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Abstract—Based on a diverse range of priors on natural
scene images and noise, numerous denoising algorithms have
been proposed in the literature. The image quality resulting
from different denoising algorithms may vary significantly across
a data set. In this work, we propose a denoising algorithm
selection framework that chooses among different denoising
algorithms using comparison-based image quality assessment.
Extensive experiments on two databases show that the proposed
comparison-based selection framework consistently selects the
SSIM-optimal denoising algorithm without a reference image.
The proposed selection method effectively removes the burden of
selecting a denoising method for applications involving processing
large data sets automatically.

Index Terms—denoising, image quality, method selection

I. INTRODUCTION

Image denoising endures as an active image processing
topic. Various denoising algorithms are proposed on different
priors, such as the sparsity of natural scene images [1]-[3], the
gradient distribution prior [4]-[6], learned patch priors from
clean images [1], [7], [8] and nonlocal (NL) self-similarity
[71, [9]-[11]. Despite steady research on image denoising, an
universally optimal method remains an open problem. The
reason for this is that denoising algorithms are proposed
from different viewpoints. On certain distorted images, some
priors are more suitable than others. This suitability is mainly
decided by noise characteristics and image content. To select
the best denoising algorithm for a given noisy image, one
considers all available priors and chooses the most suitable
one. For instance, the weighted encoding method [3] implicitly
incorporates impulse pixel detection into the algorithm and
thus is preferable when removing impulsive noise, such as salt-
and-pepper noise. The Improved NL-Means filter in [10] ef-
fectively removes correlated noise by replacing the Euclidean
distance with Mahalanobis distance with the noise covariance
to calculate the patch similarity. For numerous algorithms
based on NL self-similarity [9], [10], the performance is
better at lower noise levels, when the patch similarity these
algorithms are based on holds well. An external prior guided
approach [7] aims to handle higher noise levels through
combining NL self-similarity and priors learned from clean
images. Characteristics of the image contents, like the texture
complexity, also influence denoising algorithm performance.
By enforcing the gradient distribution of the denoised image
to be close to the estimated gradient distribution of the original

image, [4] is particularly good at removing noise from images
with fine textures, like carpets.

The various advantages of denoising algorithms inspire
our work: by comparing the outputs of different denoising
algorithms, and selecting the best one, we can outperform
any single denoising algorithm. For applications where a large
set of heterogeneous noisy images to be processed, it is
preferable to optimize the denoising algorithm for each image
individually. However, we cannot expect a user to manually
select a denoising algorithm for each image. To automatically
determine which denoising algorithm yields the perceptually
most satisfying result, we turn to automatic image quality
assessment (IQA).

According to the availability of a reference image, IQA
algorithms are classified into three categories: full reference
(FR) IQA, restrict reference (RR) IQA and no reference
(NR) IQA. FR-IQA algorithms, like peak signal to noise
ration (PSNR) and structural similarity (SSIM) index [12],
are widely used to evaluate the performance of image en-
hancement algorithms. RR-IQA algorithms [13]-[15] do not
assume the reference image is available, but rely on some
features extracted from that image, like the statistical model
of image wavelet coefficients. Finally, NR-IQA only uses the
distorted image. For denoising method selection, only NR-IQA
algorithms are practical in the absence of a noise-free ground
truth. However, the information we have for denoising method
selection is more than what traditional NR-IQA algorithms
require. For traditional NR-IQA algorithms, only the image to
be evaluated is needed; while for denoising method selection,
we have multiple denoised versions of a single image. By
comparing two images, our previous work on comparison-
based IQA [16] is particularly suitable for this denoised image
ranking problem.

The rest of the paper is organized as follows. Section II
first discusses related NR-IQA methods, and then introduces
comparison-based IQA and how it is used for denoising
method selection. Experiments in Section III show different
advantages of denoising algorithms, and verify that with
denoising method selection, denoised image quality is sig-
nificantly improved compared against single denoising algo-
rithms.



II. COMPARISON-BASED IMAGE QUALITY ASSESSMENT

Evaluating the perceptual quality of a given image is diffi-
cult especially when the reference image is not available. Some
popular approaches, such as DIIVINE [17] and BRISQUE
[18], are based on natural scene statistics (NSS). Because
the distributions of NSS share certain common characteristics
among distortion free images, DIIVINE and BRISQUE evalu-
ate distortions by measuring the change of NSS distributions.
In Anisotropy [19] and LPSI [20], image quality is measured
by how much information diversity an image has. The MetricQ
[21] method proposes the concept of true image content. A
local patch contains true image content if the gradients is
organized in a structured way. The more true image content
an image has, the better the image is.

All these traditional NR-IQA algorithms take one image as
the input and output a quality index. However, such an absolute
quality index is difficult to measure even for human beings.
In subjective image quality evaluation experiments, volunteers
are asked to score an image by comparing it with other images
[22]. Comparison facilitates image quality assessment when
multiple distorted images are available. In [16], we propose
a novel comparison-based image quality assessment (C-IQA)
algorithm and show its capacity for reconstruction parameter
selection by comparing the reconstructed images with different
parameters.

C-IQA takes two images as inputs, and outputs a scalar
number indicating the relative quality of the first image based
on the second. The framework of C-IQA contains three steps:
Distortion Detection, Contribution and Texture Compensation.
Assume [y and I, are two images to be compared, and
P and P, are two local patches from those images at the
same position. Since the overall relative quality is the average
of local scores, we introduce three components in C-IQA
based on P; and Ps. In Distortion Detection, the differential
patch, D, = P, — P, is classified into one of two classes:
structured difference or random difference. The classification
basically measures gradient directions in D): a differential
patch with highly concentrated gradient directions is classified
into structured difference, otherwise the differential patch is
classified into random difference. Once obtaining the type of
differential patch, the second step, Contribution, quantifies the
contributions from two input patches to the differential patch
using covariance. Then a straightforward philosophy combines
the first two modules together: the relative quality of two input
patches is determined by the type of the differential patch and
contributions from input patches to the differential patch. If the
differential patch shows a random pattern, the input patch that
mainly contributes to the differential patch is worse; otherwise,
the input patch is better if it mainly contributes to a structured
differential patch. At last, Texture Compensation adjusts the
weighting of different image patches because images with
different texture complexities have different sensitivities to
the same distortion. For example, images with flat content are
more sensitive to noise than images with fine texture.

For denoising method selection, multiple denoised images
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Fig. 1: The best denoising algorithms for each type of noise.
Each pie chart represents 59 distorted images for one kind of
noise.

need to be ranked but C-IQA is designed for comparing two
images. The bubble sort algorithm is adopted to extend C-
IQA to compare multiple images. Each relational operation
in the traditional bubble sort algorithm is replaced by image
comparison with C-IQA .

III. EXPERIMENTS

The proposed denoising algorithm selection framework is
tested on two public image datasets for quality assessment,
LIVE [23] and CSIQ [22]. LIVE has 29 distortion-free images
and CSIQ has 30 distortion-free images. Because the images
in LIVE and CSIQ are all high quality natural scene images,
we combine the two databases together in the following
experiments. Six state-of-the-art denoising algorithms included
in experiments are BM3D [9], INL [10], Texture [4], WESNR
[3], PGPD [8], PCLR [7]. These algorithms are selected
because BM3D and INL are widely used as the benchmark
for denoising algorithms; Texture and WESNR are good at
denoising images with highly textured content and contained
by impulsive noise respectively; PGPD and PCLR are two
of the latest algorithms showing promising results. On each
original image, three distorted images are created by different
kinds of noise: Gaussian noise, Gaussian noise mixed with
salt-and-pepper noise (referred as Mixed noise in the follows)
and speckle noise. The original images are first turned into
gray images scaled between 0 and 255. The standard deviation
of Gaussian noise is 25; Mixed noise is generated by adding
salt-and-pepper noise to Gaussian noise with the standard
deviation 25 and the density of salt-and-pepper noise is 2.5%;
the standard deviation of the multiply factor is 0.01 for speckle
noise. Therefore, we have 177 noisy images generated by 59
original images and 1062 denoised images in total in our
experiments.

In the next three parts, we first verify the claim that
the performance of denoising algorithms varies with noise
type and image content in Section III-A. Section III-B and
II-C illustrate that the proposed denoising algorithm selection
outperforms other single denoising algorithms and C-IQA
is particularly suitable for image quality assessment when
multiple images are available.



(a) “building2”
Fig. 2: Original image samples. Red patches in (a) and their

denoised versions are shown in Fig. 3. The red patch in (b)
and its denoised versions are shown in Fig. 5.
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Fig. 3: Detailed Patches from “building2”. (a) and (d) are
patches from the original image; (b) and (e) are denoised
results by Texture [4] after adding Gaussian noise; (c) and
(f) are denoised results by PCLR [7] after adding Gaussian
noise. The SSIM index for the denoised image by Texture is
0.7834 and 0.7804 by PCLR.

(e) Texture

A. Performance Variation of Denoising Algorithms

As mentioned in Section I, some denoising algorithms are
suitable for certain kinds of noise but do not always perform
the best. This experiment illustrates the necessity of denoising
method selection: the best denoising algorithms vary with the
noise type and the image content. In Fig. 1, the distribution
of the best denoising algorithms according to SSIM for each
kind of noise are shown. It is clear that PCLR and WESNR are
the best denoising algorithms for Gaussian noise and Mixed
noise respectively, and BM3D and PGPD are two preferable
denoising algorithms for speckle noise. But due to the variation
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Fig. 4: Normalized SSIM indexes of all the denoised images.
The original SSIM indexes of six denoised images from the
same noisy image are normalized by the one selected by
C-IQA. The constant horizontal line of one represents the
performance of the selected algorithm using C-IQA.

of image contents, there are exceptions for each kind of noise.

One case of Gaussian noise removal is shown in Fig. 3 and
the whole original image is shown in Fig. 2 (a). The SSIM
index of image denoised by Texture is 0.7834 and 0.7804 by
PCLR. These quantitative scores are supported by the details in
Fig. 3. The grids on the roof and the texture on the marble are
well preserved by Texture but blurred by PCLR. The reason
is that “building2” is an image with remarkably fine textures
and Texture is particularly designed to preserve these.

B. Denoising Algorithm Selection with C-IQA

Fig. 4 shows normalized SSIM indexes of all the 1062
denoised images. Markers at the same vertical position stand
for six denoised images by different denoising algorithms.
For each noisy image, SSIM indexes of six denoised images
are normalized by the one selected by C-IQA. Therefore, the
constant horizontal line equal to one is the relative score of
the denoising algorithm selected by C-IQA. It is clear that the
quality of images denoised using the algorithms selected by
C-IQA behaves like an envelope for the quality attained by the
other single denoising algorithms. The average SSIM indexes
of different single denoising algorithms and ones selected by
different IQAs are listed in Table I. Because PCLR is the
optimal or suboptimal denoising algorithm for Gaussian noise
in most cases, the average performance of selection by C-IQA
is the same as the best single denoising algorithm, PCLR.
For the other two kinds of noise, the average performance of
selection by C-IQA is better than the best single denoising
algorithms. Compared to selection results by other IQAs,
C-IQA demonstrates its advantage when evaluating multiply
images with the same content.

One example of denoising algorithm selection for “sail-
ing2” distorted with Mixed noise is shown in Fig. 5. The
quality difference among six denoised images is substantial
and denoising algorithm selection ensures the best result is
used. Fig. 6 further shows that accumulated relative quality



TABLE I: Average SSIM indexes of different denoising algorithms (or selected) for different noise

Existing Denoising Algorithms Selected by IQAs
BM3D INL Texture | WESNR | PGPD | PCLR | C-IQA | Metric Q DII BRI ANI LPSI
Gaussian | 0.8534 | 0.8302 | 0.8526 0.7703 0.8482 | 0.8582 | 0.8582 0.8467 0.8417 | 0.8309 | 0.8549 | 0.8253
Mixed 0.6973 | 0.7076 | 0.6202 0.7295 0.6955 | 0.6365 | 0.7408 0.7139 0.6250 | 0.7086 | 0.6868 | 0.7054
Speckle 0.8182 | 0.7716 | 0.8045 0.7454 0.8192 | 0.7989 | 0.8212 0.8035 0.7770 | 0.7883 | 0.8161 | 0.7698
Overall 0.7896 | 0.7698 | 0.7591 0.7515 0.7876 | 0.7645 | 0.8068 0.7880 0.7479 | 0.7759 | 0.7859 | 0.7669

(c) INL
SSIM: 0.7738

(a) Original
SSIM: 1

(b) BM3D
SSIM: 0.7900

(d) Texture
SSIM: 0.6576

(e) WESNR
SSIM: 0.8043

(f) PGPD
SSIM: 0.7588

(g) PCLR
SSIM: 0.7072

Fig. 5: Local patches from denoised images by different denoising algorithms. WESNR shows the best denoising result because

it considers impulsive noise removal.
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Fig. 6: The correlation between SSIM indexes of six denoised
images and accumulated C-IQA scores is 0.92.

scores between neighboring rank images by C-IQA are highly
correlated with SSIM indexes.

C. Discussions on Other IQAs

In the previous experiments, selected denoising algorithms
by C-IQA show better performance than six state-of-the-art
denoising algorithms. However, this does not mean improving
denoising performance by selecting an existing algorithm is
a trivial task. Only image quality assessment algorithms that
fully make use of the available information can improve
the denoising performance further. In Table I, the selected
denoising algorithms by other traditional single-input NR-
IQA metrics do not yield an improvement on the original six
denoising algorithms.

To further reveal the ability of C-IQA evaluating images
with the same content, we use the weighted inversion number
to measure the ranking difference between NR-IQA algorithms
ans SSIM. Assume [;,---,lg are the denoised images by

TABLE II: The average weighted inversion numbers

C-IQA | Metric Q | DI BRI Ani LPSI
Gaussian | 0.0273 | 0.1099 | 0.1568 | 0.1813 | 0.0212 | 0.4134
Mixed 0.0260 | 0.2929 | 0.8395 | 0.1449 | 0.4373 | 0.4225
Speckle | 0.0500 | 0.1565 | 0.2984 | 0.2698 | 0.0825 | 0.3747
Overall | 0.0344 | 0.1864 | 04315 | 0.1986 | 0.1803 | 0.4035

six denoising algorithms and (/(1),--- , Is)) is the ranking
sequence according to a NR-IQA metric from low quality to
high quality. The weighted inversion number is defined as

Inv=Y"" Y max(0,SSIM(I) — SSIM(I)).
i=1:N j=i+1:N

Table II shows the average weighted inversion numbers
between different NR-IQA metrics and SSIM. C-IQA is much
better than the other NR-IQA metrics and is only slightly
outperformed by Anisotropy when the noise type is Gaussian.

IV. CONCLUSION AND FUTURE WORK

In this paper, we first analyzed the advantages of dif-
ferent denoising algorithms and showed the performance of
an image denoising algorithm depends on the noise and
image content characteristics. Extensive experiments verify
our analysis about denoising algorithms and show that with
denoising method selection, different denoising algorithms
together obtain more stable and better denoising performance.

Based on the comparison-based image quality assessment,
we plan to extend the current C-IQA to a multiple-comparison
version. Currently, bubble sort is adopted to rank multiple
images but the relational operation only uses information of
two images each time. In the multiple-comparison version, we
hope to design an IQA algorithm that takes multiple images
into account at the same time and facilitates parameter or
method selection for other image processing problems.
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