+1 = 1|yn
1 ) = E[yn+1|yn

1 ] = E[E[yn+1|✓]|yn
1 ] = E[✓|yn

1 ] =
s + 1

s + f + 2
.

10.3.2 Estimating Parameters of CPDs in Bayesian Networks

So far for the most part, we have cast Bayesian inference problems that we had seen before as Bayesian
networks. In the next example, we consider the problem of estimating the parameters of the conditional
probability distributions (CPDs) of Bayesian network.

Similar to Section 10.2, consider a BN with m nodes x1, . . . , xm in which the parameters ✓ = (✓1, . . . , ✓m)
of the CPDs are unknown. Our dataset is D = {x1, . . . , xn} consisting of n iid samples, where xi =
(xi1, . . . , xim). We are interested in determining p(✓|D) and p(xn+1|D).
Example 99. Let us consider a simpler version of the network given in Example 94, with unknown parameter
vector ✓ = (✓T , ✓A, ✓B),

T

P (T = 0|✓T ) = ✓T

A B

P (B = 0|T = 0,✓B) = ✓B0

P (B = 0|T = 1,✓B) = ✓B1

P (A = 0|T = 0,✓A) = ✓A0

P (A = 0|T = 1,✓A) = ✓A1

Given n samples D = {(T1, A1, B1), . . . , (Tn, An, Bn)}, and our goal is to estimate the posterior we augment
the network as

so that we can learn about p(✓A, ✓B , ✓T |D) and p(Tn+1, An+1, Bn+1|D). 4
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Decomposability of posterior and predictive posterior. Consider a Bayesian network with n ⇥ m
nodes for the data D = {x1, . . . , xn} where xi = (xi1, . . . , xim); m nodes for ✓1, . . . , ✓m; and m nodes for the
future observation xn+1,1, . . . , xn+1,m as shown below (see also the second graph in Example 99 for a concrete
example)

Let us start by trying to decompose p(✓|D). First, note that by d-separation

p(✓|D) =
mY

j=1

p(✓j |D).

Next, define
Nj = {x1j , . . . , xnj , pa(x1j), . . . , pa(xnj)}, (10.2)

i.e., the set of children and parents of children of ✓j among the nodes of D. Similar to Markov blankets, we see
that ✓j ?? D\Nj | Nj . That is, given Nj , ✓j is independent of all other nodes in D, and so p(✓j |D) = p(✓j |Nj).
Hence,

p(✓|D) =
mY

j=1

p(✓j |D) =
mY

j=1

p(✓j |Nj). (10.3)

This is good news, because it means we can find the posterior for the parameters of each CPD can be computed
separately.
Exercise 100. Using the Bayesian network above, prove that the last two equalities in the expression below
hold:

p(✓, xn+1 | D) = p(✓|D)p(xn+1 | D, ✓) = p(✓|D)p(xn+1|✓) = p(✓|D)
mY

j=1

p(xn+1,j |✓j , pa(xn+1,j)). (10.4)

We can find the posterior predictive p(xn+1|D) by integrating the above expression with respect to ✓. 4
Example 101. Getting back to Example 99, let us find p(✓A|D) and p(An+1, Bn+1|D). As in (10.2), the set
of children and parents of children of ✓A among data nodes are NA = {A1, . . . , An, T1, . . . , Tn} and

p(✓A|D) = p(✓A|An
1 , Tn

1 ).

This makes intuitive sense: to estimate the probability of Alice being late as a function of traffic, only the
part of data that deals with Alice’s arrival time and traffic is relevant.
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Assuming that the prior satisfies p(✓A) = p(✓A0)p(✓A1),

p(✓A|An
1 , Tn

1 ) / p(✓A)p(Tn
1 |✓A)p(An

1 |Tn
1 , ✓A)

= p(✓A)p(Tn
1 )p(An

1 |Tn
1 , ✓A)

/ p(✓A)p(An
1 |Tn

1 , ✓A)

= p(✓A)
nY

i=1

p(Ai|Tn
1 , ✓A)

= p(✓A)
nY

i=1

p(Ai|Ti, ✓A)

=

 
p(✓A0)

Y

i:Ti=0

p(Ai|Ti = 0, ✓A0)

! 
p(✓A1)

Y

i:Ti=1

p(Ai|Ti = 1, ✓A1)

!
.

Since the terms depending on ✓A0 and ✓A1 separate, they are conditionally independent and we can estimate
them separately: Hence, the estimators of ✓0A and ✓1A are

p(✓A0|D) / p(✓A0)
Y

i:Ti=0

p(Ai|Ti = 0, ✓A0),

p(✓A1|D) / p(✓A1)
Y

i:Ti=1

p(Ai|Ti = 1, ✓A1).

Suppose p(✓0A) ⇠ Beta(1, 1) and out of 100 days with no traffic, in 40 days Alice was on time. Hence,

✓A0|D ⇠ Beta(41, 61).

Furthermore, the posterior probability of the next sample (An+1, Bn+1) is

p(An+1, Bn+1|D) =

ˆ
✓

p(An+1, Bn+1, ✓|D)d✓

=

ˆ
✓

p(✓|D)p(An+1, Bn+1|✓)d✓.

In general, such integrals may be difficult to find analytically. In practice, we rely on computational methods
such as Markov Chain Monte Carlo (MCMC). Alternatively, to predict future values, we can use a Bayesian
point estimate for ✓, and then assume that they are known as shown below.

T

P (T = 0) = ✓̂T

A B

P (B = 0|T = 0) = ✓̂B0

P (B = 0|T = 1) = ✓̂B1

P (A = 0|T = 0) = ✓̂A0

P (A = 0|T = 1) = ✓̂A1
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10.4 Parameter Estimation in MRFs

Recall that for an MRF G, the probability distribution is given as

p(x; ✓) =
Y

c is a clique in G

 ✓(xc)/Z(✓),

where Z(✓) =
P

x

Q
c  ✓(xc) is the partition function. Let us consider the frequentist estimation of ✓, e.g.,

maximum likelihood. Unfortunately, the log-likelihood function does not decompose into terms each depend-
ing on one component of ✓. This is due to the presence of the partition function, which generally depends
on all the components of ✓, leading to a high-dimensional problem. Furthermore, computing the partition
function is a computationally difficult task since it involves computing a sum with possibly exponentially
many terms.
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