
Chapter 4

Multivariate Random Variables

In this chapter, we will review some topics related to random vectors, which will be of use in the following
chapters.

4.1 Review of Linear Algebra

For two vectors x, y 2 Rn, the inner product hx, yi of x and y is
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where xT is the transpose of x.

The length or the `2 norm of a vector x is kxk = kxk2 =
p

xT x and we have kxk22 = xT x. Let ↵ be the
angle between x and y. Then xT y = kxkkyk cos ↵. If xT y = 0, then the two are called orthogonal.

For a collection of vectors v1, . . . , vm, a linear combination of these is any vector of the form a1v1 + · · · +
amvm, ai 2 R. The set of all linear combinations of v1, . . . , vm is their span and denoted as Span{v1, . . . , vm}.
This is a subspace (think line, plane, or the whole space). For a matrix A, the span of the columns of A is
the column space of A.

The vectors v1, . . . , vm are linearly independent if there is no vector among them that can be written as
a linear combination of the others, and linearly dependent otherwise. The vectors are linearly independent if
and only if the only values for a1, . . . , am satisfying a1v1 + · · · + amvm = 0 are a1, . . . , am = 0. In particular,
the columns of a matrix A are linearly independent if and only if the only vector a satisfying Aa = 0 is a = 0.

The inverse of a square matrix A is a matrix A�1 such that AA�1 = A�1A = I, where I is the identity

matrix, which has 1s on the diagonal and 0s elsewhere. A matrix that has an inverse is called invertible.
A square matrix is invertible () for all distinct vectors a and b, we have Aa 6= Ab () the only solution
to Ax = 0 is x = 0 () its columns are linearly independent () its determinant |A| is nonzero. We also
have |A�1| = 1

|A| .

Given a subspace S (e.g., a plane or the column space of a matrix) and a vector y, let ŷ be the vector in the
subspace that is closest to y. That is, we find ŷ 2 S such that ky � ŷk is minimized. Then ŷ is called the
projection of y onto the subspace S.
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Lemma 66. Let ŷ be the projection of a vector y onto a subspace S. Then y � ŷ is orthogonal to every

vector in S.

Proof. Suppose that this is not the case. Then there is a nonzero vector v 2 S such that (y � ŷ)T v 6= 0. We
will show that this contradicts the minimality of ky � ŷk. For any a 2 R,

ky � ŷ � avk22 = (y � ŷ � av)T (y � ŷ � av)

= ky � ŷk22 � 2avT (y � ŷ) + a2kvk22.

This is a convex function in a. So setting the derivative to 0 gives the value of a that minimizes the error:

@

@a
ky � ŷ � avk22 = �2vT (y � ŷ) + 2akvk22 = 0 ) a =

vT (y � ŷ)

kvk22
6= 0.

Let
ŷ0 = ŷ +

vT (y � ŷ)

vT v
v,

and note that ŷ0 is also in S but it is closer to y contradicting the optimality of ŷ.

4.2 Random vectors

A random vector is a vector of random variables. Consider the random vectors x and y
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The expected value of x is
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The correlation matrix of x and y is the m⇥n matrix E[xyT ], whose i, jth element is E[xiyj ]. The cross-

covariance matrix of x and y is Cov(x, y) is the matrix E[(x � Ex)T (y � Ey)T ], whose i, jth element is
Cov(xi, yj). The covariance of a vector x is Cov(x) = Cov(x, x). The conditional expectation E[x|y] of
x given y is a vector whose ith element is E[xi|y].

For matrices A, B, deterministic vectors a, b, and random vectors x, y, w, z, we have [1]

• E[Ax + a] = AEx + a

• Cov(x, y) = E[xyT ] � ExEyT

• E[(Ax)(By)T ] = AE[xyT ]BT

• Cov(Ax + a, By + b) = A Cov(x, y)BT

• Cov(Ax + a) = A Cov(x)AT

• Cov(w + x, y + z) = Cov(w, y) + Cov(w, z) + Cov(x, y) + Cov(x, z)
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4.3 Gaussian Random Vectors (Joint Gaussian Distribution)

Recall that a random variable x is Gaussian (normal) with mean µ and variance �2 > 0 if the pdf of x is
given by

p(x) =
1p

2⇡�2
exp � (x � µ)2

2�2
.

Definition 67. A collection of random variables is jointly Gaussian if any linear combination of these
variables is Gaussian. A Gaussian random vector, also known as a multivariate normal vector, is a vector
whose elements are jointly Gaussian. A collection of random vectors are jointly Gaussian if the vector obtained
by concatenating them is jointly Gaussian.

Example 68. For example if
✓

x
y

◆
is a Gaussian vector, then z = 2x + 3y is Gaussian. Furthermore,

E[z] = 2E[x] + 3E[y],

Cov(z) = Cov(2x + 3y, 2x + 3y) = 4Cov(x, x) + 12 Cov(x, y) + 9 Cov(y, y)

= 4Var(x) + 12 Cov(x, y) + 9 Var(y),

which completely characterizes the distribution of z.

For an m dimensional Gaussian vector x, the elements of x are independent if and only if the covariance
matrix is diagonal.

For an m-dimensional Gaussian random vector x, assuming that the covariance matrix K = Cov(x) is
invertible, we have

p(x) =
1

(2⇡)m/2|K|1/2
exp

✓
�1

2
(x � µ)T K�1(x � µ)

◆
.

4.4 Maximum likelihood for Gaussian Random Vectors

Let z be a Gaussian random vector of dimension d with mean µ and covariance matrix K. If K is invertible,
the pdf of z can be written as

p(z|µ, K) =
1p

(2⇡)d|K|
exp

✓
�1

2
(z � µ)T K�1(z � µ)

◆
, µ = E[z], K = E[(z � µ)(z � µ)T ],

where |K| is the determinant of K.

Given a set of n iid samples D = {z1, z2, . . . , zn}, where each zi is a d-dimensional vector, how can we
estimate µ and K using maximum likelihood? Estimating these quantities allows us to find the distribution.
In particular, if we can view zd as the output variable and z1, . . . , zd�1 as input variables, then we can estimate
zd based on z1, . . . , zd�1 as E[zd|z1, . . . , zd�1].

To estimate µ and K, we write

`(µ, K) = ln p(D; µ, K) =
nX

i=1

ln p(zi; µ, K)
.
=

n

2
ln |K�1| � 1

2

nX

i=1

(zi � µ)T K�1(zi � µ),

where we have used the fact that |K�1| = 1
|K| .
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As seen in the appendix (99-Appendix.tex), for a symmetric matrix A, we have d
dv (yT Ay) = 2yT Ady

dv . Hence,

@`

@µ
= �1

2

nX

i=1

2(zi � µ)T K�1(�I) =
nX

i=1

(zi � µ)T K�1.

Setting this equal to zero yields

µ̂ML = z̄ =
1

n

nX

i=1

zi.

Exercise 69. Using the facts

@

@A
xT Ax = xT x,

@

@A
ln |A| = A�T

prove that
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