
Estimation and Statistical Learning CHAPTER 1. PROBABILITY, INFERENCE, AND LEARNING

Chapter 1

Probability, Inference, and Learning

1.1 Introduction

In this chapter, we will study the role of probability in inference, codifying relationships, and machine learning.
When considering these problems, we deal with uncertainty, and that’s were probability comes in. In other
words, we are interested in probability because it allows us to model uncertainty (or equivalently, belief and
knowledge). Sources of uncertainty, for example in machine learning, include:

• Noise: aggregate contribution of factors that we do not (wish to) consider (models focus on the most
important quantities).

• Finite sample size: finite size of data makes it impossible to determine relationships with complete
certainty (some configuration may never happen in finite data).

1.2 Relationships and joint probability distributions

Is there any relationship between are the arrival time of two people working at a business (opening at 9:00 am),
both living in the same area? If so, how can we represent this relationship? How can we make prediction
about one being late given the other is late (e.g., if we need at least one person be present)?

In the same way that we can encode our information about a random quantity as a distribution, we can
encode information about random quantities, as well as their relationships, as joint distributions.

In our example, there’s obviously a relationship, that is, the arrival times are not independent. For example,
both are affected by traffic. Let

T0 : normal traffic
T1 : heavy traffic
A0 : Alice is on time
A1 : Alice is late
B0, B1 for Bob
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and assume

Pr(T0) = 0.65,

Pr(A0|T0) = 0.9,

Pr(B0|T0) = 0.82,

Pr(A0|T1) = 0.5,

Pr(B0|T1) = 0.15.

Finally, conditioned on the traffic situation, Alice and Bob’s arrival times are independent. This information
completely determines all probabilities. As we will see in much grater depth later, the fact that the Alice and
Bob’s arrival times are only related through traffic can be shown graphically as

T

A B

Causal reasoning:

Pr(A0) = Pr(T0) Pr(A0|T0) + Pr(T1) Pr(A0|T1) = (0.65 ⇥ 0.9) + (0.35 ⇥ 0.5) = 0.76

Pr(B0) = Pr(T0) Pr(B0|T0) + Pr(T1) Pr(B0|T1) = (0.65 ⇥ 0.82) + (0.35 ⇥ 0.15) = 0.5855

Evidential reasoning (inverse probabilities, uses Bayes rule):

Pr(T0|A0) = Pr(A0|T0) Pr(T0)/ Pr(A0) = 0.65 ⇥ 0.9/0.76 = 0.7697

Pr(T0|B0) = Pr(B0|T0) Pr(T0)/ Pr(B0) = 0.65 ⇥ 0.82/0.5855 = 0.9103

The common cause makes the events Ai and Bi dependent. Recall that two events E1 and E2 are independent,
denoted E1 ?? E2 if Pr(E1E2) = Pr(E1) Pr(E2), or, if Pr(E2) 6= 0, Pr(E1|E2) = Pr(E1). We have

Pr(A0|B0) = Pr(A0B0)/ Pr(B0)

Pr(A0B0) = (0.65 ⇥ 0.82 ⇥ 0.9) + (0.35 ⇥ 0.15 ⇥ 0.5) = 0.506

Pr(A0|B0) = 0.506/0.586 = 0.863 6= Pr(A0)

Pr(B0|A0) = 0.506/0.76 = 0.6658 6= Pr(B0)

So A0 6?? B0.

However, they are conditionally independent, by assumption

Pr(A0B0|T0) = Pr(A0|T0) Pr(B0|T0),

which is denoted as A0 ?? B0|T0.

1.3 Inference and decision making

Let us consider a problem about inferring unknown values and making decisions and use probability to solve
it, using both frequentist and Bayesian views. Suppose that the probability that someone with a given allele
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of a gene will develop a certain disease is ✓ and we are interested to know if ✓ > 0.01, where 0.01 is the fraction
of people in the general population with that disease. Different interpretations lead to different approaches
to problems. But to decide, both frequentists and Bayesians need data.

Data (D): Among a sample of 100 people with this allele, 2 had the disease.

• A Frequentist thinks of ✓ as unknown non-random parameter. She devises statistical tests to decide if
✓ > 0.01. Clearly, 2 out of 100 is larger than would be expected by chance. So this may be because
the allele and the disease are related. On the other hand, maybe the allele doesn’t have anything to do
with the disease, but we have been unlucky enough to pick two people with the disease. So how do we
decide?

Our statistician may consider how likely it is to see similar or stronger evidence by chance. This
probability is called the p-value.

If the probability of the disease is 0.01, what is the probability of seeing 2 or more sick people in a
sample of size 100?

p = 1 �
✓✓

100

0

◆
0.99100 +

✓
100

1

◆
0.99990.011

◆
= 1 � 0.37 � 0.37 = 0.26 > 0.05

The smaller the p-value, the stronger the evidence. Typically, if the p-value is smaller than 0.05, we
believe the evidence is strong enough to reject the hypothesis that the observation has occurred by
chance.

• A Bayesian thinks of ✓ as random and assigns to it a distribution, called the prior, before seeing the data.
She then looks at the data and updates her distribution for ✓, thus obtaining the posterior distribution.
(We’ll learn more about Bayesian methods.)

Assume that before seeing the data, we believe that the distribution for ✓ is uniform, i.e., p(✓) ⇠
Uni[0, 1] = Beta(1, 1). This means that while we do not know what ✓ is, we believe it is equally likely
to be any value between 0 and 1. When we see the data, we can update this belief,

p(✓|D) =
p(D|✓)p(✓)

p(D)
(Bayes’ rule)

It turns out p(✓|D) ⇠ Beta(3, 99), and, as we will see,

p(✓ > 0.01|D) = 0.92.
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1.4 Machine Learning and Probability

Let us consider the generic form of supervised machine learning problems, which have the following compo-
nents:

• Data: D = {(x1, y1), ..., (xn, yn)}, xi 2 X , yi 2 Y. X is called the feature space, and Y is called the
label space.

• Assumption: (xi, yi) are iid from a (partially) unknown distribution.

• Goal: Find a function f 2 F that “best” predicts yn+1 given xn+1. That is, it produces an estimate
ŷ = f(x) of y given a new data point x.

– Regression: Y consists of scalars or vectors of reals. For example, predicting stock price based
on financial information, determining the score someone will assign a movie based on previous
scores.

– Classification: Y consists of classes or categories. For example, speech recognition, hand
writing recognition, the presence or absence of a disease.

• Evaluation: For a given data point (x, y), evaluate the success of f , a rule developed to predict y,
using a loss function of the form L(y, f(x)). The choice of the loss is guided by the type of problem.

– Regression: A common loss function is the quadratic or squared error loss function:

L(y, f(x)) = (y � f(x))2 (1.1)

– Classification: the 0-1 loss:

L(y, f(x)) =

(
1, if y 6= f(x).

0, if y = f(x).
(1.2)

Ideally, we would like to minimize the expected loss over all possible outcomes, so we define

L(f) = E[L(y, f(x)], (1.3)
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where the expectation is over the distribution p(x, y) of (x, y). Our goal is to find the function f 2 F that
minimizes the average loss function L(f),

f⇤ = arg min
f2F

E[L(y, f(x)]. (1.4)

For example, if L(y, f(x)) = (y � f(x))2, then it can be shown that

ŷ = f(x) = E(y|x) (1.5)

minimizes the expected loss in (1.3). Similarly, for classification problems with loss given in (1.2), the best
classifier is ŷ = arg maxy2Y p(y|x).

In reality however, we often do not have the distribution p(x, y).

Empirical Risk Minimization (ERM). If we do not know the probability distribution, instead we find
the following expression which minimizes loss on observed data points.

arg min
f2F

1

n

nX

i=1

L(yi, f(xi)). (1.6)

The danger of ERM is that we may choose a predictor f that is tuned well to the dataset but does not
generalize well, i.e., performs poorly for examples outside of the dataset. This is called overfitting. We check
whether this is the case by setting aside part of the data, referred to as the test set, which is used only for
evaluating performance but not for training. Data used for training is called the training set. (If we need
to choose between different algorithms or tune hyper-parameters, we may further divide the training set to
training and validation sets.)

Density estimation. Sometimes, we can (or choose to) represent the joint distribution of (x, y) using a
probabilistic model with known and unknown parts. For example, a graphical model with known structure
and unknown parameters. If we can estimate the parameters, then we have the distribution and can address
many problems.

Let us consider maximum likelihood, which is one method for density estimation. In this case, the distribution
has a set of unknown parameters ✓ and we represent the distribution as P✓. So what should we choose as
the value of ✓? This line of reasoning leads to maximum likelihood estimation: If an outcome has a small
probability, the chance it appears in our dataset D is small. So those outcomes observed in D must have large
probability. Hence, we must choose ✓ such that the probability assigned to D is large, that is,

✓̂ = arg max
✓

P✓(D)

= arg max
✓

nY

i=1

P✓(xi, yi)

Alternatively, we can formulate the problem as density estimation with maximum-likelihood loss to begin
with. From the following equation, loss is minimized when log-likelihood is maximized.

L(P✓(x, y)) = � log P✓(x, y)

L(✓) = �E(log (P✓(x, y))
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Again, before determining ✓, we do not know the distribution and cannot evaluate the expected loss. So we
minimize the empirical risk:

L(✓) = �
nX

i=1

log P✓(xi, yi)

✓̂ = arg min
✓2⇥

L(✓),

where ⇥ is the set of all valid parameters.

1.4.1 Decomposition of error for mean squared error

In (1.5), we claimed that for mean squared error, the best predictor for y given x is E[y|x]. We start by
proving this claim. First, let us consider: What is the best predictor for a (random) quantity y when we know
the distribution of y but have no other information? Since we have no information, this predictor is a single
constant value c and for the mean squared error we have

E
⇥
(y � c)2

⇤
= E

h
(y � µ + µ � c)2

i

= Var(y) + 2E[y � µ](µ � c) + (µ � c)2

= Var(y) + (µ � c)2,

where µ = E[y]. This is minimized by letting c = µ = E[y].

Now let us consider the original problem: What is the best predictor f(x) for y if we know x as well as the
joint distribution of x, y? Let µy|x = E[y|x]. For the mean squared error for a given value of x we have

E
⇥
(y � f(x))2|x

⇤
= E

h�
y � µy|x + µy|x � f(x)

�2|x
i

= E
h�

y � µy|x
�2|x

i
+ 2E

⇥
y � µy|x|x

⇤�
µy|x � f(x)

�
+
�
µy|x � f(x)

�2

= E
h�

y � µy|x
�2|x

i
+

�
µy|x � f(x)

�2
.

So the mean squared error is

L(f) = E
⇥
(y � f(x))2

⇤

= E
⇥
E
⇥
(y � f(x))2|x

⇤⇤

= E
h
E
h�

y � µy|x
�2|x

i
+
�
µy|x � f(x)

�2i

= E
h�

y � µy|x
�2i

+ E
h�

µy|x � f(x)
�2i

.

Note that the error has two parts: an irreducible part, referred to as intrinsic error, which is not under our
control, and a part that depends on the choice of the predictor. The intrinsic error results from the noise in
our model and not because we do not have enough data. The reducible part, and thus the error, is minimized
by setting f(x) = µy|x = E[y|x]. However, doing so exactly is only possible if we have the distribution or an
infinite amount of data. Otherwise, we need to find approximate solutions.
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1.5 Quantifying uncertainty

Suppose we know the distribution for a random variable. How do we measure how uncertain we are? Alter-
natively how much information we gain when we find out the outcome? Alternatively⇥2, how surprised will
we be when we see the outcome.

First, we observe that the lower the probability of a statement, the higher the surprise/information content.

• The sun still exists.

• It’s raining in Seattle.

• It’s raining in the Sahara.

Suppose X 2 X = {x1, . . . , xm}. It turns out a good choice is this: The information content of the statemen-
t/event ‘X = xi’ is

h(xi) = log
1

p(xi)

And the amount of information on average is

H(X) = E

log

1

p(X)

�
=

mX

i=1

p(xi) log
1

p(xi)

This is called the entropy. If the log is base 2, then the unit is a bit.

If there are m different cases, then the maximum value that entropy can take is log m. So

0  H(X)  log |X |,

where, for a set S, |S| denotes its size.

An important special case is the binary entropy function Hb(p) = p log 1
p + (1 � p) log 1

1�p for experiments
with two outcomes with probabilities p and 1 � p.

H(Fair coin) = Hb(
1

2
) =

1

2
log 2 +

1

2
log 2 = 1

H(Sun coming up or not) = Hb(2
�64) = 2�64 log 264 + (1 � 2�64) log

1

1 � 2�64
' 65 ⇥ 2�64 ' 2�58
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Entropy was introduced by Shannon in his article “A mathematical theory of communication” in 1948. It
is also the minimum amount of “bandwidth” you need to transmit the outcome of the experiment. He also
coined the term bit (Binary digit).

“My greatest concern was what to call it. I thought of calling it ‘information,’ but the word was overly used,
so I decided to call it ‘uncertainty.’ When I discussed it with John von Neumann, he had a better idea. Von
Neumann told me, ‘You should call it entropy, for two reasons. In the first place your uncertainty function has
been used in statistical mechanics under that name, so it already has a name. In the second place, and more
important, no one really knows what entropy really is, so in a debate you will always have the advantage.” –
Claude Shannon, Scientific American (1971), volume 225, page 180.

1.6 Conditional entropy*

We can measure the information in multiple random variables also using entropy. The information in both
X and Y is denoted H(X, Y ) and is defined as

H(X, Y ) = E

log

1

p(X, Y )

�
=

X

x2X

X

y2Y
p(x, y) log

1

p(x, y)
.

If we know Y , how much information is left in X? This is denoted H(X|Y ). If, for example X = Y + 2, then
H(X|Y ) = 0 since if we know Y , we also know X. The conditional entropy is defined as

H(X|Y ) =
X

y2Y
p(y)H(X|Y = y) = E


log

1

p(X|Y )

�
= H(X, Y ) � H(Y )

Mutual information, I(X; Y ), represents the amount of information that one random variable has about the
other, and is defined as

I(X; Y ) = H(X) � H(X|Y ) = H(Y ) � H(Y |X).

Finally, relative entropy between two distributions p and q is defined as

KL(p||q) =
X

x2X
p(x) log

p(x)

q(x)
,

which can be viewed as a measure of difference between distributions.

While this quick overview is sufficient for our purposes in this course, if you are interested, you can check out
the slides for this Short Lecture on Information Theory, or the course Mathematics of Information.
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