
Chapter 5

Linear Regression

5.1 Introduction

The goal of regression is to predict a real value y as a function of the input variable x. For example, we may be
interested in predicting blood pressure given age, sex, weight, exercise, and calorie intake. Applications include
prediction as well as understanding the relationship between inputs and output, for example, identifying the
most important input components.

Linear regression relies on the assumption that y ' xT ✓, where x and ✓ are elements of Rd. We formulate
the problem as follows: Find

✓̂ = arg min
✓

E[L(y, xT ✓)],

for a given loss function L. We typically do not have the joint distribution for x, y. Thus, given a training
set {(x1, y1), . . . , (xn, yn)}, we aim to find

✓̂ = arg min
✓

1

n

nX

i=1

L(yi, x
T
i ✓). (5.1)

The linear form, which assumes yi '
Pd

j=1 ✓jxij , may appear restrictive since it apparently excludes depen-
dence on, for example, x2

ij . This, however, is not the case since we can transform the input variable using a
set of functions g1, . . . , ge and reformulate our assumption as yi '

Pe
j=1 ✓jgj(xi), where gj are any function

of xi such as x2
i1 and xi1xi2xi4.

Notation. Define X 2 Rn⇥d and y as

X =

0

B@
xT
1
...

xT
n

1

CA, y =

0

B@
yT
1
...

yT
n

1

CA

Furthermore, let ✏ be such that
y = X✓ + ✏,
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and ŷ = X✓. With this notation, our goal is to find ✓ such that ky � ŷk2 = k✏k2 is minimized, where, for a
vector v 2 Rd,

kvk22 = vT v =
dX

j=1

v2j .

Example 70. Suppose

x1 =

✓
0
1

◆
, x2 =

✓
2
0

◆
, x3 =

✓
1
1

◆
,

y1 = �1, y2 = 1, y3 = 0.

Then

X =

0

@
0 1
2 0
1 1

1

A, ŷ = X✓ = ✓1

0

@
0
2
1

1

A + ✓2

0

@
1
0
1

1

A, y � ŷ =

0

@
�1 � ✓2
1 � 2✓1

�✓1 � ✓2

1

A. (5.2)

5.2 Least-squares

A common choice for the loss function is

L(yi, x
T
i ✓) = (yi � xT

i ✓)2,

This choice is relatively easy to deal with from a computational perspective and also has the same solution as
the MLE for a common probabilistic model, thus providing an additional rationale for the resulting approach.

This choice leads to mean squared loss minimization:

L(✓) = ky � X✓k22, ✓̂ = arg min
✓

L(✓).

We define
ŷ = X✓̂

as the predicted value or estimate based on the model.

Projection onto the column space of X. Our first observation is that ŷ is in the column space of X,
i.e., it is a linear combination of the columns of X. We can thus restate our goal as finding ŷ in the column
space of X such that ky � ŷk is minimized. Hence, ŷ is the projection of y onto the column space of X as
shown in Figure 5.1. Then, from Lemma 66, y � ŷ is orthogonal to each column of X.

This orthogonality can be written as XT (y � ŷ) = 0. Then

XT (y � ŷ) = 0 () XT (y � X✓̂) = 0

() XT y = XT X✓̂

() ✓̂ = (XT X)�1XT y

Here we have assumed that XT X is invertible. This holds if the columns of X are linearly independent. To
see this, suppose that XT X is not invertible. Then there exists a nonzero vector ↵ such that XT X↵ = 0
and hence

XT X↵ = 0 ) ↵T XT X↵ = 0 ) (X↵)T (X↵) = 0 ) X↵ = 0 ) ↵ = 0,

where the last step follows from the fact that the columns of X are linearly independent. But this contradicts
↵ 6= 0. If the columns of X are not linearly independent, then the solution is not unique.
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Figure 5.1: Error is minimized by projecting y onto the column space of X, Span(col(X)).

Example 71. From Example 70, we have

X =

0

@
0 1
2 0
1 1

1

A, y =

0

@
�1
1
0

1

A,

and so

XT X =

✓
5 1
1 2

◆
, (XT X)�1 =

1

9

✓
2 �1

�1 5

◆

(XT X)�1XT =
1

9

✓
�1 4 1
5 �2 4

◆
✓̂ =

✓
5/9

�7/9

◆

ŷ =

0

@
�7/9
10/9
�2/9

1

A, y � ŷ =

0

@
�2/9
�1/9
2/9

1

A.

Gradient descent. Alternatively, we can take the derivative of the loss to minimize it. Let rL(✓) =
�

dL
d✓

�T

be the gradient of L. Recall that the direction of the gradient indicates the direction of maximum increase
and its magnitude represents the slope of the increase. We have

L = (y � X✓)T (y � X✓),

rL = 2
⇥
(y � X✓)T (�X)

⇤T
= �2XT (y � X✓).

Setting the gradient equal to 0 again gives ✓̂ = (XT X)�1XT y. (Note that the Hessian is XT X, which is
positive-semi-definite.)

Computing (XT X)�1 may be prohibitively expensive computationally. An alternative approach is to start
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from an arbitrary value ✓(0) and move towards the solution in steps:

✓(t+1) = ✓(t) + ⇢XT (y � X✓(t))

= ✓(t) + ⇢
nX

i=1

xi(yi � xT
i ✓(t)),

where ⇢ is the learning rate. This approach gets to the lowest point by moving in the direction of the steepest

descent as shown in figure below for Example 70.

Figure 5.2: Gradient descent for linear regression

5.3 Probabilistic Models for Regression

So far we haven’t made any assumptions regarding the statistics of the data. Let us now assume that
y = X✓ + ✏, where E[✏] = 0 and Cov(✏) = E[✏✏T ] = �2I. (This is the case if yi = xT ✓ + ✏i, where ✏i are iid
with mean 0 and variance �2.) Then

E[✓̂] = E[(XT X)�1XT y]

= (XT X)�1XT E[y]

= (XT X)�1XT E[X✓ + ✏]

= ✓,

using the properties of covariance given in the appendix, so ✓̂ is unbiased. The covariance is given by

Cov(✓̂) = Cov((XT X)�1XT y)

= (XT X)�1XT Cov(y)X(XT X)�1

= (XT X)�1�2.
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The Gauss-Markov theorem. The Gauss-Markov theorem states that under the assumptions that E[✏] =
0 and Cov(✏) = �2I, ✓̂ is the best linear unbiased estimator. More precisely, for any1 vector u, uT ✓̂ is an
unbiased estimator of uT ✓ with the smallest possible variance.

Gaussian model

Let us further assume that ✏i are iid with distribution N (0, �2), i.e., ✏ ⇠ N (0, �2I). In other words, we have:

p(y; ✓, �2) ⇠ N (X✓, �2I).

Exercise 72. Prove that if p(y; ✓, �2) ⇠ N (X✓, �2I), then for all i, p(yi; ✓, �2) ⇠ N (xT
i ✓, �2) and the yi are

independent.

Now we have a probabilistic model with unknown parameters ✓ and �2.

Maximum Likelihood

Given that the covariance matrix is �2I and assuming that y is n-dimensional, the density and the likelihood
are

p(y; ✓, �2) =
1

p
(2⇡�2)

n exp

✓
� 1

2�2
(y � X✓)T (y � X✓)

◆
/ 1

�n
exp

✓
�ky � X✓k22

2�2

◆

`(✓, �2)
.
= �n ln(�) � 1

2�2
ky � X✓k22.

So maximizing for ✓ leads to minimizing ky � X✓k22 =
Pn

i=1(yi � xT
i ✓)2 which we already know the solution

to:
✓̂ML = ✓̂ = (XT X)�1XT y.

We can similarly show that

�̂2
ML =

1

n

nX

i=1

(yi � xT
i ✓̂)2.

The mean and variance of ✓̂ are the same as before. But now we also know that ✓̂ is Gaussian. This is
because the linear combination of Gaussian variables is Gaussian. Hence,

✓̂ ⇠ N (✓, �2(XT X)�1).

Cramer-Rao Lower Bound. With the additional Gaussian assumption in this section, using Cramer-Rao
lower bound, a stronger result compared to the Gauss-Markov theorem can be obtained. Namely, ✓̂ is the best
unbiased estimator (not just the best linear unbiased estimator). To see this, note that, for Fisher information

1
This isn’t entirely precise!
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I(✓), we have

`(✓, �2)
.
= �n ln(�) � 1

2�2
(y � X✓)T (y � X✓).

r✓` =

✓
� 1

�2
(y � X✓)T (�X)

◆T

=
1

�2
XT (y � X✓)

H✓` =
dr✓`

d✓
= � 1

�2
XT X.

and so I(✓) = 1
�2 XT X. Hence, I(✓)�1 = �2(XT X)�1, which matches the variance of covariance of ✓̂.

Bayesian Linear Regression

In Bayesian linear regression, the Gaussian likelihood

y|✓, �2 ⇠ N (X✓, �2I)

is a common choice. But we also need to choose priors for ✓ and �2. A possible non-informative choice is

p(✓, �2) / 1/�2,

or equivalently, p(�2) / 1
�2 , p(✓) / 1 and �2, and ✓ are independent.

We are interested in finding
p(✓, �2|y) = p(✓|�2, y)p(�2|y)

We start with

p(✓|y, �2) =
p(✓, y|�2)

p(y|�2)
/ p(y|✓, �2)p(✓|�2) / exp

✓
� (X✓ � y)T (X✓ � y)

2�2

◆
.

This is quadratic in ✓. So we’ll try to see if we can write it in terms of a Gaussian distribution. With foresight,
let the mean and the covariance of this distribution be denoted ✓̂ and K�2. We need

(✓ � ✓̂)T K�1(✓ � ✓̂)
.
= (X✓ � y)T (X✓ � y).

Ignoring terms that are constant in ✓, we require

✓T K�1✓ � 2✓T K�1✓̂
.
= ✓T XT X✓ � 2✓T XT y,

which is satisfied by K�1 = XT X and

�2✓T K�1✓̂ = �2✓T XT y,

�2✓T XT X✓̂ = �2✓T XT y,

XT X✓̂ = XT y,

✓̂ = (XT X)�1XT y.

So it suffices to set ✓̂ = (XT X)�1XT y and K = (XT X)�1,

p(✓|y, �2) ⇠ N (✓̂, K�2).
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Now we need to find p(�2|y). It turns out this is a distribution called a scaled inverse-�2,

p(�2|y) ⇠ Inv- �2(n � m, s2),

where m is the dimension of xi and

s2 =
1

n � m
(y � X✓̂)T (y � X✓̂).

While we can continue analytically and find p(✓|y), in practice, we proceed computationally by generating
samples from p(�2|y) and then p(✓|y, �2). With this sampling approach we can also perform prediction for
a given input vector xn+1 of by producing samples from p(yn+1|✓, �2) ⇠ N (xT

n+1✓, �2).

Standardization

In some texts, an intercept term is also included in the loss function. For ease of notation, we instead assume
that X is standardized, meaning that each column v is shifted and scaled such that vT1 = 0 and vT v = 1
and that y is centered so that yT1 = 0. This assumption also holds in the following sections.

5.4 Regularized Linear Regression

Sometimes we are interested in reducing the flexibility of the model to avoid over-fitting, especially when the
size of the data set is small. Alternatively, we may be interested in putting restrictions (e.g., forcing small
coefficients to become 0) so that only the most important aspects of the data appear in the learned model,
thus increasing its interpretability. These can be done by altering the loss function by adding a regularization
term.

Ridge Regression

Ridge regression adds a penalty for the magnitude of the coefficients. Specifically, the loss function is

L(✓) = ky � X✓k22 + �k✓k22,

where � is a parameter determining the relative importance of the square error versus the regularization loss
term k✓k22. The problem of minimizing this loss,

✓̂ = arg min
✓

ky � X✓k22 + �k✓k22, (5.3)

can be shown to be equivalent to

✓̂ = arg min
✓

ky � X✓k22,

subject to : k✓k22  t,

for some t. There is a one-to-one correspondence between � and t. The second form is perhaps easier to
understand because of the explicit constraints on k✓k22.

From (5.3),

rL(✓) = �2XT (y � X✓) + 2�✓,

rL(✓̂) = 0 () XT (y � X✓̂) = �✓̂

() ✓̂ = (XT X + �I)�1XT y.
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Exercise 73. Prove that for � > 0, XT X + �I is invertible, even if the columns of X are not linearly
independent.

Bayesian Interpretation

We will now view the regularization penalty from a Bayesian point of view. As before assume the Gaussian
likelihood

y|✓, �2 ⇠ N (X✓, �2I).

For simplicity, we focus on estimating only ✓ and not �2. For the prior on ✓, let

p(✓|�2) ⇠ N (0, (�2/�)I) / e�
�✓T ✓
2�2 .

Then

p(✓|y, �2) / p(y|✓, �2)p(✓|�2) / exp

✓
� (X✓ � y)T (X✓ � y) + �✓T ✓

2�2

◆
.

Based on the previous discussion, it is immediately clear that the mode of the posterior distribution for ✓
is (XT X + �I)�1XT y. Furthermore, since the distribution is quadratic, and hence Gaussian, this is also
the mean of the posterior. Hence the formulation for ridge regression is equivalent to assuming a zero-mean
Gaussian distribution for ✓, which assigns high prior probabilities to smaller length of ✓.

Lasso

In lasso, the regularization penalty has the form of the `1 norm,

k✓k1 =
mX

i=1

|✓i|,

where m is the length of ✓. The problem is to find

✓̂ = arg min
✓

ky � X✓k22 + �k✓k1,

or equivalently

✓̂ = arg min
✓

ky � X✓k22,

subject to : k✓k1  t.

Lasso does not have a closed form solution but efficient computational methods exist.

From a Bayesian point of view, lasso is equivalent to finding the mode of the posterior for ✓ assuming the
same model as above but with the double exponential (Laplace) prior

p(✓|�2) / e�
�k✓k1
2�2 .
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Discussion and generalization

In general we could choose the regularization penalty to be of the form2

k✓kq
q =

mX

i=1

|✓i|q,

where m is the length of ✓. For q = 1 and q = 2, we get lasso and ridge regression, respectively.

The effect of the regularization can be viewed from a Bayesian framework, by setting the prior

exp

✓
� �

2�2
k✓kq

q

◆
.

The contours for the priors for different values of q are given below.

In all cases, as we get further from the origin, the prior probability drops. But when q is small, the probability
falls slower along the axes, encouraging solutions in which some of the coordinates are small or zero.

5.5 Bias-Variance Trade-off

If our goal is to minimize the square of the prediction error, why would we use a different loss function for
empirical risk minimization, as we did for ridge regression and lasso?

Our goal is to predict a value y given an input vector x. Let the prediction/estimate ŷ for y given x be denoted
by ŷ = f(x), where f is the estimator. For linear regression this is of the form f(x) = xT ✓̂, so finding the
estimator is the same as finding ✓̂. For a specific estimator f (e.g., a specific value for ✓̂), assuming quadratic
loss, we have

L(f) = E[(y � f(x))2]. (5.4)

Recall from Section 1.4.1 that

L(f) = E
h
(y � ȳ(x))2

i
+ E

h
(ȳ(x) � f(x))2

i
,

where ȳ(x) = E[y|x]. An important observation is that the second term in the expected loss for f is a function
of f while the first term is not. The first term is an intrinsic noise term which we cannot reduce by choosing
a better f or by collecting more data. This term can be viewed as the accumulated effect of all factors that
are not included in x. Given that this terms is not a function of f , define

L̄(f) = E
⇥
(f(x) � ȳ(x))2

⇤
. (5.5)

2k✓kq =
�Pm

i=1 |✓i|q
�1/q

is called the `q-norm of ✓.
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This compares our estimator to the best possible. So we should choose f to minimize the above quantity.

Let us consider how f is chosen:

1. Determine a set F from which f can be chosen, e.g., all linear functions.

2. Define an empirical loss function that is related to the expected loss (5.4), but not necessarily identical,
e.g., ridge loss.

3. Collect data, D = {(x1, y1), . . . , (xn, yn)}, and find f 2 F that minimizes the empirical loss.

Consider a thought experiment in which this process is repeated many times. In each trial, the set F and
the definition of the empirical loss stay the same, while D and, by extension, f are random. Since f is a
function of D, let us denote it as fD. Let M denote the fixed components of this process, i.e., the set F and
the definition of the empirical loss. We are interested to find the loss as a function of M, which is under our
control, averaged over all possible datasets (which is outside our control). In this context, we write the loss
as

L̄(M) = E
⇥
(fD(x) � ȳ(x))2

⇤
= E

⇥
(fD(xn+1) � ȳ(xn+1))

2
⇤
,

where we have added the subscript n + 1 to emphasize that the loss can be viewed as the prediction loss for
the next sample. With a similar trick as above, we have

L̄(M) = E
⇥
(fD(x) � ȳ(x))2

⇤

= E
⇥
(fD(x) � E[fD(x)] + E[fD(x)] � ȳ(x))2

⇤

= E
⇥
(fD(x) � E[fD(x)])2

⇤
+ E

⇥
(E[fD(x)] � ȳ(x))2

⇤
+

2E[(fD(x) � E[fD(x)])(E[fD(x)] � ȳ(x))].

= E
⇥
(E[fD(x)] � ȳ(x))2

⇤
+ E

⇥
(fD(x) � E[fD(x)])2

⇤
,

where the last equality follows from conditioning on x.

We can understand this loss better by assuming a given value of x (or more precisely, a given value of xn+1).
The loss then becomes3

(E[fD(x)] � ȳ(x))2 + E
⇥
(fD(x) � E[fD(x)])2

⇤
= (bias)2 + variance

Now, the loss is written as the sum of squared bias term, which compares the average prediction across all
possible datasets with the best possible estimator, and a variance term, which quantifies how different the
estimate for each dataset is from the average, across all datasets. Typically, as model complexity increases,
bias decreases, while variance increases, since it has more freedom to vary base on the dataset. So to minimize
the total loss, unbiased models are not necessarily the best. On the other hand, a trivial estimator that always
outputs 0 has minimum variance but is not useful.

In ridge regression as � increases, the model becomes more constrained. For � > 0 it can be shown to be
biased. In particular, with D = (X, y), if XT X = I, then

E[ŷn+1] = E[xT
n+1✓̂]

= xT
n+1(X

T X + �I)�1E[XT y]

= xT
n+1(X

T X + �I)�1E[XT X✓]

=
xT

n+1✓

1 + �

6= xT
n+1✓

= E[yn+1].

3
Technically the expectation terms need to be conditioned on x. But I have dropped those for simplicity.
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But it can be shown to have lower variance. If the choice of � is appropriate, it will have a smaller total loss.

5.6 Stochastic Gradient Descent

Even though that gradient descent is sometimes less computationally expensive than directly finding the
solution, its cost may still be high. In such cases, using stochastic gradient descent (SGD) may be helpful.
SGD tries to improve the estimate by considering one data point (or a small batch of data points) at a time.

First, let’s consider finding the root of a function f(✓) with a simple method. We assume that f(✓) is bounded
and there is a unique root ✓⇤ such that f is increasing at ✓⇤.

Suppose that we start from a point ✓(0) that is appropriately close to ✓⇤. We proceed iteratively as

✓(t+1) = ✓(t) � atf(✓(t)),

where at satisfies
1X

t=1

at = 1,
1X

t=1

a2
t < 1.

For example, at = 1/t is a good choice while at = 1/t2 isn’t. It can then be shown that ✓(t) converges to ✓⇤.

But what if we cannot compute f(✓) but instead we have access to a noisy version F (✓) that satisfies f(✓) =
E[F (✓)], where F (✓) is bounded. It turns out that if we let

✓(t+1) = ✓(t) � atF (✓(t)),

where in each iteration we sample F (✓), then ✓(t) again converges to ✓⇤.

Now let us consider the loss function for linear regression (note that we are using the expected loss as opposed
to empirical loss)

L(✓) = E[(y � xT ✓)2],

where we are also assuming that x is random with some distribution. To minimize this loss, we compute the
gradient:

rL(✓) = E[�2(y � xT ✓)x]

We would like to find ✓ such that the gradient above is zero.
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Let

f(✓) = E[�2(y � xT ✓)x]

F (✓) = �2(y � xT ✓)x,

so that f(✓) = E[F (✓)]. Now the elements of the data set {(x1, y1), . . . , (xn, yn)} can be used to produce
samples for F (✓). So we let

✓(t+1) = ✓(t) + at(yi � xT
i ✓(t))xi,

which is the stochastic gradient descent algorithm for linear regression.
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