
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 10, OCTOBER 2017 6129

Capacity and Expressiveness of Genomic
Tandem Duplication

Siddharth Jain, Student Member, IEEE, Farzad Farnoud (Hassanzadeh), Member, IEEE,
and Jehoshua Bruck, Fellow, IEEE

Abstract— The majority of the human genome consists of
repeated sequences. An important type of repeated sequences
common in the human genome are tandem repeats, where
identical copies appear next to each other. For example, in the
sequence AGT CT GT GC, T GT G is a tandem repeat, that may
be generated from AGT CT GC by a tandem duplication of
length 2. In this paper, we investigate the possibility of generating
a large number of sequences from a seed, i.e. a small initial
string, by tandem duplications of bounded length. We study
the capacity of such a system, a notion that quantifies the
system’s generating power. Our results include exact capacity
values for certain tandem duplication string systems. In addition,
motivated by the role of DNA sequences in expressing proteins
via RNA and the genetic code, we define the notion of the
expressiveness of a tandem duplication system as the capability of
expressing arbitrary substrings. We then completely characterize
the expressiveness of tandem duplication systems for general
alphabet sizes and duplication lengths. In particular, based
on a celebrated result by Axel Thue from 1906, presenting a
construction for ternary squarefree sequences, we show that
for alphabets of size 4 or larger, bounded tandem duplication
systems, regardless of the seed and the bound on duplication
length, are not fully expressive, i.e. they cannot generate all
strings even as substrings of other strings. Note that the alphabet
of size 4 is of particular interest as it pertains to the genomic
alphabet. Building on this result, we also show that these systems
do not have full capacity. In general, our results illustrate that
duplication lengths play a more significant role than the seed in
generating a large number of sequences for these systems.

Index Terms— Capacity, expressiveness, tandem repeats,
tandem duplication, finite automaton, irreducible strings.

I. INTRODUCTION

MORE than 50% of the human genome consists of
repeated sequences [9]. Two important types of com-

mon repeats are i) interspersed repeats and ii) tandem repeats.
Interspersed repeats are caused by transposons. A transposon,
also known as a jumping gene, is a segment of DNA that can
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copy or cut and paste itself into new positions of the genome.
Tandem repeats are caused by slipped-strand mispairings [13].
Slipped-strand mispairings occur when one DNA strand in the
duplex becomes misaligned with the other.

Tandem Repeats are common in both prokaryote and
eukaryote genomes. They are present in both coding and non-
coding regions and are believed to be the cause of several
genetic disorders. The effects of tandem repeats on several
biological processes is understood by these disorders. They
can result in generation of toxic or malfunctioning proteins,
chromosome fragility, expansion diseases, silencing of genes,
modulation of transcription and translation [16] and rapid
morphological changes [5].

A process that leads to tandem repeats, e.g. through slipped-
strand mispairing, is called tandem duplication, which allows
substrings to be duplicated next to their original position.
For example, from the sequence AGT CGT CGCT , a tan-
dem duplication of length 2 can give AGT CGT CGCGCT ,
which, if followed by a duplication of length 3 may
give AGT CGT CGT CG CGCT . The prevalence of tandem
repeats in the human genome [9] motivates us to study the
capacity and expressiveness of string systems with tandem
duplication, as defined below.

The model of a string duplication system consists of a seed,
i.e., a starting string of finite length, a set of duplication rules
that allow generating new strings from existing ones, and the
set of all sequences that can be obtained by applying the dupli-
cation rules to the seed a finite number of times. The notion
of capacity, introduced in [4] represents the average number
of m-ary symbols per sequence symbol that are asymptotically
required to encode a sequence in the string system, where m is
the alphabet size (for DNA sequences the alphabet size is 4).
The maximum value for capacity is 1. A duplication system
is fully expressive if all strings with the alphabet appear as a
substring of some string in the system. As we will show, if a
system is not fully expressive, then its capacity is strictly less
than 1.

Before presenting the notation, definitions, and the results
more formally, in the rest of this section, we present two
simple examples to illustrate the notions of expressiveness and
capacity for tandem duplication string systems. Furthermore,
we outline some useful tools as well as some of the results of
the paper.

Example 1: Consider a string system on the binary alphabet
� = {0, 1} with 01 as the seed that allows tandem duplications
of length up to 2. It is easy to check that the strings generated
by this system start with 0 and end with 1. In fact, it can be
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Fig. 1. The finite automaton for the systems S = ({0, 1}, 01, T tan≤k ), where
k ≥ 2, including the system of Example 1. Notation used here is described
in detail in Section II.

proved that all binary strings of length n which start with 0
and end with 1 can be generated by this system. The proof
is based on the fact that every such string can be written as
0r1 1r2 · · · 0rv−1 1rv , where each ri ≥ 1 and v is even. A natural
way to generate this string is to duplicate 01 v

2 times and then
duplicate the 0s and 1s as needed via duplications of length 1.

Expressiveness: From the preceding paragraph, every binary
sequence s can be generated as a substring in this system
as 0s1. For example, although 11010 cannot be generated by
this system, it can be generated as a substring of 0110101 in
the following way:

01 → 0101 → 010101 → 0110101.

Hence this system is fully expressive.
Capacity: The number of length-n strings in this system

is 2n−2. Thus, encoding sequences of length n in this system
requires n−2 bits. The capacity, or equivalently the asymptotic
average number of bits (since the alphabet � is of size 2) per
symbol, is thus equal to 1. This is not surprising as the system
generates almost all binary sequences. �

Observing these facts for an alphabet of size 2, one can
ask related questions on expressiveness and capacity for other
alphabet sizes and duplication lengths. However, counting the
number of length-n sequences for capacity calculation and
characterizing fully expressive systems for larger alphabets are
often not straightforward tasks. In this paper, we study these
questions and develop methods to answer them.

A useful tool in this study is the theory of finite automata.
As a simple example note that the string system over the binary
alphabet {0, 1} in the preceding example can be represented by
the finite automaton given in Figure 1. The regular expression
for the language defined by the finite automaton is

R01 = (0+1+)
+
, (1)

which represents all binary strings that start with 0 and
end with 1. For definitions of finite automata and regular
expression, the reader can refer to Section II.

One can use the Perron-Frobenius theory [7], [12] to count
the number of sequences which can be generated by a finite
automaton. This enables us to use finite automata as a tool

TABLE I

CAPACITY VALUES TANDEM DUPLICATION STRING SYSTEMS

(�, s,T tan≤k ). HERE x, y ∈ �∗ , AND a, b, c ∈ � ARE DISTINCT

to calculate capacity for some string duplication systems with
tandem repeats over larger alphabet.

In our results, we find that the exact capacity of the
tandem duplication string system over the ternary alphabet
{0, 1, 2} with seed 012 and duplication length at most 3 equals
log3

3+√
5

2 � 0.876036. Moreover, we generalize this result
by characterizing the capacity of tandem duplication string
systems over an arbitrary alphabet and a seed with maximum
duplication length of 3. Namely, we show that if the maximum
duplication length is 3 and the seed contains abc as a substring,
where a, b, and c are distinct symbols, then the capacity
� 0.876036 log|�| 3. If such a substring does not exist in the
seed, then the capacity is given by log|�| 2, unless the seed
is of the form am , in which case the capacity is 0. Some of
these results are highlighted in Table I.

Our next example presents a system that, unlike that of
Example 1, is not fully expressive.

Example 2: Consider a tandem duplication string system
over the ternary alphabet {0, 1, 2} with seed 012 and maximum
duplication length 3. This system is not fully expressive as
it cannot generate 210, 102, or 021, even as a substring.
We provide a simple proof.

Proof: Let z = αγβ, where α, γ and β are strings over
{0, 1, 2} with |α|, |β| ≥ 0, and 1 ≤ |γ | ≤ 3. Suppose z
does not contain 210, 102 or 021 as a substring. We will now
show that z∗ = αγ γβ does not contain 210, 102 or 021 as a
substring either. We have three cases:

• For γ = a1, with a1 ∈ {0, 1, 2}, the only possible new
substrings generated in z∗ which may not occur in z are
the ones with suffix a1a1 or prefix a1a1.

• For γ = a1a2, with a1, a2 ∈ {0, 1, 2}, the only possible
new substrings of length 3 generated in z∗ are a1a2a1
and a2a1a2.

• For γ = a1a2a3, with a1, a2, a3 ∈ {0, 1, 2}, there is no
substring of length 3 in z∗ which does not occur in z.

Hence, if z does not contain 210, 102 or 021 as a substring,
neither will z∗. Since the seed 012 does not contain 210,
102 or 021 as a substring, neither will any other string in
the system. �

Therefore, this tandem duplication string system is not fully
expressive. �

Based on the previous example, one may ask what happens
if we start with a seed that contains one of the strings 210,
102, or 021, e.g., if we let the seed be 01210? Does the system
become fully expressive? While this system can generate all
strings of length 3 as substrings, the answer is still no as
shown in Theorem 2: Regardless of the seed, a ternary system
with maximum duplication length of 3 is not fully expressive.
We show in Theorem 4, that a maximum duplication length
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TABLE II

EXPRESSIVENESS OF TANDEM DUPLICATION

STRING SYSTEMS
(
�, s,T tan≤k

)

of at least 4 is needed to arrive at a fully expressive ternary
system.

While for alphabets of size 2 or 3, increasing the maxi-
mum length on duplications turns a system that is not fully
expressive into one that is, for alphabets of size 4 or more,
duplication systems are not fully expressive regardless of
how large the bound on duplication length is. The main
tool in constructing quaternary strings that do not appear
independently or as substrings in these systems is Thue’s
result proving the existence of ternary squarefree sequences
of any length. A string is called squarefree if it does not have
a tandem repeat of any length (Note that unary and binary
squarefree sequences of arbitrarily large length do not exist.).
The existence of such sequences underlies the significant shift
in the behavior of tandem duplication systems with regards
to expressiveness as a function of alphabet size. Some of our
results on expressiveness are summarized in Table II.

As part of this paper, we also study regular languages
for tandem duplication string systems. In [11], it was shown
that the tandem duplication string system is not regular if
the maximum duplication length is 4 or more when the
seed contains 3 consecutive distinct symbols as a substring.
However for maximum duplication length 3, this question
remained open. In this paper, we show in Theorem 5 that if the
maximum duplication length is 3, a tandem duplication string
system is regular irrespective of the seed and the alphabet
size. Moreover, we characterize the exact capacity for all these
systems.

A. Related Work

Tandem duplications have already been studied
in [2], [3], and [10]. However the main concern of these
works is to determine the place of tandem duplication rules in
the Chomsky hierarchy of formal languages. A study related
to our work can be found in[4] and [11]. String systems
with different duplication rules, namely end duplication,
tandem duplication, reversed duplication and duplication with
a gap, are defined and studied in [4]. In end duplication,
a substring of certain length k is appended to the end of the
previous string - for example, ACT GT → ACT GT CT .
In reversed tandem duplication, the reverse of a substring
is appended in tandem in the previous string - for example,
ACT GT → ACT T CGT . In duplication with a gap,
a substring is inserted after a certain gap g from its position
in the original string, for example, ACT GT → ACT GCT T .

For tandem duplication string systems, the authors in [4]
show that for a fixed duplication length the capacity is 0.
Further, they find a lower bound on the capacity of these

systems, when duplications of all lengths are allowed. In this
paper, we consider tandem duplication string systems, where
we restrict the maximum size of the block being tandemly
duplicated to a certain finite length.

In the rest of the paper, the term tandem duplication string
system refers to string duplication systems with bounded
duplication length.

The rest of the paper is organized as follows. In Section II,
we present the preliminary definitions and notation.
In Section III, we derive our main results on capacity
and expressiveness. In Section IV, we show that if the
maximum duplication length is 3, then the tandem duplication
string system is regular irrespective of the seed and alphabet
size. Further, using the regularity of the systems, we extend
our capacity results. We present our concluding remarks
in Section V.

II. PRELIMINARIES

Let � be some finite alphabet. An n-string x = x1x2 · · · xn

∈ �n is a finite sequence where xi ∈ � and |x | = n. The set of
all finite strings over the alphabet � is denoted by �∗. For two
strings x ∈ �n and y ∈ �m , their concatenation is denoted
by xy ∈ �n+m . For a positive integer m and a string s, sm

denotes the concatenation of m copies of s. A string v ∈ �∗
is a substring of x if x = uvw, where u, w ∈ �∗.

A string system S ⊆ �∗ is represented as a tuple S =
(�, s,T ), where s ∈ �∗ is a finite string called seed, which
is used to initiate the duplication process, and T is a set of
rules that allow generating new strings from existing ones [4].
In other words, the string system S = (�, s,T ) contains all
strings that can be generated from s using rules from T a
finite number of times.

A tandem duplication map Ti,k ,

Ti,k (x) =
{

uvvw, x = uvw, |u| = i, |v| = k,

x, else,

creates and inserts a copy of the substring of length k which
starts at position i + 1. We use T tan

k : �∗ → �∗ and T tan≤k to
denote the set of tandem duplications of length k, and tandem
duplications of length at most k, respectively,

T tan
k = {

Ti,k : i ∈ N ∪ {0}} ,

T tan
≤k = {

Ti, j : i ∈ N ∪ {0}, j ∈ N, j ≤ k
}
.

With this notation, the system of Example 1 can be written as
({0, 1}, 01,T tan≤2 ).

The capacity of the string system S = (�, s,T ) is
defined as

cap(S) = lim sup
n→∞

log|�| |S ∩ �n |
n

. (2)

Furthermore, it is fully expressive if for each y ∈ �∗, there
exists a z ∈ S, such that y is a substring of z.

A useful tool in calculating capacity of tandem duplication
string systems is deterministic finite automaton (DFA) which
consists of:

• A finite set of states Z .
• Alphabet �.



6132 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 10, OCTOBER 2017

• Transition Rule δ : Z × � → Z .
• Start state zo ∈ Z .
• A set of accept states Y .

There also exist non-determinisitc finite automata. In this
paper however, all the automata considered are deterministic.
Henceforth, we will be using finite automaton to refer to a
DFA. An example of a finite automaton is given in Figure 1.
For this finite automaton we have,

• Z = {Star t, S1, S2}.
• � = {0, 1}.
• δ(Star t, 0) = S1, δ(S1, 0) = S1, δ(S1, 1) = S2,

δ(S2, 0) = S1, δ(S2, 1) = S2.
• zo = Star t .
• Y = {S2}.

The set of all possible strings that can be generated by a
given DFA represent the language described by the finite
automaton. This language L R can be represented by a regular
expression R. Formal definitions of regular expression can be
found in [6]. For the purpose of this paper, we define:

• R = s∗: represents the language L R which consists of all
strings with 0 or more concatanated copies of s ∈ �∗,
i.e., L R = {sm : m ≥ 0}.

• R = s+: represents the set of all strings with 1 or more
concatanated copies of s ∈ �∗, i.e., L R = {sm : m ≥ 1}.

• R = R1 R2: represents the language L R formed by the
concatenation of L R1 and L R2 , i.e. L R = {s1s2 : s1 ∈
L R1 , s2 ∈ L R2}.

III. CAPACITY AND EXPRESSIVENESS

In this section, we present our results on the capacity and
expressiveness of tandem duplication system with bounded
duplication length. The section is divided into two parts; the
first part focuses on capacity and the second on expressiveness.

A. Capacity

Our first result is on the capacity of a tandem duplication
string system over ternary alphabet.

Theorem 1: For the tandem duplication string system
S =

(
{0, 1, 2}, 012,T tan≤3

)
, we have

cap(S) = log3
3 + √

5

2
� 0.876036.

Proof: We prove this theorem by showing that the finite
automaton given in Figure 2 accepts precisely the strings
in S, and then finding the capacity using the Perron-Frobenius
theory [7], [12].

The regular expression R for the language defined by this
finite automaton is given by (see [6] for details on how to find
a regular expression given a finite automaton)

R = (0+1+)
+

2+(1+2+)
∗

[0+(2+0+)
∗
1+(0+1+)

∗
2+(1+2+)

∗]∗. (3)

Let L R be the language defined by the regular expression R
(and by the finite automaton). We first show that L R ⊆ S.
The direct way of doing so is to start with 012 and generate
all the sequences in L R via duplication. For simplicity of

Fig. 2. Finite automaton for S = ({0, 1, 2}, 012, T tan≤3 ).

presentation, however, we take the reverse route: We show
that every sequence in L R can be transformed to 012 by a
sequence deduplications. A deduplication of length k is an
operation that replaces a substring αα by α if |α| = k. For

two regular expressions R1 and R2, we use R1
dd≤k−−→ R2 to

denote that each sequence in L R1 can be transformed into
some sequence in L R2 via a sequence of deduplications of
length at most k.

Note that R = B1 B2
∗, where

B1 = (0+1+)
+

2+(1+2+)
∗
,

B2 = 0+(2+0+)
∗
1+(0+1+)

∗
2+(1+2+)

∗
.

We have B1
dd≤3−−→ 012 (12)∗

dd≤3−−→ 012, since a+ dd≤3−−→ a and

(ab)+
dd≤3−−→ ab for all a, b ∈ �. Furthermore,

B2
dd≤3−−→ 0(20)∗1(01)∗2(12)∗

dd≤3−−→ 0(20)∗1(01)∗2
dd≤3−−→

0(20)∗12
dd≤3−−→ {02012, 012}. (4)

Note for example that 1(01)∗2(12)∗
dd≤3−−→ 1(01)∗2 as the

underlined 2 is always preceded by a 1.

We thus have R = B1 B∗
2

dd≤3−−→ {01202012, 012012,

012} dd≤3−−→ 012, proving that L R ⊆ S.
To complete the proof of L R = S, we now show that

S ⊆ L R . In what follows, we say a finite automaton generates
a sequence s, if there is a path with label s from Star t
to an accepting state. If an automaton generates uvw, with
u, v,w ∈ �∗, we may use v to refer both to the string v itself
and to the part of the path that generates v. The meaning will
be clear from the context.

We show S ⊆ L R , by proving the following for the finite
automaton in Figure 2:
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i) It can generate 012.
ii) If the automaton can generate pqr , with p, q, r ∈ �∗

and |q| ≤ 3, it can also generate pq2r .
Condition i) holds trivially (see the path Star t−S1−S2−S3

in Figure 2). In order to prove ii), we define:
• Path Label: Given a path a in a finite automaton, the path

label la ∈ �∗ is defined as the sequence obtained by
concatenating the labels on the edges forming the path.

• Path Length is the number of edges of the path.
• Duplicable Path: Let q be a path that ends at state C .

The path q is said to be duplicable if there exists path q ′
that starts and ends at state C such that the path labels
of q and q ′ are the same.

Suppose a finite automaton can generate pqr . If q is
duplicable, then pq2r can also be generated by the finite
automaton. As a result, to prove ii), it suffices to show that for
each state C in Figure 2, all paths of length 1, 2 or 3 ending
in C are duplicable.

Now, we show that all paths ending in {S1, S2, S3, S4, T2,
T3, T4, } with length ≤ 3 are duplicable. Note that there are
no nontrivial paths ending in the Star t state.

Given a state C and j ∈ {1, 2, 3}, let PC
j be the set of

all length- j paths ending in C and let QC
j be the set of all

length- j paths starting and ending in C . If
⋃

a ∈ PC
j

la =
⋃

a ∈ QC
j

la, (5)

then all length- j paths ending in C are duplicable.
We prove that (5) holds for all states and all j ∈ {1, 2, 3}.

This is done by computing A, A2 and A3, where A1 is
the (labeled) adjacency matrix of the finite automaton given
in Figure 2. Here in computing the matrix products, symbols
do not commute, e.g. xy �= yx . The adjacency matrix A
and its square A2, where x, y and z represent edges labeled
by 0, 1, and 2, respectively, and where rows and columns
correspond in order to S1, S2, S3, S4, T2, T3, T4, are given by

A =

⎡
⎢⎢⎢⎣

x y 0 0 0 0 0
0 y z 0 x 0 0
0 0 z x 0 y 0
0 y 0 x 0 0 z
0 y 0 0 x 0 0
0 0 z 0 0 y 0
0 0 0 x 0 0 z

⎤
⎥⎥⎥⎦,

A2 =

⎡
⎢⎢⎢⎢⎢⎣

x2 y2+xy yz 0 yx 0 0
0 y2+xy z2+yz zx x2+yx zy 0
0 xy z2+yz x2+zx 0 y2+zy xz
0 y2+xy yz x2+zx yx 0 z2+xz
0 y2+xy yz 0 x2+yx 0 0
0 0 z2+yz zx 0 y2+zy 0
0 xy 0 x2+zx 0 0 z2+xz

⎤
⎥⎥⎥⎥⎥⎦

.

Each entry in these matrices lists the paths of specific length
from the state identified by its row to the state identified by
its column. For example, the entry (6, 3) of A2, which equals
z2 + yz, indicates that there are two paths of length 2 from
T3 to S3 with labels z2 = 22 and yz = 12.

To check (5), we need to verify that the nonzero terms
in the non-diagonal elements of each column also appear
in its diagonal element. For A and A2, this can be easily
done by observing the matrices. For example, the entry (3, 3)
of A2 equals z2 + yz and contains all terms appearing in

column 3 of A2, which are yz and z2 + yz. We verified using
a computer that A3 also satisfies the same condition. Hence,
we have shown that all paths of length at most 3 ending in
{S1, S2, S3, S4, T2, T3, T4} are duplicable.

This completes the proof of S ⊆ L R .
Now that we have shown S = L R , we use the

Perron-Frobenius theory [7], [12] to count the number of
sequences which can be generated via the finite automa-
ton in Figure 2. The accepting state S3 is reachable from
every other state in the finite automaton, therefore we can
compute the capacity by calculating the maximum absolute
eigenvalue e∗ of the (unlabeled) adjacency matrix B of the
strongly connected component of the finite automaton (i.e. the
subgraph induced by S2, S3, S4, T2, T3, T4).

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 0 1 0 0
0 1 1 0 1 0
1 0 1 0 0 1
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

. (6)

The maximum absolute eigenvalue of B is e∗ = 3+√
5

2 �
2.618034. By the Perron-Frobenius Theory, cap(S) =
log3 e∗ � 0.876036.

While the proof of the preceding theorem providing the
exact capacity of the system under study is somewhat involved,
it is easy to see why the capacity is strictly less than 1. One can
observe from the regular expression for the finite automaton
that it cannot generate a string that has 210, 021 or 102 as a
substring, implying that the system is not fully expressive.
As we will see in Lemma 4, such systems cannot have
capacity 1. It is worth noting that the set of strings that avoid
210, 021, and 102 can be shown to have capacity � 0.914838,
which is slightly larger than the capacity of the system of the
theorem.

B. Expressiveness

We now turn to study the expressiveness of tandem duplica-
tion systems with bounded duplication length. For complete-
ness we start with binary systems, which is indeed the simplest
case.

Lemma 3: The system S =
(
{0, 1}, s,T tan≤1

)
, for any s is

not fully expressive.
Proof: The system cannot generate (01)m as a substring

of any string in S for 2m > |s|.
As shown in Example 1, to obtain fully expressive binary

systems, it suffices to increase the maximum duplication
length to 2.

The next theorem is concerned with the expressiveness of
S = ({0, 1, 2}, s,T tan≤3 ). Larger alphabets and larger duplica-
tion lengths are considered in Theorems 3 and 4.

Theorem 2: Consider S = ({0, 1, 2}, s,T tan≤3 ), where s is
any arbitrary starting string s ∈ {0, 1, 2}∗. Then, S is not
fully expressive.

Proof: A k-irreducible string is a string that does not
have a tandem repeat αα, such that |α| ≤ k. For example,
01201, 01210, 02101, and 01210121 are 3-irreducible strings,
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while 01212, 021021 and 01112 are not 3-irreducible. To prove
the theorem, we identify certain properties in new 3-irreducible
strings that may appear after a duplication and then construct
a 3-irreducible string that is neither a substring of s, nor it
satisfies the properties that every new 3-irreducible substring
must satisfy.

Consider a duplication event that transforms a sequence
z = uvw to z∗ = uvvw, where |v| ≤ 3. Let x be a
3-irreducible string of length at least 4 that is present in z∗
but not in z. The string x must intersect with both copies of
v in z∗ or else it is also present in z. Furthermore, it cannot
contains vv, since otherwise it would not be 3-irreducible.
To determine the properties of x , we consider three case:
|v| = 1, 2, 3. In what follows assume a1, a2, a3 ∈ �.

First, suppose |v| = 1, say v = a1. In this case, a string x
with the aforementioned properties does not exist as all new
substrings contain the square a1a1.

Second, assume |v| = 2, say v = a1a2. Then z∗ =
ua1a2a1a2w and x either ends with a1a2a1 or starts with
a2a1a2.

Third, suppose |v| = 3, say v = a1a2a3. So z∗ =
ua1a2a3a1a2a3w. Recall that |x | ≥ 4. The string x
either ends with a1a2a3a1 or a2a3a1a2, or starts with
a2a3a1a2 or a3a1a2a3.

So for any new 3-irreducible substring x = x1 · · · x j ,
xi ∈ �, j ≥ 4, we have x1 = x3, x1 = x4, x j = x j−2, or
x j = x j−3. Now consider the string (0121)�0, where � > |s|.
This sequences is 3-irreducible but does not satisfy any of the
4 properties stated for x . Since it is not a substring of s and
it cannot be generated as a new substring, it is not a substring
of any y ∈ S.

Next we consider the system
(
�, s,T tan≤k

)
, |�| ≥ 4 in

Theorem 3. The proof of the theorem, uses the following
lemma, which states that the expressiveness of a system also
has a bearing on its capacity.

Lemma 4: If a string system S with alphabet � is not fully
expressive, then cap(S) < 1.

Proof: Since S is not fully expressive, there exists a
z ∈ �∗ that does not appear as a substring of any y ∈ S.
Let |z| = m and μ = n − m� n

m �. We have

|S ∩ �n | ≤ (|�|m − 1)� n
m �|�|μ.

Since m is finite, cap(S) < 1.
Theorem 3: Consider S =

(
�, s,T tan

≤k

)
, where |�| ≥ 4, s

is any arbitrary seed ∈ �∗ and k is some finite natural number.
Then S is not fully expressive, which also implies cap (S) < 1.

Proof: Suppose z = uvw ∈ S, where |v| ≤ k, and let z∗ =
uvvw be the result of a duplication applied to z. Furthermore,
suppose that x = x1 · · · x j , where xi ∈ � and j > k, is a
squarefree substring of z∗ but not z. Similar to the proof of
Theorem 2, x intersects both copies of v but does not contain
both. As a result, either x1 = x1+i or x j = x j−i , for some
2 ≤ i ≤ k.

For definiteness assume � contains the symbols {0, 1, 2, 3}.
The sequence 0t0, where t is a squarefree sequence over the
alphabet {1, 2, 3} and |t| > max{|s|, k}, is not a substring of
s and cannot be generated as a substring since it does not

satisfy the conditions stated for x above. Note that such a t
exists since as shown by Thue [15], for an alphabet size ≥ 3,
there exists a squarefree string of any length. Hence S is not
fully expressive. The second part of the theorem follows from
Lemma 4.

Theorem 4: Consider S = ({0, 1, 2}, 012,T tan≤4 ). Then S is
a fully expressive string system.

Proof: Let S′ =
(
{0, 1, 2}, 012,T tan≤3

)
. Clearly, S′ ⊆ S.

From the proof of Theorem 1, we know that the automaton
of Figure 2 gives the same language as S′. By checking this
automaton, we find that all strings of lengths 1, 2, and 3,
except 021, 210, and 102, appear as a substring of some string
in S′ and, as a result, some string in S. To generate 021, 210,
and 102 as substrings of some string in S, we proceed as
follows:

012 → 01212 → 012101212

012 → 012012 → 01202012 → 012021202012

012 → 012012 → 01202012 → 012020102012

where the repeats are underlined.
We have shown that all strings of length 3 appear in S

as substrings. Now we show the same for every string w =
w1w2w3w4 of length 4. To do so, we study 3 cases based on
the structure of w:

I) First, suppose that w4 is the same as w1, w2, or w3.
For generating such w as a substring, we first generate w′ =
w1w2w3 as a substring of some string and then do a tandem
duplication of w3 if w4 = w3, of w2w3 if w4 = w2 and of
w1w2w3 if w4 = w1.

II) Suppose I) does not hold but w1 = w2 or w2 = w3.
If the former holds, first generate w1w3w4 and then duplicate
w1, and if the latter hold, generate w1w2w4 and duplicate w2.

III) If neither I) nor II) holds, then w = 1210, up to a
relabling of the symbols. In this case, we first generate w′ =
0121 and then do a tandem duplication of w′ to get w. Note
that w′ is of type considered in I).

Until now, we have shown that all strings w of length at
most 4 appear as a substring of some string in S. We use
induction to complete the proof. Suppose all strings of length
at most m appear as a substring of some string in S, where
m ≥ 4. We show that the same holds for strings of length
m + 1.

Consider an arbitrary w = a1a2 · · · amam+1. We now
consider two cases:

i) If all three letters in the alphabet occur at least
once in am−3am−2am−1am , then am+1 equals am−3, am−2,
am−1, or am , and w can be generated as a substring by a
tandem duplication of some suffix of size ≤ 4 of w′ =
a1a2 · · · am . Note that by the induction hypothesis w′ can be
generated as a substring of some string.

ii) If at least one letter in the alphabet does not occur in
am−3am−2am−1am , then am−3am−2am−1am is a sequence over
binary alphabet and so it has a tandem repeat. Therefore w
can be generated as a substring by tandem duplication. Hence,
we have proved the Theorem.

Table III summarizes the result of this subsection. It can
be observed from the table that a change of behavior in
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TABLE III

EXPRESSIVENESS OF TANDEM DUPLICATION

STRING SYSTEMS (�, s,T tan≤k )

expressiveness occurs when the size of the alphabet increases
to 4. If the size of the alphabet is 1, 2, or 3, for sufficiently
large maximum duplication length, the systems are fully
expressive. However, if the size of the alphabet is at least 4,
then regardless of the maximum duplication length, the system
is not fully expressive. This change is related to the fact that
for alphabets of size 1 and 2, all squarefree strings are of
finite length, but for alphabets of size 3 and larger, there are
squarefree strings of any length. Specifically, in case ii) in the
proof of Theorem 4, we used the fact that the binary string
am−3am−2am−1am has a tandem repeat. To adapt this proof
for |�| ≥ 4, we would need to show that the (|�| − 1)-ary
string am−3am−2am−1am has a tandem repeat. But this is
not in general true, since there are squarefree strings over
alphabets of size at least 3 per Thue’s result [15] and indeed
we showed in Theorem 3, again using Thue’s result, that the
system

(
�, s,T tan≤k

)
is not fully expressive for |�| ≥ 4 and

any k.

IV. REGULAR LANGUAGES FOR TANDEM

DUPLICATION STRING SYSTEMS

Tandem duplication string systems that define regular lan-
guages are easier to study due to the fact that one can use
tools from the Perron-Frobenius theory [7], [12] to calculate
capacity. It was proved in [11] that for |�| ≥ 3 and maximum
duplication length ≥ 4, the language defined by tandem
duplication string systems is not regular, if the seed contains
abc as a substring such that a, b and c are distinct. However,
if the maximum duplication length is 3, this question was
left unanswered. In Theorem 5, we show that the language
resulting from a tandem duplication system with the maximum
duplication length of 3 is regular regardless of the alphabet size
and seed. Further, in Corollary 5 we characterize the exact
capacity of such tandem duplication string systems.

Theorem 5: Let S = (�, s,T tan≤3 ), where � and s are
arbitrary. The language defined by S is regular.

Proof: We first assume that s = a1 · · · am , where ai are
distinct. The case in which ai are not distinct is handled later.

For 3 ≤ j ≤ m, let

Ra1···a j = a+
1 a+

2

(
a+

1 a+
2

)∗
a+

3

(
a+

2 a+
3

)∗
Ba1a2a3

∗

a+
4

(
a+

3 a+
4

)∗
Ba2a3a4

∗

· · ·
a+

i

(
a+

i−1a+
i

)∗
Bai−2ai−1ai

∗

· · ·
a+

j

(
a+

j−1a+
j

)∗
Ba j−2a j−1a j

∗,

where, for a, b, c ∈ �,

Babc = a+(c+a+)
∗
b+(a+b+)

∗
c+(b+c+)

∗
.

We already know from Theorem 1 that S = (�, s,T tan≤3 )
with s = a1 · · · am is a regular language if m = 3. We show
that for m ≥ 4, S represents a regular language whose regular
expression is given by Ra1a2···am . Let L R be the language
defined by Ra1a2···am . It suffices to show L R = S.

We first show that L R ⊆ S by proving Ra1a2···am

dd≤3−−→ s.

To do so, we show by induction that Ra1a2···ai

dd≤3−−→
a1a2 · · · ai . First note that this holds for i = 3, from the proof
of Theorem 1. Assuming that it holds for i , to show that this
also holds for i + 1, where i ≥ 3, we write

Ra1a2···ai+1 = Ra1a2···ai a
+
i+1

(
a+

i a+
i+1

)∗
Bai−1ai ai+1

∗
dd≤3−−→ a1a2 · · · ai ai+1 (ai ai+1)

∗ Bai−1ai ai+1
∗

dd≤3−−→ a1a2 · · · ai ai+1 Bai−1ai ai+1
∗

dd≤3−−→ {a1a2 · · · ai ai+1 (ai−1aiai+1)
∗ ,

a1a2 · · · ai ai+1 (ai−1ai+1ai−1ai ai+1)
∗}

dd≤3−−→ a1a2 · · · ai ai+1.

Here we have used the fact that cBabc
dd≤3−−→ cabc which

follows from (4). Hence, L R ⊆ S.
We now show that S ⊆ L R . The finite automaton for L R

is given in Figure 3. Note that the seed s is in L R . It thus
suffices to show that if x = pqr ∈ L R , then y = pq2r ∈ L R ,
where p, q, r ∈ �∗ and |q| ≤ 3.

We prove this by showing that any length-1, 2 or 3 path
ending in any state of the finite automaton in Figure 3 is
duplicable, or in other words (5) holds for all the states
in Figure 3. The finite automaton in Figure 3 is a generalization
of the one in Figure 2. Note that in Figure 3, the states
{S1, S2, S3, S4, T2, T3, T4} are exactly the same as those
in Figure 2. More precisely, there is no additional path ending
in these states in Figure 3. So, from the proof of Theorem 1,
(5) holds for these states.

Now we show for the newly added states, i.e. {Si , Ti :
i ≥ 5}, (5) holds. Consider a set Qk = {S3k−1, S3k, S3k+1,
T3k−1, T3k, T3k+1} for some k ≥ 2. The labelled adjacency
matrix A for the subgraph induced by these states is given by

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

y z 0 x 0 0
0 z x 0 y 0
y 0 x 0 0 z
y 0 0 x 0 0
0 z 0 0 y 0
0 0 x 0 0 z

⎤
⎥⎥⎥⎥⎥⎥⎦

,

where x is used as a label for ak , y for ak+1 and z for ak+2.
A2 is given by

A2 =

⎡
⎢⎢⎢⎣

y2+xy z2+yz zx x2+yx zy 0
xy z2+yz x2+zx 0 y2+zy xz

y2+xy yz x2+zx yx 0 z2+xz
y2+xy yz 0 x2+yx 0 0

0 z2+yz zx 0 y2+zy 0
xy 0 x2+zx 0 0 z2+xz

⎤
⎥⎥⎥⎦,
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Fig. 3. Finite automaton for S = (�, a1a2a3 · · · am ,T tan≤3 ).

The non-zero terms in the non diagonal entries of each column
also appear in the diagonal entry of that column for A and A2.
This can also be verified for A3. Hence, we have shown that
any length-1, 2, 3 path starting in some state C ∈ Qk and
ending in some state D ∈ Qk is duplicable for all k ≥ 2.

We also need to show that any length-1, 2, 3 path that ends
in Qk but starts in a state that is not in Qk is duplicable. Note
that the states in Qk are not reachable from states ∈ Qk′ with
k ′ > k, any possible path of length-1, 2 or 3 ending in some
state D ∈ Qk and starting in a state C ∈ Qk′ with k ′ < k,
has to pass through state S3k−3. Now, we enumerate the labels
of all length-1, 2 and 3 paths ending in some state in Qk but
starting in some state ∈ Qk′ with k ′ < k.

• Label of a path of length 1: ak+2 (ends in S3k).
• Label of a path of length 2: i) ending in S3k : ak+1ak+2,

ak+2ak+2, ii) ending in S3k+1: ak+2ak , iii) ending in T3k :
ak+2ak+1.

• Label of a path of length 3:

i) ending in S3k−1: ak+2akak+1,
ii) ending in S3k : ak+1ak+1ak+2, akak+1ak+2,

ak+1ak+2ak+2, ak+2ak+2ak+2, ak+2ak+1ak+2,
iii) ending in S3k+1:ak+1ak+2ak , ak+2akak ,

ak+2ak+2ak ,
iv) ending in T3k : ak+1ak+2ak+1, ak+2ak+1ak+1,

ak+2ak+2ak+1,
v) ending in T3k+1: ak+2akak+2.

All the path labels enumerated above are duplicable which can
be verified by inspecting A, A2, A3, for paths of length 1, 2
and 3 respectively. This completes the proof of S ⊆ L R .

We have proved the statement of Theorem 5 assuming all
ai ’s in the seed s to be distinct. Now assume the symbols of s
are not distinct. We color the symbols of s so that they become
distinct and obtain the system S̃ =

(
�̃, s̃,T tan≤3

)
. Applying

the preceding proof for distinct symbols to S̃, we find that S̃
is regular. Let h : �̃ → � be a mapping that removes the
colors. This mapping is called a morphism. By [14], we have
that S = h(S̃) is also regular.

An immediate corollary on the capacity of tandem duplica-
tion string system considered in Theorem 5 is stated next.

Corollary 5: If for S in Theorem 5, s contains abc as
a substring such that a, b, and c ∈ � are distinct, then
cap(S) = log|�| 3+√

5
2 � 0.876036 log|�| 3. Otherwise, except

for the seed s of the form am, cap(S) = log|�| 2. If s = am,
cap(S) = 0.

Proof: If abc occurs as a substring of the seed s
such that a, b and c ∈ � are distinct, then the adjacency
matrix of the finite automaton for Babc (strongly connected
component of the finite automaton for Ra1a2···am ) has the

maximum eigenvalue. Therefore, the cap(S) = log|�| 3+√
5

2 �
0.876036 log|�| 3 (see (6) in the proof of Theorem 1).

If no 3 consecutive symbols in the seed s are all distinct
and s �= am , then the maximum capacity component is a finite
automaton only over 2 distinct symbols as in Figure 1. In other
words, terms of the form (a+

i a+
i+1)

∗ determine the capacity.
Hence the capacity is log|�| 2.

When seed s = am , there is exactly one sequence of any
given length in the system. Hence cap(S) = 0.

The following examples illustrate the statement of
Theorem 5 and an application of its proof method.

Example 6: The string system S = ({0, 1, 2, 3},
0123,T tan≤3 ) is regular by Theorem 5 and the regular
expression is given by

R0123 = 0+1+(0+1+)
∗
2+(1+2+)

∗
B012

∗3+(2+3+)
∗

B123
∗.

By Corollary 5, the capacity of this system � 0.876036
log4 3 � 0.694242. �

Example 7: The string system S = ({0, 1, 2}, 0112,T tan≤3 )
is regular by Theorem 5, and the regular expression is given by

R0112 = 0+1+(0+1+)
∗1+(1+1+)

∗
B011

∗2+(1+2+)
∗

B112
∗.

By Corollary 5, the capacity of this system is given by
log3 2 � 0.63093. �

When ai ’s are assumed to be distinct it can be verified from
the regular expression Ra1···a j in the proof of Thereom 5 that
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TABLE IV

CAPACITY AND EXPRESSIVENESS FOR DIFFERENT TANDEM DUPLICATION STRING SYSTEMS (�, s,T tan≤k )

Fig. 4. Finite automaton for S = ({0, 1, 2}, 012, T tan≤2 ). The regular

expression R = 0+1+(0+1+)
∗2+(1+2+)

∗
.

the last occurence of ai is before the first occurence of ai+3
for any i = 1, 2, · · · , j − 3 for all z ∈ S.

The following corollary follows for maximum duplication
length 2 using the same idea as in Theorem 5

Corollary 8: The capacity for S = (�, a1a2 · · · am,T tan≤2 )
is given by log|�| 2, except for the case in which seed s = am

for a ∈ �. In that case, the capacity is 0.
Proof: The string system S = (�, a1a2 · · · am,T tan≤2 ) is

regular. This can be proved using the same method as used in
the proof of Theorem 5. The regular expression Qa1a2···am for
m ≥ 2 is given by

Qa1a2···am = a+
1 a+

2 (a+
1 a+

2 )
∗
a+

3 (a+
2 a+

3 )
∗ · · · a+

m (a+
m−1a+

m )
∗
.

As in Proof of Corollary 5, the capacity is determined by
term(s) of the form (a+

i a+
i+1)

∗
, except for the case when seed

s = am . Therefore, the capacity for language represented by
Qa1a2···am is log|�| 2, when s �= am and 0 when s = am .

The finite automaton for a special case of Corollary 8 with
|�| = 3 is given in Figure 4.

Table IV lists the capacity and expressiveness results pre-
sented in this paper and also the open question on capacity
when k ≥ 4. The expressiveness results follows from Table III.

V. CONCLUSION

In this paper, we showed that for tandem duplication string
systems with bounded duplication length if the maximum
duplication length is 3 or less, the language described by the

string system is regular. Further, we computed exact capacities
for these systems. Computing the capacities for bounded
tandem duplication string systems with maximum duplication
length greater than 3 remains an open problem.

Using Thue’s result [15], we showed that a tandem dupli-
cation string system cannot be fully expressive if the alphabet
size is ≥ 4. However, for an alphabet of size 3 or less such
systems can be fully expressive. Therefore, we have com-
pletely characterized fully expressive and non-fully expressive
tandem duplication string systems with bounded duplication
lengths. As future work, we would like to generalize the
notion of expressiveness by counting the asymptotic number
of substrings of length n that a string system can generate.
Mathematically, we may define the expressiveness Ex p(S) of
a string system S as

Ex p(S) = lim sup
n→∞

log|�| En(S)

n
.

Here En(S) represents the number of substrings of length n
that can be generated by S. It is notable here that with this
definition of expressiveness, a fully expressive string system
S has Ex p(S) = 1.

In this paper, we studied questions related to the generation
of a diverse set of sequences from a seed given a tandem
duplication rule. One can also study the minimum number of
steps required to generate a given sequence of length n from
a squarefree seed and therefore define the notion of distance
between a sequence and its seed given a tandem duplication
rule. For the special case of binary sequences, we have studied
this distance in [1].

It is notable here that the same sequence can be deduplicated
to (or equivalently, generated from) more than one square-
free seed given a tandem duplication rule. For example: the
sequence 012101212 can be deduplicated to 012 as well as
0121012 under bounded tandem duplication with maximum
duplication length 4 in the following way

012101212
dd≤4−−→ 01212

dd≤4−−→ 012.

012101212
dd≤4−−→ 0121012.

Here the underlined portion represents the repeat that is being
deduplicated in a given step. This raises the question of the
uniqueness of squarefree seeds for strings generated by a given
tandem duplication rule. We have studied this question in [8]
in the context of duplication errors.
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