
Robust Phase Retrieval with Sparsity under
Nonnegativity Constraints

Daniel S. Weller
Department of Electrical and Computer Engineering

University of Virginia
Charlottesville, Virginia 22904-4743

Email: d.s.weller@ieee.org

Abstract—High-resolution phase retrieval is challenging due to
the low signal-to-noise ratio of measurements. This work utilizes
variable splitting and alternating minimization to simultaneously
enforce a 1-norm data fit penalty, an analysis-form sparse
regularizer, and nonnegativity or real-valued image constraints
to resolve an image from squared-magnitude measurements. The
reconstruction algorithm incorporates real-valued and nonnega-
tivity constraints via enforcing Hermitian symmetry on Fourier
transform coefficients and projecting the reconstructed image
onto the nonnegative orthant. The proposed method preserves
image quality more robustly than unconstrained analysis-form
sparse phase retrieval on the Shepp-Logan phantom, for a range
of noise levels and outlier measurements.

I. INTRODUCTION

Recent phase retrieval methods such as [1], [2], [3], [4]
target signal recovery from magnitude transform measure-
ments in environments with low signal-to-noise. This paper
targets such large scale phase retrieval problems found in
imaging, where in addition to being sparse or compressible in
some domain, the image pixels also typically are nonnegative
(e.g., intensities) or real-valued rather than being complex-
valued quantities. Such constraints on the reconstructed signal
values are already extensively used in classical phase retrieval
algorithms [5]. Their presence in compressive model-based
reconstruction algorithms also is not new [6], [7]. Such non-
negativity constraints would also be applicable to “robust”
phase retrieval reconstructions, such as those incorporating
sparsity and 1-norm-based data fit terms [3], [4], [8]. This pa-
per adds nonnegativity constraints to the optimization problem
and restricts the domain of the image to real-valued signals.
The primal-dual optimization-based formulation based on the
alternating directions method of multipliers (ADMM) [9],
[10], [11], [12] used in [3], [8]. for finding a locally optimal
solution. This approach is applied to large-scale 2D images to
demonstrate the advantages of nonnegative-constrained opti-
mization over robust phase retrieval without such constraints.

To set up the phase retrieval problem, consider an N -
element signal x, such as an image represented as a colum-
nized vector of pixels. In applications of phase retrieval
like telescope calibration (in astronomy), coherent diffraction
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imaging, and Fourier ptychography, a vector of M Fourier
transform measurements y are acquired without their complex
phase information. In the undersampled case, where M < N ,
the samples y correspond to the set {ym : m ∈ M},
where |M| = M . In addition, physical measurements are
corrupted by noise. Various types of noise are considered in
the literature; this work follows the post-magnitude additive
noise/outlier model used in [3]. Denoting the Fourier transform
F , the discrete forward measurement model for the mth
subsampled coefficient becomes

ym = |[Fx]m|2 + noise, m ∈M. (1)

A nonnegative-constrained phase retrieval inverse problem is

argmin
x≥0

∑
m∈M

||[Fx]m|2 − ym|+ βR(x), (2)

where β > 0 and R(x) are the parameter and penalty function
for regularizing the solution. The nonnegativity constraint is
written in the domain of the minimization problem. Implicit
in this constraint is the real-valued domain of x, which is also
not considered in the author’s earlier work [3], [8].

A number of regularizers made popular in the literature
are motivated by prior information. Compressed sensing and
phase retrieval are combined in numerous ways, including
alternating projections [13], semidefinite programming [14],
message passing [2], graph-based convex methods [15], and
greedy algorithms [1]. The alternating minimization scheme
used in [3] also facilitates sparse model-based regularization
of the phase retrieval problem, and is particularly useful
in conjunction with the 1-norm robust data-fit model. This
work extends the alternating minimization for the primal-dual
framework in [8] to real-valued signals and nonnegativity con-
straints, via additional variable splitting and direct enforcement
of the real-valued constraint in the frequency domain.

II. THEORY

The original inverse problem, as written in (2), is nonconvex
and very difficult to solve, as all the elements of the vector x
are involved in the penalty for every measurement. Introducing
an auxiliary variable u = Fx can decouple the data-fit
penalty. Furthermore, an additional auxiliary variable can be
employed for analysis-form sparsity to simplify solution of the
subproblems described in this section.



A. Analysis-Form Compressive Phase Retrieval

To begin, let us review the ADMM-based approach taken
in [8], without nonnegativity or real-valued constraints on x.
In the real-valued analysis-form sparsity case, R(x) = ‖Cx‖pp,
with p ≤ 1. Substituting u = Fx, and introducing the
auxiliary vector c = CF ′u, the data-fit term for the mth
measurement (in M) is |ym − |um|2|, and the regularizer
becomes ‖c‖pp, yielding the constrained optimization problem

argmin
u,c

∑
m∈M

|ym − |um|2|+ β‖c‖pp, s.t. c = CF ′u (3)

In many settings, including total variation, and undecimated
wavelets, the real-valued analysis transform C can be repre-
sented as one or more circulant convolutions, meaning that C
can be diagonalized as F ′DCF 1. Thus, c = F ′DCu.

The Lagrange form of this contrained problem introduces
the Lagrange dual vector b1. However, direct application of
the Karush-Kuhn-Tucker (KKT) conditions only provides a
necessary condition, not a sufficient one, for optimality in
the nonconvex phase retrieval setting. Instead, following [8],
the augmented Lagrangian form, with a quadratic penalty and
parameter µ1 > 0, is used:

LA(u, c;b1) =
∑
m∈M

|ym − |um|2|+ β‖c‖pp

+ µ1

2 ‖F
′DCu− c+ b1/µ‖2. (4)

This technique involves solving for the primal vectors u(i) and
c(i), and updates of the dual vector b

(i)
1 as b

(i)
1 ← b

(i−1)
1 +

µ1(CF ′u(i) − c(i−1)).
While approximate solutions are possible for u and c, the

ADMM method used instead alternates solving for each vector,
holding the other variables fixed. The resulting subproblems
take advantage of variable splitting to produce computationally
simpler solutions than the joint optimization in (4).

u(i) = argmin
u

M∑
m=1

|ym − |um|2|

+ µ1

2 ‖DCu−F(c(i−1) − b
(i−1)
1

µ1
)‖2, (5)

c(i) = argmin
c

β‖c‖pp +
µ1

2 ‖c− (CF ′u(i) +
b

(i−1)
1

µ1
)‖2, (6)

b
(i)
1 = b

(i−1)
1 + µ1(CF ′u(i) − c(i)). (7)

In the u-update, the unitary property of the DFT is used
to simplify the problem, turning it into a separable problem
in u. The solution to this separable problem is described
in [8]. The update for c is already separable in its usual form,
which admits solution via a proximal operator such as soft-
thresholding for the p = 1 case:

c
(i)
k = soft([Cx(i) + λ(i−1)

µ2
]k;

β
µ2
), (8)

where the soft-thresholding operator is defined as

soft(c; τ) = c
|c| max{0, |c| − τ}. (9)

1The left inverse discrete Fourier transform is actually a set of multiple
such transforms in the general case, and DC is a stack of diagonal matrices.
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Fig. 1. Different cases for possible forms of the objective function being
minimized in (12), for distinct ym and y[−m]: (a) only critical points 0,√
ym, and √

y[−m] (circles), and additional critical points (b) smaller than
the y’s, (c) between the y’s, and (d) greater than the y’s. Note it is not possible
for multiple additional critical points to occur simultaneously.

Closed forms also exist for the p = 0 (hard-thresholding) and
other choices of p including p = 1/2.

B. Real-Valued Optimization and Nonnegativity

As mentioned in the introduction, this paper concerns so-
lution of phase retrieval for nonnegative-valued images. This
nonnegativity constraint is best enforced in conjunction with
a real-valued constraint on the signal x. Thus, this paper first
describes modifying the analysis-form sparse formulation to
enforce real-valued x, and then introduces a nonnegativity
constraint. The key observation to enforcing real-valued x is
the one-to-one equivalency between x being real-valued and
the Fourier transform u being Hermitian, or conjugate, sym-
metric. Introducing the notation [−m] to indicate the Fourier
transform coefficient index corresponding to “negative” fre-
quency, this constraint means that um = u∗[−m], where (·)∗
is the complex conjugate. Recalling the u-update subproblem
in (5) Let us consider two groups of frequencies: those where
m = [−m] (e.g., DC), and those where m 6= [−m]. Where
the indexes are equal, our um-update becomes either

u(i)m = argmin
u

|ym − |u|2|+ µ1

2 ‖dmu− fm‖2, or (10)

u(i)m = argmin
u

µ1

2 ‖dmu− fm‖2, (11)

where dm = [DC ]m and fm = [F(c(i−1)− b
(i−1)
1

µ1
)]m are the

vectors of values in each part of these matrices corresponding
to the mth coefficient of u. These are multi-element vectors in
cases like 2D total variation where C corresponds to circulant
convolutions with multiple filters.

In the case where the indexes are not equal, there are three
cases: where both m and [−m] are in M, when just one is
sampled (without loss of generality, call it m), or when neither
is sampled. The updates for these three cases are

u(i)m = argmin
u

|ym − |u|2|+ |y[−m] − |u|2|

+ µ1

2 ‖dmu− fm‖2 + µ1

2 ‖d[−m]u
∗ − f [−m]‖2, (12)

u(i)m = argmin
u

|ym − |u|2|



+ µ1

2 ‖dmu− fm‖2 + µ1

2 ‖d[−m]u
∗ − f [−m]‖2, (13)

and

u(i)m = argmin
u

‖dmu− fm‖2 + ‖d[−m]u
∗ − f [−m]‖2. (14)

For real-valued images, the analysis transform c and the dual
vector b1 will also be real-valued, so their Fourier transform is
also conjugate-symmetric; the same is true of the spectrum of
the analysis transform spectrum coefficients DC . Thus, dm =
d∗[−m], and fm = f∗[−m], and ‖d[−m]u

∗ − f [−m]‖ = ‖dmu −
fm‖. This observation simplifies the three last cases a bit.

Solving these single-variable um updates is fairly straight-
forward. The solution for the second and fifth cases are least-
squares solutions u

(i)
m = (d′mfm)/‖dm‖2. The minimizing

angle ∠um for all five cases is ∠um = ∠(d′mfm). The
remaining optimizations for the more complicated cases are
over just the magnitudes. The optimization for the first case
is described in [8]; u(i)m is the minimizer of the four critical
points 0,

√
ym, |µ1d

′
mfm|

µ1‖dm‖2−2 , and |µ1d
′
mfm|

µ1‖dm‖2+2 , where the third
critical point is only valid when both µ1|dm|2 > 2, and
µ1|d′mfm| <

√
ym(µ1‖dm‖2−2), and the fourth critical point

is only valid when µ1|d′mfm| >
√
ym(µ1‖dm‖2 + 2).

The fourth case is very similar to the first case, but the four
critical points are 0,

√
ym, |µ1d

′
mfm|

µ1‖dm‖2−1 , and |µ1d
′
mfm|

µ1‖dm‖2+1 , where
the third critical point is only valid when both µ1|dm|2 > 1,
and µ1|d′mfm| <

√
ym(µ1‖dm‖2 − 1), and the fourth critical

point is only valid when µ1|d′mfm| >
√
ym(µ1‖dm‖2 + 1).

The fifth case is somewhat more complex (at least when
ym 6= y[−m]). While the objective functions in the first and
fourth cases essentially involve two ranges of |um| with differ-
ent quadratic functions for each, the fifth case has three ranges
of |um|, each with a different quadratic function. Denote y1
to be the smaller of ym and y[−m], and y2 to be the other.
Then, the six critical points are 0,

√
ym, √y[−m],

|µ1d
′
mfm|

µ1‖dm‖2−2 ,
|µ1d

′
mfm|

µ1‖dm‖2 , and |µ1d
′
mfm|

µ1‖dm‖2+2 . The fourth point is valid only when
both µ1‖dm‖2 > 2 and µ1|d′mfm| <

√
y1(µ1‖dm‖2 − 2).

The fifth point is only valid when both µ1‖dm‖2 > 0, and√
y1(µ1‖dm‖2) < µ1|d′mfm| <

√
y2(µ1‖dm‖2). The sixth

critical point is valid when µ1|d′mfm| >
√
y2(µ1‖dm‖2 +2).

All told, the update to u can be performed efficiently
by considering all the pairs of indexes m, [−m], and iden-
tifying for each which of the five cases and optimization
problems ((10)-(14)) to solve for each. Furthermore, all these
computations can be performed in parallel.

Adding a nonnegative constraint can be performed as is
described in [16]. In that work, x is treated as an additional
auxiliary variable, and the ADMM framework is extended to
include the additional subproblem

x(i) = argmin
x≥0

‖x− (F ′u(i) +
b

(i−1)
2

µ2
)‖2, (15)

with additional dual vector b2 and AL penalty parameter
µ2 > 0, for the constraint x = F ′u. Also, the um-
update would include the additional quadratic penalty term
µ2

2 |u−[F(x(i−1)− b
(i−1)
2

µ2
)]m|2 (and for those with m 6= [−m],

the term corresponding to index [−m]). The second Lagrange
dual vector update is

b
(i)
2 = b

(i−1)
2 + µ2(F ′u(i) − x(i)). (16)

The x-update is a closed-form projection onto the nonnegative
orthant, which can be performed pixel-by-pixel:

x(i)n = max

{
0, [F ′(u(i) − b

(i−1)
2

µ2
)]n

}
, ∀n. (17)

The updates to um described above are nearly identical to the
real-valued case: the term µ2[F(x(i−1) − b

(i−1)
2

µ2
)]m is added

to every appearance of µ1d
′
mfm, and µ2 is added to every

appearance of µ1‖dm‖2. Otherwise, the u-update procedure
is identical in the nonnegatively-constrained case.

An optional modification concerns the DC frequency com-
ponent u0: when x ≥ 0, the DC frequency component is
also always nonnegative. Therefore, when initializing u0 at
the beginning of the iterative algorithm as described in [3],
[8], ∠u0 should not be randomized, but set to zero.

III. EXPERIMENTS

The 64×64-pixel Shepp-Logan phantom, as a prototypically
sparse two-dimensional image, is evaluated here to evaluate the
benefits of nonnegativity-constrained phase retrieval. Because
the phantom produced by the MATLAB phantom() function
is not purely nonnegative, having some pixels set to a small-
in-magnitude, but negative value, those negative values are
set to their absolute value to produce a truly nonnegative
version of the phantom. The circulant total variation penalty is
used, with periodic boundary conditions; in practice, when the
object may extend beyond the field of view, the circulant total
variation can be modified to avoid those periodic boundary
values using a non-scalar regularization weighting parameter
β that is equal to zero for just the periodic boundaries of Cx.
The 1, 2-norm is employed on the x- and y-directions, which
are isotropically combined when computing the joint spar-
sity ‖Cx‖1,2 =

∑
r,c

√
(xr,c − xr−1,c)2 + (xr,c − xr,c−1)2,

summing over rows r and columns c. Thus, p = 1, and
the c-update can be solved in closed-form using the vectorial
extension of soft-thresholding.

The intended application of a “robust” phase retrieval al-
gorithm like the proposed nonnegativity-constrained analysis-
sparse reconstruction is the setting of high-resolution imaging
in a setting with limited signal-to-noise ratio (SNR). Thus,
the Shepp Logan phantom measurements will be simulated
with varying levels of noise and/or outliers to explore the
robustness of the algorithm. From the squared-magnitude
measurements |[Fx]m|2, for each m, noise including additive
white Gaussian noise (AWGN) and random uniform outliers
are added to the squared magnitudes to form ym. Since
measured magnitudes are always nonzero, AWGN values that
produce negative ym are rounded up to zero. In the case of the
Shepp Logan phantom, 60 dB SNR AWGN noise are added
to all measurements, except for the noisefree reconstruction
shown for reference. The outliers are randomly selected over
the whole set of measurements M, and each outlier is set
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Fig. 2. The Shepp-Logan phantom (left) is measured in the Fourier domain, with 60 dB AWGN measurement noise and 1% outliers. The analysis (total
variation) sparse reconstructions are shown on the right, where the first involves no constraints, the second constrains the result to be real-valued, and the
third constrains the result to be nonnegative. The nonnegative constrained reconstruction yields the best result.
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Fig. 3. The difference images for the reconstructions shown in Fig. 2 are shown above, on the scale of [0, 0.25]. The differences between these images
are apparent; while the nonnegative-constrained result has small imperfections inside the “head”, the others produce noticeable incoherent noise-like artifacts
throughout the image.

to a random magnitude between 0 and twice the noisy (non-
outlier) value. Different ranges of outliers are included, from
0 outliers (AWGN only) to 1 percent of all measurements (41
out of 4096 frequencies).

The phase retrieval reconstruction follows the approach
described in [8], using the same β parameter set to 0.01, and
using a choice of µ = 0.0625 found to promote rapid conver-
gence of the ADMM algorithm. Still to ensure incomplete con-
vergence does not unduly influence reconstructed image qual-
ity, 1000 iterations of the ADMM algorithm are run for each
initialization. Because the phase retrieval is nonconvex, 50
different initializations are used for both the proposed method
and the unconstrained method described in [8]. Unlike in the
existing method, the µ parameter is not regularly adjusted; in
practice, self-adjustment via a heuristic like the comparison
between primal and dual residuals used in [3], [8], [12]. Out
of the 50 initializations, the best of the 50 reconstructions is
determined automatically by choosing the one that minimizes
the objective function in (2). When evaluating the error of this
reconstruction versus the ground truth, the same measures are
taken as in [8] to account for image flipping and shifting,
and global phase changes, indeterminacies of phase retrieval
that are not resolved by sparse modeling. Furthermore, the
indeterminacy of the DC frequency measurement (since the
DC measurement lies in the null space of the total variation

operator Cx) is resolved by ensuring that the DC frequency
is included in M. After resolving indeterminacies, the peak
signal-to-noise ratio (PSNR)

PSNR = 10 log10
N

‖x−xtrue‖22
.

and mean structural similarity image index (MSSIM) [17]
values are reported for each reconstruction.

TABLE I
PSNR VALUES (IN DB) FOR SHEPP-LOGAN PHANTOM.

Analysis Real- Nonnegative
Noise Level Sparsity [8] Valued Constrained
None 111.3 138.3 147.0
AWGN (100 dB) 76.16 63.89 76.64
AWGN (80 dB) 53.96 50.36 58.50
AWGN (60 dB) 32.01 32.94 41.78
AWGN (60 dB)
& 0.1% outliers 32.34 34.31 40.18
AWGN (60 dB)
& 0.2% outliers 30.60 34.43 41.08
AWGN (60 dB)
& 0.5% outliers 30.24 35.50 41.52
AWGN (60 dB)
& 1% outliers 29.04 33.58 40.31

Tables I and II list the different noise levels and recon-
struction PSNR and MSSIM values for each level, for the
unconstrained analysis TV method, and the proposed method



TABLE II
MSSIM VALUES FOR SHEPP-LOGAN PHANTOM.

Analysis Real- Nonnegative
Noise Level Sparsity [8] Valued Constrained
None 1.000 1.000 1.000
AWGN (100 dB) 1.000 1.000 1.000
AWGN (80 dB) 0.996 0.989 1.000
AWGN (60 dB) 0.792 0.830 0.988
AWGN (60 dB)
& 0.1% outliers 0.796 0.829 0.988
AWGN (60 dB)
& 0.2% outliers 0.776 0.820 0.986
AWGN (60 dB)
& 0.5% outliers 0.768 0.849 0.989
AWGN (60 dB)
& 1% outliers 0.741 0.810 0.986

with real value and nonnegativity constraints. The Shepp-
Logan phantom and reconstructed images are shown in Fig. 2
for the case of 60 dB AWGN noise and 1% measurement
outliers. The difference images in Fig. 3, relative to the ground
truth, illustrate the qualitative differences between these tech-
niques. While the methods perform very similarly in the
high-SNR regime, the nonnegative-constrained reconstruction
is noticeably more robust to outliers than the unconstrained
or real-value constrained methods. The MSSIM values re-
main over 0.98 for the nonnegative-constrained images, while
the other reconstructions have significantly reduced MSSIM
values, signifying the loss of meaningful structure in the
reconstructed images. This loss of structure can be traced back
visually to the structure present in the difference images in the
figure, where one can clearly see the outline of the phantom is
more distinct in the unconstrained analysis sparsity and real-
valued reconstructions, and much less so in the nonnegative
constrained reconstruction.

IV. DISCUSSION

The reconstructions of the Shepp-Logan phantom provide
an example of the benefit of nonnegativity constraints when
performing phase retrieval on real images. While introducing
another auxiliary variable and modifying the optimization to
include it does not significantly alter the computation involved,
it does yield significantly improved images when outliers are
present. The reasons for this improvement are likely twofold,
but identifying the dominant factor requires further analysis.
One, a nonnegativity constraint further improves upon the ill-
posedness of the conventional phase retrieval problem. Sec-
ondly, the constraint stabilizes the optimization somewhat and
reduces the effects of initialization, since the DC frequency,
which contains most of the image energy in many cases, would
have a fixed phase.

Further development of this and related phase retrieval
methods for realistic application to large scale imaging will
require innovations in a number of areas. First, the total
variation model used is convenient for ensuring C is composed
of circulant transforms, and it is sufficient for the Shepp-
Logan phantom, but it likely would be less suitable for real

images acquired by a microscope or other imaging system,
where edges may be more diffuse. Computationally, iterative
methods like this algorithm would scale to large images, but
the memory and processing requirements would still increase
substantially. Also, tuning parameters such as β, µ1, and µ2

need to be selected in an automatic but robust fashion, taking
into account image content complexity and noise level. These
issues must be taken into account when considering whether
to apply this or any other iterative phase retrieval algorithm.
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