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Abstract—Directly connected to the texture appearance, tex-
ture granularity is an effective measurement for geographic
resources classification, product quality monitoring and image
compression ratio selection. However, the application of existing
works on texture granularity is limited by intense computation
and the dependence on empirically selected parameters that vary
among different textures. This paper proposes an edge-based
texture granularity detection algorithm that takes textures as
homogeneous cells separated by prominent boundaries. Exper-
iments on two datasets show that the proposed method yields
granularity consistent with perceptual measures and is highly
computationally efficient compared to existing methods.

Index Terms—texture, texture granularity, edge, scale space

I. INTRODUCTION

The texture granularity is a fundamental texture property
describing the size of texture primitives, which are basic
cells composing a texture [1]. Compared with other statistical
descriptors like local binary pattern (LBP) [2] and its high
dimensional variants [3]-[5], texture granularity only con-
tains two numbers, the length and the width of the texture
primitive. Therefore, the texture granularity is an inherently
weak descriptor in terms of classification. However, the texture
granularity is more closely associated with perception and
has its own unique applications. First, the texture granularity
plays an important role in characterizing various objects. For
instance, the texture granularity in satellite images is valuable
to distinguish different objects, like crops, buildings and roads;
geologists identify minerals [6] with the help of the mineral
granularity; the carpet granularity is used as an indicator
of the wearing status for quality monitoring [7]. Second,
texture granularity is an essential component of image quality
perception [8]-[10]. For example, images with coarse texture
granularity usually are more sensitive to noise [8], [9], [11]
and texture granularity is highly related to the quality of
compressed images [12].

However, texture granularity detection is nontrivial because
texture granularity is usually defined as the average size
of texture primitives. The variations of texture primitives in
rotation, shape, size and color together make the definition
of the texture primitive challenging. For example, the texture
primitive of “maple” in Fig. 1 can be the whole maple leaf
or the saw tooth in a maple leaf; in “wave”, ripples vary so
significantly in size and shape that a single texture primitive
would lack meaning.

Existing texture granularity methods mainly follow one of
two approaches: segmentation of the original texture or analy-

(a) maple [13]
Fig. 1: Granularity detection is a difficult problem partially
because it is a subjective quantity. In “maple”, both the leaf
and the tooth of the leaf are reasonable choices of the texture
primitive. The proposed algorithm favors the tooth texture
primitive because leaves are heavily occluded. In “wave”, the
texture primitive is hard to explicitly define. The detected
granularity captures the average dimension of ripples.

(b) wave [14]

sis of downsampled textures. One method [15] uses mean shift
segmentation [16] to divide the texture image into connected
regions with similar gray values. Through testing different
clustering thresholds, the image is segmented into regions that
are on the scale of the texture granularity. The main issue in
[15] is that it directly aims at segmenting the texture primitives
and suffers from the considerable computation involved in
segmentation. In a more recent work [12], texture granularity
is calculated by identifying the peaks in down-sampled texture
images and counting the distance between these peaks both
horizontally and vertically. The key step in [12] is determining
the down-sampling factor. An iterative down sampling process
continues as long as the structural similarity (SSIM) index [17]
between the down-sampled image and the original image is
above an threshold. However, the empirical selection of this
threshold limits the application of [12].

Different from existing methods, our approach to measuring
the texture granularity is based on edges. Edges, as the concise
binary form of the gradient, represent the boundaries of texture
primitives and thus are suitable to extract the texture granu-
larity. In our method, the first step is an adaptive Canny edge
detection that removes the edges corresponding to fine struc-
tures while preserving the boundaries of texture primitives;
next, the texture granularity is approximated by analyzing the
length of the main edges. Compared with existing algorithms,
the proposed one involves less computation and relies less on
empirically selected parameters.



The rest of the paper is organized as follows. Section II
motivates our algorithm and elaborates on its implementation.
Experiments and analysis are provided in Section III. Section
IV concludes this work and discusses possible future direc-
tions.

II. EDGE-BASED GRANULARITY DETECTION

Because texture images are composed of smooth texture
primitives separated by prominent boundaries, the strong edges
actually characterize the texture pattern. We base our algorithm
on edges and model the optimal edge map, mask®, that
contains the boundaries of texture primitives, in the following
equation,

mask™ = argmin Z |D(Stasi) |3 + Allmask|lo. (1)

ok = mask

In (1), mask denotes the binary edge mask separating the
texture image, anas % 1s the it" connected region in mask, M
is the number of connected regions, D stands for the gradient
operator, A\ is the regularization parameter to limit the total
length of boundaries in mask. Eqn. (1) aims at minimizing
the summation of total variation in each connected regions
in mask and constraining the total edge length. If x is the
original texture image, (1) can be simplified into,

mask* = argmin C' — |mask - Dz||3 + X||mask|o. (2)
mask

where C' = ||Dz||3. It is easy to see that (2) equals to,

mask* = argmax ||mask - Dx|3 — X|maskl|lo.  (3)
mask
Our algorithm first filters out fine details with an adaptively
selected A and mask®, and then estimates the texture gran-
ularity on layers where the boundaries of texture primitives
remain.

A. Optimal Edge Map

Texture primitives are perceived because edges separating
texture primitives have the greatest gradients. This fact justifies
using simple edge detectors, such as Canny [18], to closely
approximate mask* with proper parameters. By limiting
mask to be the output of an edge detector, the candidates of
mask™ are dramatically narrowed. Because edges obtained by
a Canny detector are continuous, we adopt the Canny detector
to approximate mask*. The other remaining task is choosing
A in (3). In fact, if the we fix the edge detector, A in (3) is
related to edge detector parameters, ¢. If the parameters of the
edge detector are properly set, the detected edge map is close
to mask™*. In our implementation, ¢ is chosen by

of(t)
ot

In our implementation, ¢ is sampled by discrete values and
a scale space of mask is built with gradually increasing
t. Therefore, Eqn. (4) means that the interval including t*
contains the greatest total variation. The rationale for this is

t* = max, , f(t) = ||mask; - Dx||3. 4)

that the edges with dominant gradient correspond to the bound-
aries of texture primitives and the smoothness within texture
primitives concentrates the gradient amplitudes on primitive
boundaries. In our method, the variance of the blurring kernel
of Canny, o, and the ratio between the high threshold and
low threshold, r, are fixed as ¢ = /2, r = 0.7. Therefore,
the only parameter of Canny detector is the high threshold,
Ty,. The edges disappear gradually as 7} increases. The
edges disappearing before t* are mainly the fine structures.
Although the total length of these fine textures are large, their
gradient amplitudes are small. The edges disappearing after
t* correspond to the boundaries of texture primitives but the
total length of disappearing edges is decreasing. Thus, Eqn.
(4) enables the Canny detector adaptively chooses a proper
parameter to detect boundaries of texture primitives. Fig. 2
illustrates these three phases for the texture image ‘“brick”
shown in Fig. 5.

The implementation of the first step in our algorithm is Alg.
1. The pixel values are first normalized to [0, 1]. The number
of T}, N, is set as 50. The binary output of the Canny detector
with high threshold, T};), is e;. The disappearing edges, de;,
from the T}, (i) to T (i + 1) is the exclusive disjunction of e;
and e; ;1.

Algorithm 1 Optimal Edge Map Detection

Initialization;
Normalize input image z to [0, 1]
T,(i)=i/N,i=1,...,N

Scale Space;
e1 = Cannyr, 1) (2)
for i=2:N do
e; = Cannyr, ;) ()
dei = )(01%(617 61',_1)
end for

Scale Space analysis;
tr = max; ;=2:N Hdei DxH%

B. Texture Granularity Poll

Because texture primitives are smooth patches and disap-
pearing edges at each step have similar gradient amplitudes,
each disappearing edge after ¢* naturally ends at the inter-
section of texture primitives. However, disappearing edges
after t* can not be directly used to estimate the texture
granularity because one edge may correspond to boundaries
of multiple texture primitives. Before calculating the texture
granularity, disappearing edges at each step are pruned by the
connectedness of each pixel. The connectedness of a pixel is
the number of edge points in its 8-connected neighborhood.
Pixels whose connectedness are larger than or equal to 4
are removed to break the edges that span multiple texture
primitives. A histogram of the pruned edges is then taken to
approximate the texture granularity.



Fig. 2: (a): Edges before t* contain many fine structures in
the bricks. (b): Edges with ¢* reflect the boundaries of bricks.
(c): Edges after t* are parts of the boundaries. (d) - (f):
Disappearing edges corresponding to (a) - (¢)

Algorithm 2 Texture Granularity Poll

Initialization;
histy = 0, histy, =0

Polling;
fori=1t": N do
Remove points whose connectedness are equal or larger
than 4 in de;
for each edge, [, in de; do
if zlen(l) > ylen(l) then
hist,(xlen(l)) = len(l)
else
hist,(ylen(l)) = len(l)
end if
end for
end for
gra, = median(hist,)
gra, = median(hist,)

In Alg. 2, zlen(l) and ylen(l) are spans of edge, [, on = and
y directions respectively, len(l) is the length of [, hist, and
hist, record the length distribution of edges on two directions.
Each edge can only contribute to the distribution of its main
direction because the span of an edge on its main direction
reflects the size of the texture primitive on one dimension.
Finally, medians of these two distributions are taken as the
texture granularity.

III. EXPERIMENTS

We conduct two experiments to verify the effectiveness
of our algorithm. First we compare the proposed algorithm
with the segmentation-based work [15] and show that our
algorithm reduces computation considerably, while producing
more perceptually satisfying results. In the second experiment,

TABLE I: Computation efficient comparison

brick | grass | gravel2 | red_cloth | sand wave
MS-Granularity | 9.9s 9.9s 9.9s 14.8s 6.0s 13.81s
E-Granularity 0.62s | 0.67s 0.64s 0.67s 0.74s 0.60s
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Fig. 3: Areas of the texture primitive by MS-Granularity and
E-Granularity. The coherence between MS-Granularity and E-
Granularity is 0.95, and rank orders by two methods are same.

we test our algorithm on the Ponce dataset [14] that contains
six sets of texture images, each containing the same content but
on different scales. In the following experiment, we refer to the
method in [15] as MS-Granularity and the proposed method
as E-Granularity. All experiments are run on a machine with
Intel Core i7-4770 CPU of 3.40GHz and 16.0 GB RAM. The
C++ codes of MS-Granularity are provided by Dosselmann
[15] and E-Granularity is implemented using MATLAB.

A. Comparison with MS-Granularity

In [15], MS-Granularity properly ranks six texture images
according to the subjective study of perceived granularity
levels. Because MS-Granularity evaluates the texture gran-
ularity by area, we use the product of length and width
granularity detected by E-Granularity for comparison. Fig.
3 shows that E-Granularity also properly ranks six textures
by texture granularity, but the values of texture granularity
detected by MS-Granularity and E-Granularity are different.
In order to provide an intuitive impression about detected
texture granularities, Fig. 4 shows gridded sample textures
by E-Granularity. In “gravel2”, the detected granularity is
about a quarter of the full size of a gravel. This is because
that due the occlusion, the contrast on the gravel edges
changes roughly every half of the full gravel size. This agrees
with human perception that the occlusion makes the texture
more disordered and thus decreases the texture granularity.
Other samples by E-Granularity also reflect perceived texture
granularities. One comparison between MS-Granularity and
E-Granularity is shown in Fig. 5. Since the output of MS-
Granularity is the average area of texture primitives, the width
and length of grids in Fig. 5 (a) are the square roots of the MS-
Granularity output. In “brick”, the fine wrinkles on the surface
of bricks form a detailed texture, but the most impressive
texture is characterized by the edges between bricks. Because
the segmentation-based MS-Granularity is interfered by the
minor patches within bricks and the crevices between bricks,



(b) sand
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(d) grass

(c) red_cloth
Fig. 4: Granularlty detection samples by E- Granularlty

(b) Texture granularity
detected by MS-Granularity  detected by E-Granularity

(a) Texture granularity

Fig. 5: Granularities detected by different methods on “brick”.

the granularity detected by MS-Granularity shown in Fig. 5 (a)
is much smaller than the perceived size of bricks. The Optimal
Edge Map detection model ensures E-Granularity successfully
captures the texture formed by bricks in Fig. 5 (b).

The computation time of the two methods is shown in Table
I. E-Granularity turns to be much faster that MS-Granularity
because edge detection is a more computationally efficient
operation than mean-shift segmentation.

B. Ponce dataset

In order to avoid the subjective discrepancy of texture
granularity, we verify our algorithm on images with the same
texture content but on different scales in this part. The Ponce
dataset [14] provides six sets of such textures. Granularities
detected by E-Granularity are shown in Table II and gridded
textures are shown in Fig. 6. It is clear that the granularities
decrease as the textures move to finer scales.

Among the textures in Fig. 6, “wall2” and “wall3” reveal
an interesting phenomenon: the texture granularity in well-
organized textures is related to the texture direction. The bricks
in “wall3” are smaller in both height and width, but due to the
higher angle of the bricks in “wall3”, the height of the texture
granularity in “wall2” and “wall3” are the same.

IV. CONCLUSIONS

By exploiting the homogeneity within texture primitives and
the prominence of boundaries, we proposed a novel edge-
based texture granularity detection algorithm in this paper.
Compared with previous works, our method obtains satisfying
results while saving considerable computation. In order to fur-
ther verify the effectiveness of the proposed method, we con-
ducted experiments on a dataset with gradually size-changing
textures and the results agreed with human perception.

TABLE II: Detected granularities of textures from Ponce

image unit size image unit size image unit size
walll 20 X 36 | carpet2_1 16 x 17 floor2_1 18 x 17
wall2 11 X 17 | carpet2_2 14 x 11 floor2_2 10x 9
wall3 11 x 12 | carpet2_3 9%x9 floor2_3 8 x 10
carpetl_1 11 x 11 floor1_1 11 x 13 | pebbles_1 13 x 10
carpetl_2 | 10 x 10 floorl_2 10 x 10 | pebbles_2 9 x 10
carpetl _3 8x9 floorl_3 8 x 10 pebbles_3 8x9

pebbles_l

Fig. 6: Texture granularities detected by E-Granularity reflect
the changing primitive size in each set of textures.

pebbles_2 pebbles_3

With the high efficiency of the proposed method, we plan
to extend the proposed method to natural scene images with
spatially varying texture granularities. Measuring the local
texture granularity of a natural scene image is valuable to many
image processing problems, such as image quality assessment,
image compression and image recovery.
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