
Chapter 3

Bayesian Parameter Estimation

3.1 From Prior to Posterior
In the Bayesian philosophy, unknown parameters are viewed as being random. So our knowledge
about the parameter can be encoded as a distribution. The distribution representing our belief
before observing data is called the prior distribution. After we observe data, our belief changes,
resulting in the posterior distribution.

Specifically, the steps of Bayesian estimation of a parameter θ are:

1. Identifying the prior distribution, p(θ)

2. Collecting data and forming the likelihood: p(D|θ)

3. Finding the posterior distribution p(θ|D) as

p(θ|D) =
p(θ)p(D|θ)
p(D)

(3.1)

Normalizing distributions. Finding the posterior distribution requires computing the integral
p(D) =

´
θ
p(θ)p(D|θ)dθ. Since we have to compute an integral anyway, we might as well drop all

multiplicative terms that are constant in θ and then normalize the final distribution. In particular,
p(D) is one such term. So we often first find a function proportional to p(θ|D) as

p(θ|D) ∝ p(θ)p(D|θ),

where we can also drop constant terms in θ from p(θ) and p(D|θ). We can then normalize the result
by integration. This is often difficult to do. Sometimes, given this function, we can identify the
distribution. More generally, we can use computational methods, such as Markov Chain Monte
Carlo, as we will see later. Finally, in certain cases, we can find what we need without any
integration. For example, if our goal is to find the value of θ maximizing p(θ|D).

Example 3.1. Let θ denote the unknown parameter of a geometric random variable y, where
p(y) = θ(1 − θ)y−1. Suppose that we observe y. We would like to estimate θ based on this
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observation. If all possible values of θ are equally likely, we may choose θ ∼ Uni(0, 1). We then
have

p(θ) = 1

p(y|θ) = θ(1− θ)y−1

p(θ|y) ∝ θ(1− θ)y−1

The expression θ(1−θ)y−1 as a function of y is the geometric distribution. But as a function of θ, it
is proportional to the Beta distribution Beta(2, y). As an example, if y = 3, then θ|y ∼ Beta(2, 3):
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Exercise 3.2. The probability of 1 (success) in a Bernoulli experiment (e.g., flipping a coin, a
system working or not working, etc) is θ, which we would like to estimate. Suppose that the
experiment is performed once and the outcome y is observed to be y = 1. Assuming a uniform
prior, find the posterior distribution of θ, i.e., θ|y = 1. 4

Example 3.3. The probability of success in a Bernoulli experiment is θ, which we would like to
estimate. We show success in the ith trial with yi = 1 and failure by yi = 0.

• Prior distribution: Assuming that a priori we do not know anything about θ, it is appropriate
to choose p(θ) ∼ Uni[0, 1], i.e., p(θ) = 1 in the interval [0, 1].

• Likelihood: We then perform the experiment n times. Suppose that we observe s successes
and f failures. Let us denote this observation as D = (s, f). The likelihood is

p(D|θ) =

(
n

s

)
θs(1− θ)f (3.2)

• The posterior distribution:

p(θ|D) ∝ 1 · θs(1− θ)f = θs(1− θ)f (3.3)
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We observe that this distribution is of the form of a beta distribution, Beta(x;α, β) ∼ xα−1(1−
x)β−1. Hence,

p(θ|D) ∼ Beta(s+ 1, f + 1).

4

Note that since we are interested in θ, we can drop multiplicative terms that are constant with
respect to θ, such as

(
n
s

)
, in the example above.

Now that we have the posterior distribution, we can answer questions about the parameter, for
example, What is the probability that 0.4 < θ < 0.6?

ˆ 0.6

0.4

p(θ|D)dθ (3.4)

Example 3.4 (Consecutive Bayesian updating). Continuing the previous example, suppose that
we collect more data D′ = (s′, f ′), consisting of s′ successes and f ′ failures. Our prior distribution
now is the posterior of the previous example, p(θ) ∝ θs(1− θ)f . We have

p(D′|θ) =

(
s′ + f ′

s′

)
θs
′
(1− θ)f

′

p(θ|D′) ∝ θs(1− θ)fθs
′
(1− θ)f

′

= θs+s
′
(1− θ)f+f ′

θ|D′ ∼ Beta(s+ s′ + 1, f + f ′ + 1).

(3.5)

Equivalently, we can update our uniform prior p(θ) ∝ 1 with data (s+ s′, f + f ′) to obtain p(θ|(s+
s′, f + f ′)) ∼ Beta(s+ s′ + 1, f + f ′ + 1). As we can see, the Bayesian approach provides a way to
update our belief in a consistent manner.

The figure below provides an example of the posterior with 0, 5, 20, and 50 samples. It can be
observed that the posterior becomes sharper as more data is collected. 4
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Example 3.5. Beta is a common prior for the probability of Bernoulli experiments. Based on the
discussion above, one way to interpret a Beta prior with parameters α ≥ 1, β ≥ 1 is to imagine
that, starting with the uniform prior, we have already collected α + β − 2 samples, with α − 1
successes. The following plot shows the Beta distribution with different parameters to give a sense
of the range of possible priors. 4
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Example 3.6. Suppose that y ∼ Poi(λ) and we intend to estimate λ based on n iid samples
yn1 = (y1, . . . , yn). We assume that the prior for λ is given as p(λ) ∼ Gamma(λ;α, β) ∝ λα−1e−βλ.
We have

p(λ) ∝ λα−1e−βλ

p(yn1 |λ) =

n∏
i=1

λyie−λ

yi!
∝

n∏
i=1

λyie−λ = e−nλλnȳ,

where ȳ = 1
n

∑n
i=1 yi. Note that while p(yn1 |λ) is a distribution in yn1 , we still dropped the yi! from

its expression since our final goal is to find a distribution in λ and for this purpose terms that are
independent of λ can be viewed as constant. The posterior is

p(λ|yn1 ) ∝ λα−1e−βλe−nλλnȳ = λα+nȳ−1e−λ(n+β) ∼ Gamma(α+ nȳ, n+ β).

If we choose α = 1, β = 0, then the Gamma prior is flat, giving all possible values the same prior
probability. But this is not a proper distribution. However, as long as the final posterior is a proper
distribution, an improper prior is deemed acceptable.

Suppose that n = 10 and ȳ = 2. The figure below shows the posterior distribution with different
priors. The prior on the left is called a non-informative prior because it is flat and the one on
the right is an informative prior given that it represents a prior belief that certain values have a
higher probability.
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p(λ|yn1 ) ∼ Gamma(21, 10)

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

1.2

λ

p
(λ
),
p
(λ
|y

n 1
)

p(λ) ∼ Gamma(35, 7)

p(λ|yn1 ) ∼ Gamma(55, 17)

4

3.2 Bayesian Point Estimates
Having the complete distribution for p(θ|D) is useful since it provides the probability for different
values for θ. But sometimes we want to estimate θ with a single value θ̂ = θ̂(D) as a function of
data, similar to maximum likelihood. The best choice for θ̂ then depends on how we characterize
the estimation error:

Average Error Optimal Estimator
E[(θ − θ̂)2|D] θ̂ = E[θ|D] (mean)
E[|θ − θ̂||D] θ̂ = median of p(θ|D)

E[I(θ 6= θ̂)|D] = Pr(θ 6= θ̂|D) θ̂ = arg maxθ p(θ|D) (mode)

In the table, I(condition) is 1 if the condition is satisfied and is 0 otherwise.

We prove the first case in the table. Let θ̄ = E[θ|D]. We have

E[(θ̂ − θ)2|D] = E[((θ̂ − θ̄) + (θ̄ − θ))2|D]

= E[(θ̂ − θ̄)2 + 2(θ̂ − θ̄)(θ̄ − θ) + (θ̄ − θ)2|D]

= E[(θ̂ − θ̄)2|D] + E[(θ̄ − θ)2|D]

= E[(θ̂ − θ̄)2|D] + Var(θ|D)

≥ Var(θ|D),

and the lower bound on the error is achieved when θ̂ = θ̄.

Example 3.7. Generalizing Example 3.3 by assuming p(θ) ∼ Beta(α, β), we obtain p(θ|D) ∼
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Beta(α+ s, β + f) (for Uniform, α = β = 1). We have

Mean =
s+ α

s+ f + α+ β
,

Median ' s+ α− 1/3

s+ f + α+ β − 2/3
,

Mode =
s+ α− 1

s+ f + α+ β − 2
.

Generally speaking Bayesian point estimates are between what is suggested only using the prior
and what would be obtained using only the likelihood. For example, the mean of the prior is α

α+β

and the maximum likelihood solution is s
s+f . The mean of the posterior, s+α

s+f+α+β , is between these
two. 4

3.3 Posterior Predictive Distribution
Given n iid samples, yn1 = (y1, . . . , yn), we are often interested in the distribution of the next
(unobserved) value, p(yn+1|yn1 ). This distribution is referred to as predictive posterior. We have

p(yn+1|yn1 ) =

ˆ
p(yn+1, θ|yn1 )dθ

=

ˆ
p(θ|yn1 )p(yn+1|θ, yn1 )dθ

=

ˆ
p(θ|yn1 )p(yn+1|θ)dθ,

where we have used the fact that yn+1 ⊥⊥ yn1 |θ. We have thus written the predictive posterior in
terms of two known distributions.

Example 3.8. Continuing Example 3.3, let success in the n + 1st experiment be denoted by
yn+1 = 1 and failure by yn+1 = 0. We have

p(yn+1 = 1|yn1 ) =

ˆ
θp(θ|yn1 ) = E[θ|yn1 ] =

s+ 1

s+ f + 2
,

where we have used the facts that p(yn+1 = 1|θ) = θ and that the mean of Beta(s + 1, f + 1) is
s+1

s+f+2 . 4

We may also ask about the expected value of yn+1 given yn1 , i.e., E[yn+1|yn1 ]. We can find this
by first finding p(yn+1|yn1 ) explicitly. But it is often easier to use the law of iterated expectations,
given that yn1 influences yn+1 through θ. Recall that

E[E[Y |X]] = E[Y ], E[E[Y |X,Z]|Z] = E[Y |Z].

Thus,
E[yn+1|yn1 ] = E[E[yn+1|θ, yn1 ]|yn1 ] = E[E[yn+1|θ]|yn1 ], (3.6)

where the last step follows from the fact that yn+1 ⊥⊥ yn1 |θ.

Exercise 3.9. Find E[yn+1|yn1 ] in Example 3.6. 4
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3.4 Gaussian Prior and Likelihood
Suppose that we want to estimate the mean of a Gaussian distribution with known variance,

p(yi|θ) =
1√

2πσ2
e−

(yi−θ)
2

2σ2 (3.7)

given iid data {y1, . . . , yn}.

Improper priors. Assuming that we have no information about this mean, it makes sense to
choose the prior

p(θ) ∝ 1.

But since the integral
´∞
−∞ 1dθ =∞, this does not lead to a valid distribution. Nevertheless, such a

choice is acceptable, if the posterior is a valid distribution. Such priors are called improper priors.
An improper prior does not necessarily have to be uniform.

Example 3.10. Consider the above likelihood and prior and let ȳ = 1
n

∑n
i=1 yi. We have

p(θ|yn1 ) ∝ p(yn1 |θ) · 1

∝ exp

(
−
∑n
i=1(yi − θ)2

2σ2

)
∝ exp

(
−
∑n
i=1(θ2 − 2yiθ + y2

i )

2σ2

)
∝ exp

(
−θ

2 − 2ȳθ

2σ2/n

)
∝ exp

(
− (θ − ȳ)2

2σ2/n

)
θ|yn1 ∼ N (ȳ, σ2/n).

For the expected value of the next sample,we have

E[yn+1|yn1 ] = E[E[yn+1|θ]|yn1 ] = E[E[θ]|yn1 ] = ȳ.
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We can see more explicitly as well,

E[yn+1|yn1 ] =

ˆ
yn+1p(yn+1|yn1 )dyn+1

=

ˆ
yn+1

ˆ
p(yn+1, θ|yn1 )dθdyn+1

=

ˆ
yn+1

ˆ
p(yn+1|θ)p(θ|yn1 )dθdyn+1

=

ˆ
p(θ|yn1 )

ˆ
yn+1p(yn+1|θ)dyn+1dθ

=

ˆ
θp(θ|yn1 )dθ

= E[θ|yn1 ]

= ȳ.

4

Exercise 3.11. Prove that
Var(yn+1|yn1 ) = σ2 + σ2/n.

4

We now consider the same problem with a proper Gaussian prior. Note that below as τ0 →∞, the
proper prior below tends to the improper prior p(θ) ∝ 1.

Example 3.12. We would like to estimate the mean µ of normally distributed independent values
yn1 = (y1, . . . , yn). Let ȳ =

∑
yi/n. We assume

µ ∼ N
(
µ0, τ

2
0

)
yi ∼ N

(
µ, σ2

)
where µ0 and τ2

0 are the prior mean and variance, respectively, and σ2 is known. We have

p(µ|yn1 ) ∝ p(µ)p(yn1 |µ)

∝ 1

στ0
exp

(
−
∑n
i=1(yi − µ)

2

2σ2
− (µ− µ0)

2

2τ2
0

)
The following claim will be useful.

Claim: If p(x) ∝ e−f(x), where f(x) = ax2 − bx+ c with a > 0, then x ∼ N
(
b

2a ,
1
2a

)
.

Proof: Since

ax2 − bx+ c =
x2 − bx/a+ c/a

1/a
=

(
x− b

2a

)2 − ( b
2a )2 + c

a

2(1/(2a))
,

we have

p(x) ∝ exp

(
(x− b/(2a))

2

2(1/(2a))

)
,
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proving the claim.

Returning to our problem:

a =
n

2σ2
+

1

2τ2
0

, b =
nȳ

σ2
+
µ0

τ2
0

.

Hence

µ|yn1 ∼ N

( nȳ
σ2 + µ0

τ2
0

n
σ2 + 1

τ2
0

,
1

n
σ2 + 1

τ2
0

)
.

4

3.5 Conjugate Priors
Given a likelihood function, the conjugate prior is a distribution that leads to a posterior that is
from the same family as the prior. Several examples are given below.

• Bernoulli/Beta: (y =
∑n
i=1 yi)

p(yi|θ) = θyi(1− θ)1−yi Ber(θ)

p(yn1 |θ) = θy(1− θ)n−y

p(θ) ∝ θα−1(1− θ)β−1 Beta(α, β)

p(θ|y) ∝ θy+α−1(1− θ)n−y+β−1 Beta(y + α, n− y + β)

• Exponential/Gamma: (y =
∑n
i=1 yi)

p(yi|θ) = θ exp(−θyi) Exp(θ) = Gamma(1, θ)

p(yn1 |θ) = θn exp(−θy)

p(θ) =
βα

Γ(α)
θα−1 exp(−βθ) Gamma(α, β)

p(θ|yn1 ) ∝ θn+α−1 exp(−(y + β)θ) Gamma(n+ α, y + β)

• Gaussian/Gaussian (with known σ2): (ȳ = 1
n

∑n
i=1 yi)

p(yi|θ) ∝ exp

(
(yi − θ)2

2σ2

)
N (θ, σ2)

p(yn1 |θ) ∝ exp

(∑n
i=1(yi − θ)2

2σ2

)
p(θ) ∝ exp

(
(θ − µ0)2

2τ2
0

)
N (µ0, τ

2
0 )

p(θ|yn1 ) ∝ exp

(
(θ − µ1)2

2τ2
1

)
N (µ1, τ

2
1 ),
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where

µ1 =

1
τ0
µ0 + 1

σ2/n ȳ

1
τ0

+ 1
σ2/n

,

1

τ2
1

=
1

τ2
0

+
1

σ2/n
.

Note that if a prior is conjugate for the likelihood of a single observation, it is also conjugate for the
likelihood of many iid observations. One way to see this is to note that updating the distribution
using n iid observations is equivalent to updating the distribution n times using single observations
consecutively.

Conjugate priors provide a way to fully determine the posterior distribution without the need to
integrate to find the missing constants.

3.6 The Exponential Family (EF)**
For a random variable x with parameter θ, p(x|θ) is said to be from the exponential family if it has
the following form

p(x|θ) = exp
(
a(x)T b(θ) + f(x) + g(θ)

)
,

where a, b, x, θ can be vectors and f, g are scalar functions. b(θ) is referred to as the natural
parameter.

The exponential family includes many common distributions such as Gaussian, Beta, Gamma,
Binomial, etc. For likelihoods in this family, we can identify the conjugate prior, thus simplify-
ing Bayesian estimation. Furthermore, for these distributions all information in the data can be
summarized in the sufficient statistics described below.

Maximum Likelihood. Suppose that we have n iid observation, leading to the likelihood func-
tion

p(yn1 |θ) ∝ exp

(
n∑
i=1

a(yi)
T b(θ) + ng(θ)

)
,

Define the sufficient statistics for this likelihood as t(yn1 ) =
∑n
i=1 a(yi). We then have

p(yn1 |θ) ∝ exp
(
t(yn1 )T b(θ) + ng(θ)

)
.

So for finding the maximum likelihood solution, we can summarize all our data as t(yn1 ) and the
rest of the information in yn1 is irrelevant. This is also true for Bayesian estimation. Note that the
size of t(yn1 ) is independent of n.
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Bayesian Estimation with Conjugate Priors. In this case, we have the general form of the
conjugate prior

p(yi|θ) ∝ exp
(
a(yi)

T b(θ) + g(θ)
)

p(yn1 |θ) ∝ exp
(
t(yn1 )T b(θ) + ng(θ)

)
p(θ) ∝ exp

(
νT b(θ) +mg(θ)

)
Dist(ν,m)

p(θ|yn1 ) ∝ exp
(
(ν + t(yn1 ))T b(θ) + (m+ n)g(θ)

)
Dist(ν + t(yn1 ),m+ n),

where Dist refers to a specific type distribution.

Pseudo-observations. The parameters in conjugate priors can be interpreted as representing
pseudo-observations by comparing the forms of p(yn1 |θ) and p(θ). In particular, ν plays the same
role as t(yn1 ) and m represents the number of pseudo-observations.

Example 3.13. The likelihood for a Bernoulli observation is

p(yi|θ) = θyi(1− θ)1−yi

= exp(yi ln θ + (1− yi) ln(1− θ))

= exp

(
yi ln

θ

1− θ
+ ln(1− θ)

)
.

We thus let a(yi) = yi, b(θ) = ln θ
1−θ , and g(θ) = ln(1 − θ). Furthermore, let y = t(yn1 ) =∑n

i=1 a(yi) =
∑n
i=1 yi. Then,

p(yn1 |θ) = exp

(
y ln

θ

1− θ
+ n ln(1− θ)

)
p(θ) = exp

(
ν ln

θ

1− θ
+m ln(1− θ)

)
= θν(1− θ)m−ν , Beta(ν + 1,m− ν + 1)

p(θ|yn1 ) = exp

(
(ν + y) ln

θ

1− θ
+ (m+ n) ln(1− θ)

)
,

Beta(ν + y + 1,m+ n− ν − y + 1)

4
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