
Chapter 8

Basics of Graphical Models

8.1 Introduction

Graphical models (GMs) are used to represent distributions on graphs. They enable us to represent conditional

independencies and factorization of distributions facilitate probabilistic inference through message passing
algorithms. There are different types of GMs:

• Bayesian Networks (BN, aka Directed Graphical Models): Natural for representing causal relationships

• Markov Random Fields (MRF, aka Undirected Graphical Models): Suitable for representing co-influence
or non-causal relationships among a subsets of variables, e.g., friendship in social networks and pixels
in an image (adjacent pixels are likely to have similar colors).

• Factor Graphs: A flexible type of GM that can represent distributions reperesented by BNs and MRFs.

8.2 Bayesian Networks

A Bayesian network is a directed acyclic graph (DAG) with some additional attributes. A DAG is a graph
whose edges have direction and in which there is no cycle if one follows the edges based on their direction.
In a DAG, a parent of a node y is a node x such that there is an edge from x to y. A child of y is a node
z such that y is the parent of z. An ancestor is a parent, parent of a parent, etc., and a descendant is a
child, child of a child, etc. An example of a DAG with four nodes is shown below.

x1 x2

x3 x4

In a Bayesian network represented by a DAG G:
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• Nodes x1, . . . , xm represent variables or quantities (can be scalar or vector)

• Edges represent causal relationships

• The probability distribution over xm
1 = x1, . . . , xm can be expressed as:

p(xm
1 ) =

mY

i=1

p(xi| pa(xi))

where pa(xi) are the parents of xi in G, i.e., nodes with an edge to xi.

We then say that the distribution p factorizes with respect to G. For example, for a distribution p that
factorizes with respect to the graph shown above, we have

p(x1, x2, x3, x4) = p(x1)p(x2|x1)p(x3|x1)p(x4|x1, x3). (8.1)

What does (8.1) tell us about the distribution? Recall that based on the chain rule of probability, we always
have

p(x1, x2, x3, x4) = p(x1)p(x2|x1)p(x3|x1, x2)p(x4|x1, x2, x3).

It is straightforward to show that (8.1) is equivalent to

p(x3|x1, x2) = p(x3|x1),

p(x4|x1, x2, x3) = p(x4|x1, x3).
(8.2)

These two expressions are conditional independence statements, which we can restate as x3 ?? x2 | x1 and
x4??x2 | x1, x3. Thus saying that p factorizes with respect to the graph above is equivalent to assuming (8.2).
This is in general true. The set of missing incoming edges for each node in the graph represents a conditional
independence assumption.

The complete graph, shown for four nodes below, represents the factorization given (8.2), which holds for any
distribution and thus the graph can represent any distribution. But such a graph is not particularly useful
since the power of graphical models results from the independence assumptions that they encode.

x1 x2

x3 x4

Note that the complete graph is acyclic as it imposes an ordering over the nodes (in this case, x1, x2, x3, x4).
We can view any Bayesian network as being obtained from such a complete graph by removing edges. So
every Bayesian network is also acyclic.
Example 76. Alice and Bob are employees of a business in Charlottesville, both of whom take 29S to get to
work. We are interested in whether they arrive on time or late. We assume their arrival time is affected by
traffic, which leads to dependence, but there aren’t any other factors that can affect both of them. Let A = 0
and A = 1 denote Alice being on time and being late A1, respectively and similarly for Bob (B = 0 and B1).
Traffic is either normal (T = 0) or heavy (T = 1). We use X0 and X1 as shorthand for X = 0 and X = 1 for
our random variables.

The Bayesian Network that models the probability distribution is shown below.
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T

A B

This graph implies that A ?? B|T and that p(ABT ) = p(T )p(A|T )p(B|T ). We now have the structure of
our model. But we still need the conditional probability distributions to complete the model. Suppose
these distributions are as below:

T

P (T0) = 0.65

A B

P (B0|T0) = 0.82

P (B0|T1) = 0.15
P (A0|T0) = 0.9

P (A0|T1) = 0.5

Taking the example a step further, suppose that Bob has a son, Charlie (C0 and C1) who has to be dropped
off at school. Charlie being late has an effect on Bob being late. We will adjust the Bayesian Network below
and use the joint probability distribution in the following table.

T

A B

C

P (C0) = 0.9

CT P (B0|CT ) P (B1|CT )
C0T0 0.9 0.1
C0T1 1/6 5/6
C1T0 0.1 0.9
C1T1 0 1

Note that this new conditional distribution does not change any previously calculated probabilities involving
Traffic, Alice, and Bob, but the numbers were chosen specifically to achieve this—this is not always the case.

Based on this graph, the joint probability distribution is:

p(ABTC) = p(T )p(C)p(A|T )p(B|CT ).

It is easy to show that T ?? C but as we will see below T 6?? C|B.

Bayesian networks facilitate certain kinds of reasoning. In causal reasoning, we draw conclusions about
unobserved effects base on observed causes. For example, if we know there was heavy traffic, then it is more
likely that Bob was late, p(B1|T1) = 0.85 > p(B1) = 0.41. Evidential reasoning allows us to say something
about the cause by observing the effects. For example,

p(T1|B1) =
p(B1|T1)p(T1)

p(B1)
= 0.7177 > p(T1) = 0.35,
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tells us that heavy traffic is more likely when Bob is late, even though we have no direct information about
the traffic.

We also have p(T1|B1C1) < P (T1|B1), which makes intuitive sense. Bob being late provides evidence for
traffic being heavy. But if we know Charlie is late, then we have an alternative explanation for Bob being
late, lessening the need for traffic being heavy as a reason for Bob’s tardiness. This type of reasoning, where
given an effect, occurrence of one cause lessens the probability of another cause, is called explaining away.

8.2.1 Markov Model

A Markov Model or a Markov chain is a Bayesian network whose graph consists of a single path. Such
a model can, for example, represent the total winning of a gambler as a function of time, where each game
is independent. The main assumption is that given the present, the future is independent of the past : how
much money you’ll have after the next game is independent of past games, if your current worth is known.
Another, idealized example is the forecast: given that we know today’s weather, days before that are irrelevant
for tomorrow’s forecast. As an example, consider

x1 x2 x3 x4

which corresponds to
p(x4

1) = p(x1)p(x2|x1)p(x3|x2)p(x4|x3).

Consider a set of n random variables each of which can take on k different values. The most general probability
distribution over these variables will have kn � 1 parameters (the �1 comes from the fact that we know the
probabilities must sum to one). In practice, this is such a huge number even for k = 2 and relatively small
n, e.g., n = 100, that we can’t even store the distribution, let alone learn it from data. The Markov model,
however, has (k � 1) + (n � 1)k(k � 1) parameters, which is much more manageable. This is an example of
graphical models making modeling more feasible.

A closely related model is the hidden Markov model (HMM):

x1 x2 x3 x4

y1 y2 y3 y4

An HMM is used when the true state of the system cannot be directly observed but we can observe some
function of the state. For example, xi can represent if cancer is in remission or not and yi can represent
observations from medical tests.

Like Markov random fields, Markov and hidden Markov models are named after Russian mathematician
Andrey Markov, but Markov models are Bayesian Networks and not Markov Random Fields.

8.2.2 Why graphical models?

Graphical models, such as Bayesian networks are useful for several reasons.

• They provide a simple but flexible way to encode conditional independencies, enabling us to answer
questions about independence based on graphs.
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• GMs help constructing tractable models. As an example, see the number of parameters for a Markov
chain versus an unrestricted model described above.

• Restriction to GMs has computational benefits, allowing us to draw conclusions about hidden quantities
based on observations efficiently using algorithms such as belief propagation.

8.3 Markov Random Fields

Definition 77 (Clique and maximal clique). The following definitions from graph theory will be used in this
section. In an undirected graph, a clique is a subset of nodes such that there is an edge between any two of
them. A maximal clique is a clique such that there are no nodes not in the clique that connected to all the
nodes already in the clique.

Suppose that we are interested in developing a political party affiliation for a group of 5 people (or millions
of people if we have social network data). Let’s assume their friendships are given by the following graph

x1 x2

x3x4

x5

in which each node xi represents the party of person i and an edge between xi and xj means that i and j are
friends. How can we develop a probability distribution that can help us in this task?

We would like to encode the following observations in our distribution. We know that if two people are friends
(e.g., 1 and 2), then it is more likely for them to have a common political alignment. Furthermore, for three
friends that are all friends (2,3,5), it is perhaps even more likely that they share the same political views. Let
party affiliation be denoted by 0 or 1. We define

 ij(xi, xj) =

(
1, xi = xj

1/2, xi 6= xj
(8.3)

and

 ijk(xi, xj , xk) =

(
1, xi = xj = xk

1/2, if two of the three are equal
(8.4)

So agreements are assigned a higher value. Now we can define a probability distribution as

p(x1, . . . , x5) /  12(x1, x2) 14(x1, x4) 34(x3, x4) 235(x2, x3, x5), (8.5)

which assigns higher probability to configurations in which cliques of friends are in the same parties, as we
wanted. For example, the probability of the left configuration is 16 times as likely to occur as the one on the
right.

1 1

11

1

1 0

10

1
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Note that there is no guarantee that the right side of (8.5) sums to 1 when going over all possible configurations
so we need a normalization factor, which in this context is called the partition function,

Z =
X

x5
1

 12(x1, x2) 14(x1, x4) 34(x3, x4) 235(x2, x3, x5).

We can then write

p(x1, . . . , x5) =
1

Z
 12(x1, x2) 14(x1, x4) 34(x3, x4) 235(x2, x3, x5).

In our example, it turns out that Z = 8.5, and thus p(1, 1, 1, 1, 1) = 0.11765 while p(1, 0, 1, 0, 1) = 0.0073529.

Finally, we note while we chose the potential function for each pair and triple to be the same regardless of
the identity of the nodes, this is not a necessity; for example, we could have chose different different functions
for  12 and  3,4.

We can now consider the general case. A Markov random field (MRF) or an undirected graphical model
consists of an undirected graph G with nodes xm

1 = x1, . . . , xm, and a probability distribution p that factorizes

with respect to G, i.e.,
p(xm

1 ) =
1

Z

Y

C is a clique in G

 C(xC), (8.6)

where for each clique C in G, xC is the set of nodes in that clique,  C is a potential function, which assigns
non-negative values to all configurations of xC , and Z is the partition function, which ensures that the right
side is a proper distribution. Without loss of generality, we may assume the cliques are maximal by absorbing
the potential functions for smaller cliques into the maximal clique. For our political party example above, for
the clique with nodes x2, x3, x5, we can either have 4 potential functions over all the sub-cliques,

 0(x2, x3) 
0(x3, x5) 

0(x2, x5) 
0(x2, x3, x5)

or a single potential function
 (x2, x3, x5).

Both are valid and equally powerful in terms of representation.

When designing an MRF we incorporate local information into the potential functions, but the final result is
that we learn about the global view of the entire system. Also, in an MRF, the relationships between nodes
are symmetric rather than causal or directed.

8.3.1 Energy-based models

When for all configurations x = xm
1 , the probability p(x) is positive, it is helpful to represent the distribution

as
p(x) / e�E(x),

where E(·) is called the energy function. Such a distribution is also called a Boltzmann distribution.
The terminology comes from statistical physics. In that context, lower energy corresponds to higher stability
and thus higher probability for a system. For a graphical model, the energy function can be written as the
sum of terms each of which correspond to a clique in the graph,

E(x) =
X

C is a clique in G

��C(xC) ) p(x) /
Y

e�C(xC)

A Boltzmann machine is such a graphical model, typically with both nodes that can be observed and nodes
that are hidden (latent).
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Example 78 (An MRF for denoising Images). The figure below shows an MRF for a noisy black and
white image. Here x1, x2, · · · , x6 represent the true B/W status of the pixels and y1, y2, · · · , y6 the noisy
values (e.g., due to noise of a camera). We denote ‘Black’=-1 and ‘White’ = 1.

x1

x2

x3

x4

x5

x6

y1

y2

y3

y4

y5

y6

The energy function can be written as

E(x, y) = �
mX

i

↵ixi �
X

(i,j)2E(G)

�i,jxixj �
mX

i

⇣ixiyi,

where E(G) is the set of edges between neighboring pixels and �i,j > 0 and ⇣i > 0. The ↵i control how likely a
pixel is to be white without considering other pixels. The interaction between neighboring pixels is controlled
by �ij ; since each is positive, it is more likely for adjacent pixels to have the same status. We assume that it
is more likely for the noisy pixel to match the true pixel and so ⇣i > 0 as well.

In a denoising task, we are given y and our goal is to recover x. A reasonable solution is

arg max
x

p(x, y).

If we can output fractional values (if the denoised image can be grayscale), another possible solution is

E[x|y].

8.4 Moralization: Converting BNs to MRFs

In a BN, there is a term for each node xi of the form

p(xi| pa(xi)).

To be able to have the same term in an MRF, we need to have a clique containing xi and its parents. So to
design an MRF that can represent the same distribution as the BN, we first connect all the parents of each
nodes with each other and then remove all directions from the edges.
Example 79. As an example, consider:

T

A B

C

)

T

A B

C

)

T

A B

C

We have

p(A, B, T, C) = p(T )p(C)p(A|T )p(B|T, C) ) p(A, B, T, C) =  (T ) (C) (A, T ) (B, T, C),

where, for example,  (B, T, C) = p(B|T, C).
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8.5 Latent Dirichlet Allocation**

(**)

Latent Dirichlet Allocation is commonly used for topic modeling - e.g. classifying documents based on their
content or topic.

Suppose there are two topics, cats and dogs. The words that appear under any document are represented as
probabilities in a matrix �:

Cats: "cat": 50%, "kitten": 20%, "litter": 20%, "paw": 10%
Dogs: "dog": 40%, "puppy": 20%, "bark": 20%, "chew": 10%, "paw": 10%

Each document is a mixture of topics:

document1: 80% cats, 20% dogs
document2: 100% cats
document3: 50% cats, 50% dogs

✓ represents a topic mixture for a document and is generated from some distribution with parameter ↵.

Each word in the document has a topic, and the probability of that topic is given by ✓.

Let Z be the topics for each word in document1: cats, cats, dogs, cats, dogs, cats.

We can choose each word in the document based on the word distribution for its topic:

document1: "cat litter dog kitten bark cat"
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