
Chapter 2

Frequentist Parameter Estimation

2.1 Parameter Estimation

In order to find the distribution of the data, we need to estimate the parameters of the distribution. We have
two frameworks for doing so:

• Frequentist methods: frequentists have different methods for estimation including:

– Maximum likelihood

– least squares

– moment method

• Bayesian methods: Parameters are considered to be random and are treated as such. The Bayesian
method provides a unified approach consisting of the following steps:

1. Start with the prior distribution for the parameter

2. Collect data

3. Obtain posterior distribution by updating the prior distribution using data and Bayes’ theorem

2.2 Maximum likelihood: Introduction and Examples

Suppose data D is collected and is assumed to be derived from a distribution p with unknown parameter ✓.
Let the probability of observing D, assuming ✓, be denoted by p(D; ✓). Maximum likelihood estimation
finds ✓ that maximizes p(D, ✓):

✓̂ML = arg max
✓

p(D; ✓)

The expression p(D; ✓), viewed as a function of ✓, is called the likelihood; hence the name maximum likelihood
estimation. As shorthand, we use L(✓) = p(D; ✓) and `(✓) = ln L(✓), where `(✓) is the log-likelihood. Clearly,
the value of ✓ that maximizes L(✓) is the same as the one that maximizes `(✓):

✓̂ML = arg max
✓

`(✓) = arg max
✓

ln p(D; ✓)
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Example 39. In this example, we attempt to show the intuition behind maximum likelihood. Let T be a
binary random variable such that T = 1 if there is traffic and T = 0 if there is no traffic. Suppose that data
D collected over 100 days indicates that 65 days had no traffic. We have

Pr(T = 0) = ✓

p(D; ✓) =

✓
100

65

◆
✓65(1 � ✓)35

Let’s try a few different choices for ✓ and see which one makes more sense. In the figure below, p(D; ✓) is
plotted for ✓ 2 {0.2, 0.4, 0.6, 0.8}. The vertical line indicates the observation, i.e., 65 days with no traffic.
Which is a more appropriate value for ✓?
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If ✓ = 0.2, the probability of 65 days with no traffic is very small. So observing D = 65 would be very
unlikely, which in turn would make ✓ = 0.2 an unreasonable guess. Among the presented choices, ✓ = 0.6
appears the most reasonable. This reasoning suggests the following: The value of the parameter that assigns

a higher probability to the observation is a better choice. Since we are not limited to a specific set of choices,
we can find the parameter that maximizes the probability of the observation, i.e., the maximum-likelihood
estimate. In the figure below, L(✓) = p(D, ✓) is plotted as a function of ✓. This is the likelihood.
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We can see that ✓ = 0.65 maximizes the likelihood and hence is the maximum-likelihood estimate. We can
show this also analytically. First, the likelihood is given as

L(✓) = p(D; ✓) =

✓
100

65

◆
✓65(1 � ✓)35.

We usually use the log-likelihood as the function to optimize:

`(✓) = log L(✓) = log

✓✓
100

65

◆
✓65(1 � ✓)35

◆
=̇65 log ✓ + 35 log(1 � ✓), (2.1)

where =̇ denotes equality but with ignoring additive terms that are constant in ✓ (and thus do not alter the
value of ✓ that maximize the log-likelihood). We differentiate `(✓) to find the value of ✓ that maximizes l(✓).

d`(✓)

d✓
=

65

✓
� 35

1 � ✓
= 0 =) 65 � 65✓ = 35✓ =) ✓̂ML =

65

100
. (2.2)

Note that this result is intuitive as it agrees with our observation that 65% of the days had no traffic.
Example 40 (Parameters of the normal distribution). A device for measuring an unknown quantity
µ is used n times producing values D = y = (y1, . . . , yn). Each measurement is independent and for each
i we have yi = µ + zi, where zi is the measurement noise satisfying zi ⇠ N (0, �2). Note that this implies
yi ⇠ N (µ, �2). We consider the problem in two cases: mu is unknown but �2 is known; and both µ and �
are unknown.
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• Known �2, unknown µ: We have

p(yi; µ) =
1

�
p

2⇡
exp

 
�1

2

✓
yi � µ

�

◆2
!

p(y; µ) =
nY

i=1

1

�
p

2⇡
exp

 
�1

2

✓
yi � µ

�

◆2
!

L(µ) =
nY

i=1

1

�
p

2⇡
exp

 
�1

2

✓
yi � µ

�

◆2
!

`(µ) =
nX

i=1

 
� ln(�

p
2⇡) � 1

2

✓
yi � µ

�

◆2
!

.
= �1

2

nX

i=1

✓
yi � µ

�

◆2

and so

d`

dµ
=

nX

i=1

yi � µ

�
= 0 =) µ̂ML =

1

n

nX

i=1

yi = ȳ.

• Unknown �2, µ: We have

`(µ, �) =
nX

i=1

 
� ln(�

p
2⇡) � 1

2

✓
yi � µ

�

◆2
!

.
= �n ln � � 1

2

nX

i=1

✓
yi � µ

�

◆2

and so

@`

@µ
=

nX

i=1

yi � µ

�
= 0,

@`

@�
= �n

�
+

nX

i=1

(yi � µ)2

�3
= 0.

Solving this system of equations for µ and � yields

µ̂ML =
1

n

nX

i=1

yi = ȳ,

�̂2
ML =

1

n

nX

i=1

(yi � ȳ)2.

2.3 Properties of Estimators

Maximum likelihood is just one way of estimating parameters. For example, in Example 40, we could choose
the middle value among y1, . . . , yn as the estimate for µ. Given the fact that there are many estimators, how
do we evaluate them and select one? In this section, we will see some of the evaluation criteria.
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2.3.1 Estimation error and bias

For an estimator ✓̂ of ✓, assume D is collected. Then the error is given is

✓̂(D) � ✓,

where ✓̂(D) is the estimate based on data D.

For a given estimation task that is performed once, since we do not know the true value, we cannot find
✓̂(D) � ✓. Even if we know the true value, the error is the result of only one experiment and does not tell us
much about the general behavior of the estimator.

However, we can think of the thought experiment in which estimation is performed many times and consider
the behavior of the estimator and its error. For example, we may consider whether the result would be
generally an overestimate or an underestimate? The key point in answering such questions is that the estimate

itself is a random value because each time we perform the estimation task, new data samples are obtained and

these are random, following a certain distribution. So for example, we can talk about the expected error. In
other words, since D is random (although its distribution is the same in each experiment), so is ✓̂(D).

So we can consider the expected error, known as bias,

Bias(✓̂) = E[✓̂(D) � ✓] (2.3)

The expected value is taken over D. However, the dependence on data is often implicit and we write

Bias(✓̂) = E[✓̂] � ✓ (2.4)

Bias of the estimator tells us that whether in general the estimator over- or under-estimates the true value.
If bias is equal to 0, then the estimator is called unbiased.
Example 41. Given n samples y1, . . . , yn from a distribution with mean µ and variance �2, are the estimators

µ̂ = ȳ =
1

n

nX

i=1

yi, �̂2 =
1

n

nX

i=1

(yi � ȳ)2

for the mean and variance, respectively, unbiased? For µ̂, we have

E[µ̂] = E[ȳ] = E
"

1

n

nX

i=1

yi

#
=

1

n

nX

i=1

E[yi] =
1

n
· n · E[y1] = µ

and so the ML estimator for the mean is unbiased. We can show (how?) that

E
⇥
�̂2
⇤

=
n � 1

n
�2

and the bias of estimating �2 is
E
⇥
�̂2
⇤
� �2 = � 1

n
�2.

Based on this, we can create an unbiased estimator for the variance as

�̂2
u =

1

n � 1

nX

i=1

(yi � ȳ)2.
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Example 42. [1, Example 2.8.2] An urn has N balls, numbered 1, 2, ..., N . Suppose however that N is
unknown to us. We pick one random ball from the urn and the number on the ball is y. We Estimate N
using maximum likelihood. First, for p(y; N) we have

p(y; N) =

(
1
N y  N,

0 y > N.

and thus

L(N) =

(
1
N N � y,

0 N < y.

Hence, L(N) is maximized by choosing N = y and so N̂ML = y. To find the bias of N̂ML,

E[N̂ML] = E[y] =
NX

i=1

i · 1

N
=

N + 1

2
,

Bias(N̂ML) =
N + 1

2
� N = �N � 1

2
,

which means that the ML estimator tends to underestimates N by almost a factor of 2.
Example 43 (Linear unbiased estimator). Can we design an unbiased estimator for Example 42? There
are many options but for simplicity we may choose an estimator that is linear in the data, in particular, one
of the form

N̂L = ay + b.

We find a and b such that N̂L is unbiased. We have

E[N̂L] = aE y + b = a
N + 1

2
+ b.

Setting this equal to N (equality should hold for any N) yields a = 2 and b = �1, i.e.,

N̂L = 2y � 1.

Example 44 (Survival of Humanity (!)). The human species will eventually die out. We use the two
methods to estimate the total number of humans N who will ever live. Let humans be enumerated as
h1, h2, ..., hy, ..., hN , where h1 represents Adam, h2 represents Eve, hy represents you, and hN represents the
last human to live. Assuming that your birth order is random, this is similar to the urn in Example 42.

Assuming that 100 billion have been born so far, we have N̂ML = 100 billion and N̂L = 200 billion. The ML
estimates predicts that the end is here. Further, assuming that there will be 140 million births each year, the
unbiased estimator predicts the end of humanity to occur in around 700 years.
Exercise 45. Given iid data D = (y1, . . . , yn), n � 3, with mean ✓, find the bias of each of the following
estimators,

✓̂1 = ȳ =
1

n

nX

i=1

yi,

✓̂2 = y1,

✓̂3 =
2y2 + y3

3
.
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2.3.2 Mean squared error and variance

Example 46. Consider an unbiased estimator ✓̂ and define ✓̂0 = ✓̂ + W , where W is a zero-mean random
variable with a large variance. Now, ✓̂0 is unbiased, similar to ✓̂, but it is not a good estimator (regardless of
how good ✓̂ is). So clearly, being unbiased alone is not sufficient to ensure that an estimator is “good.”

The mean squared error (MSE) is defined as

MSE(✓̂) = E
⇣

✓̂ � ✓
⌘2�

Note that

E
⇣

✓̂ � ✓
⌘2�

= E
⇣⇣

✓̂ � E ✓̂
⌘

�
⇣
✓ � E ✓̂

⌘⌘2�

= E
⇣

✓̂ � E ✓̂
⌘2�

� 2E
h⇣

✓̂ � E ✓̂
⌘i⇣

✓ � E ✓̂
⌘

+
⇣
✓ � E ✓̂

⌘2

= E
⇣

✓̂ � E ✓̂
⌘2�

+
⇣
✓ � E ✓̂

⌘2

and hence
MSE(✓̂) = Var(✓̂) + (Bias(✓̂))2.

For unbiased estimators, the variance of the estimator becomes an important quantity since it is equal to the
MSE.
Example 47. Consider data D = {y1, ..., yn}, where yi are iid with distribution N (µ, �2). The ML estimator
for the mean µ̂ML = ȳ = 1

n

Pn
i=1 yi is unbiased. We have

MSE(µ̂ML) = Var(ȳ) =
�2

n
.

Note that as n increases, the MSE decreases and the estimate becomes more accurate, as would be expected.
This property is studied next.
Exercise 48. For the estimators in Exercise 45, find the MSE, assuming the variance is �2.
Exercise 49 (Bias-variance trade-off). Given iid data D = (y1, . . . , yn), n � 3, with mean ✓ and variance �2,
the MSE of

✓̂1 = ay1,

✓̂n = aȳ =
a

n

nX

i=1

yi,

for some constant a 2 R is given as

MSE(✓̂1) = (a � 1)2✓2 + a2�2,

MSE(✓̂n) = (a � 1)2✓2 + a2�2/n.

What is a good value for a? Does anything other than a = 1 make sense? The components of the MSE are
given in the plots below for ✓̂1 and ✓̂n with n = 10. A trade-off between the bias and variance is evident.
Why is it not feasible to design an estimator by optimizing for a? What is the difference between estimation
based on little data (✓̂1) and a lot of data (✓̂n, n = 10)?
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2.3.3 Consistency

An estimator ✓̂n based on n samples is said to be consistent if ✓̂n ! ✓ as n ! 1. More precisely, for all
✏ > 0, we need

lim
n!1

Pr(|✓̂n � ✓| � ✏) = 0.

In other words, the estimator is accurate if the size of the data is large.
Example 50. The ML and linear estimators described in Examples 42 and 43 are very different for a single
data point. But how do they behave if we have a lot of data. First we need to define these for n data samples.
Suppose that we take n samples from the urn with replacement, resulting in D = (y1, y2, . . . , yn). Define

ȳ =
1

n

nX

i=1

yi.

To extend the linear estimator to n data points, we can choose

N̂L,n = 2ȳ � 1.

For the ML estimator, we have (why?)

N̂ML,n = max
i

yi.

Both of these, although they look very different, are consistent and converge to N as n ! 1.

• As n ! 1, by LLN, ȳ converges to the mean of the distribution, i.e., E y1 = N+1
2 . Hence, N̂L,n !

2N+1
2 � 1 = N .

• For the ML estimator, as n ! 1, at some point, we will pick the ball numbered N and so we will
eventually have N̂ML = N .

Given the two estimators, the bad news is that the estimators disagree significantly for small data. However,
as the size of sample data increases, the two estimators agree.
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Figure 2.1: The log-likelihood on the left demonstrates strong dependence on ✓ compared to the one on the
right.

2.4 The Cramer-Rao lower bound*

For an unbiased estimator, the MSE is equal to the variance, and thus the variance represents the accuracy
of the estimator. This leads to the following question: For a given distribution of data, what is the smallest

possible variance of an unbiased estimator?

The accuracy of estimating a parameter ✓ depends on how strongly the distribution of the data depends on
✓. If the dependence is strong, i.e., for values of ✓ other than the true value, the probability of the observed
data falls sharply, then we may expect to find ✓ with accuracy. On the other hand, if the dependence is week,
then it will be difficult to find ✓ with precision. These two cases are shown in Figure 2.1.

Let the data be encoded as a vector x, i.e., D = x. The sharpness of the log-likelihood `(✓) can be quantified
as

� @2`(✓)

@✓2
= �@2 ln p(x; ✓)

@✓2
. (2.5)

Given the randomness of data the above quantity is random. So to average over the data, we define

I(✓) = �E

@2`(✓)

@✓2

�
= �

ˆ
@2 ln p(x; ✓)

@✓2
p(x; ✓)dx,

which is called the Fisher Information.

The following theorem provides a lower bound on the variance as is referred to as the Cramer-Rao lower
bound (CRLB).
Theorem 51 (CRLB). Given that the log-likelihood `(✓) satisfies a certain regularity condition

1
, the variance

of any unbiased estimator ✓̂ of ✓ satisfies

Var(✓̂) � 1

I(✓)
.

If an estimator achieves the CRLB, i.e., Var(✓̂) = 1/I(✓), then it is called efficient.

As a special case, consider when we have n iid data points, and denote the estimator based on this data as ✓̂n.
Denote the Fisher information based on n data points as In(✓) and based on one data point as I1(✓) = I(✓).
Since the Fisher information is additive (Why? Hint: definition), we have In(✓) = nI(✓). Thus, the variance
of an unbiased estimator ✓̂n based on n independent observations satisfies

Var(✓̂n) � 1

nI(✓)
. (2.6)

1
The regularity condition is E

h
@`(✓)
@✓

i
= 0, for all ✓.
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Example 52. In Example 40, where we estimated the mean of a Gaussian distribution with known �2 based
on n iid samples y1, . . . , yn, the log-likelihood, ignoring constant terms, was given as

`(µ)
.
= �

nX

i=1

(yi � µ)2

2�2
.

And,
@`(µ)

@µ
=

1

�2

nX

i=1

(yi � µ). (2.7)

Then regularity condition is satisfied since

E

@`(µ)

@µ

�
=

1

�2

nX

i=1

E[yi � µ] = 0,

for all µ. Furthermore,
@2`(µ)

@µ2
= � n

�2
=) I(✓) = �E


@2`(µ)

@µ2

�
=

n

�2
.

Based on the CRLB, the variance of the estimator satisfies

Var(µ̂) � �2

n
.

The the variance of the estimator is Var(µ̂ML) = �2

n . Hence, the ML estimator is efficient in this case.

2.5 Asymptotic normality of the MLE

As shown before, the maximum likelihood estimator is not necessarily unbiased. However, if we have a large
amount of data, under some regularity conditions, the ML estimator ✓̂n based on n iid data points satisfies

p
n(✓̂n � ✓) ! N (0, I�1(✓)).

So for large data, ✓̂n is nearly normally distributed with mean ✓ (hence unbiased) and variance I�1(✓)/n
(efficient).

While we stated the CRLB and the asymptotic normality of the MLE for scalar parameters, almost identical
results also hold for a vector of parameters.
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