
 
 

REGULARIZATION PARAMETER TRIMMING  
FOR ITERATIVE IMAGE RECONSTRUCTION 

 
Haoyi Liang and Daniel S. Weller 

 
University of Virginia, Department of ECE, Charlottesville, VA, 22904, USA 

 
ABSTRACT 

 
Conventional automatic parameter choosing involves testing 
many parameter values, increasing computing time for itera-
tive image reconstructions. The proposed approach first 
measures the image quality after each iteration and then 
predicts the convergence trend corresponding to each value 
of the parameter. Values unlikely to achieve the best quality 
upon convergence are trimmed from successive iterations to 
save time. Experimental results show that our parameter 
trimming method could reduce the running time of total 
variation parameter selection solved by Split Bregman itera-
tion by more than 50% when the numbers of iterations and 
parameter candidates are large. 
 

Index Terms—Parameter trimming, Iterative algorithm, 
Image reconstruction, Perceptual image quality assessment 
 

1. INTRODUCTION   
 
In many regularized image processing algorithms [1]-[9], 
parameter tuning is pivotal to attaining satisfactory image 
quality or speed of the algorithm. In this paper, we focus on 
image reconstruction because image reconstruction is an ill-
posed problem and a regularized iterative algorithm is the 
common approach. Compared with denoising [3], [10], the 
regularization parameter, as an estimation of the sharpness 
in the original image, is even more important to image re-
construction because not only noise is added, but also a por-
tion of the image information may be lost. Conventional 
approaches to parameter tuning based on data discrepancy, 
e.g., generalized cross validation (GCV) [11], L-curve [12], 
are widely used in regularization parameter choosing. But 
unlike perceptual image metrics, GCV and the L-curve 
method do not consistently yield realistic images. The 
common approach to automatic parameter selection samples 
the parameters over a possible range and runs the algorithm 
with each of these values to convergence before the parame-
ter value yielding the best quality is chosen. This idea of 
incorporating quality-based parameter selection with an 
iterative algorithm has been mentioned before [4]-[7], [10]. 
However, in these works, time efficiency is not the key 
point, since either the algorithm converges quickly [7], [10] 
or the quality assessment itself is time-consuming [6]. For 
instance, the denoising parameter selection in [10] involves 

experiments with 30 parameter candidates and 20 itera-
tions/candidate. In situations where algorithms converge 
slowly or the number of parameter candidates is large, as-
sessing the image quality and identifying up the best result 
after all algorithm instances converge would be too time-
consuming to be practical.  

In this paper, we explore the convergence process of an 
iterative reconstruction algorithm with different parameters 
and trim the potential parameter candidates during the con-
vergence process. Our work includes three key elements: 
image quality assessment, image reconstruction and parame-
ter trimming. As for image quality assessment, numerous 
methods [10], [13]-[18] have been put forward. For image 
reconstruction, only no-reference methods [10], [16]-[18] 
are of interest. We finally choose Metric Q [10] as our no-
reference image quality index because it is consistent with 
full-reference image quality index like structural similarity 
index measure (SSIM) [13] and does not require intensive 
computation. With the help of quality assessment after each 
iteration of the reconstruction process, simple and effective 
criteria are proposed to determine if a regularization pa-
rameter candidate can be trimmed before its convergence. 
By doing so, considerable time is saved finding the best 
regularization parameter. 

The rest of this paper is organized as follows. In Section 
2, we briefly introduce the no-reference Metric Q and the 
image reconstruction algorithm. Then, we develop the mod-
el of parameter trimming during the reconstruction process. 
Next, Section 3 gives experiments to verify the effectiveness 
of the proposed method. On six total variation reconstruc-
tion examples using Split Bregman iteration, we present the 
time difference of parameter selection with and without pa-
rameter trimming. Finally, we conclude and discuss our 
contribution and further work in Section 4. 
 

2. METHODOLOGY 
 
We now illustrate the three main parts of our work: image 
quality assessment, iterative reconstruction algorithm and 
regularization parameter trimming criteria. 

2.1. Image quality index 

As mentioned in the last section, parameter trimming relies 



 
 

  
                       (a)                                             (b)  
Figure 1. (a): SSIM and Metric Q value under blurring; 

(b):  SSIM and Metric Q value under noise.  

on the quality assessment of intermediate results after each 
iteration. In this paper, we adopt Metric Q [10] as the image 
quality index because it is a robust metric reflecting the de-
gree of noise and blur in an image (as shown in Figure 1). 
Metric Q is also a practical measurement for its real-time 
speed. The general idea of Metric Q is splitting the whole 
image into small patches, and for each patch, a gradient-
based quality index is calculated. For the whole image, the 
global quality is the average of the qualities of the patches 
which demonstrate meaningful content [10]. 

The House image [19], as shown in Figure 5(a), is used 
to show the validity of Metric Q by comparing it with SSIM 
[13] after the original image suffers different kinds of distor-
tion. Figure 1(a) is the test result of blurring. The variance 
of the blurring kernel we used varies from 0.1 to 1. The 
Spearman correlation between SSIM and Metric Q is 0.9909. 
Figure 1(b) demonstrates that Metric performs well under 
Gaussian noise too. The variance of Gaussian noise ranges 
from 0 to 0.02 with mean 0, and the Spearman correlation 
between SSIM and Metric Q is 0.8902.   

2.2. Total Variation reconstruction algorithm 

Total variation (TV) reconstruction [22] is aimed at mini-
mizing the cost function (1) 

��(�) = �‖��‖� +
�

�
‖�ℱ� − �‖�

�                (1) 

where �  is the reconstructed image, �  is the observed in-
complete data set, � represents the subsampling matrix, ℱ 
represents the Fourier transform matrix, �  represents the 
finite differences matrix, and the TV regularizer ‖��‖� 
combines directions isotropically. The regularization param-
eter �  controls the sharpness of the reconstructed result. 
Large �  will oversmooth the reconstructed image, while 
small � will leave residual noise. How to choose a proper � 
is crucial to the performance of TV reconstruction. Split 
Bregman iteration [20] is used to solve (1). By making re-
placements � ← �� and introducing the dual variable �, the 
split formulation of the problem becomes: 

min�,� �‖�‖� +
�

�
‖�ℱ� − �‖�

� +
��

�
‖� − �� − �‖�

�       (2) 

�. �. � = �� 

The Split Bregman iteration solving (2) is: 
 

  
                          (a)                                      (b)         

Figure 2. (a): convergence process; (b): result at 1000 
iterations.  
 

Initialize:�� = 0, �� = �� = 0 
While stop criterion is not satisfied 

���� = ℱ�����ℱ�  

���� = ��� (�� −
�

�
, 0)

������

��   

���� = �� + (��� − ����)  
End 

 

where we use the notation � = (��� − ��ℱ���ℱ��) , � =

�ℱ���� + ����(�� − ��)� ,  �� = �|��� + ��|�  and �  is a 

Split Bregman penalty parameter, which is set to 0.01 in our 
implementation. It is worth to point out that since � is circu-
lant, ℱ���ℱ−1 is diagonal. 

2.3. Parameter trimming criteria 

After specifying the image quality index and reconstruction 
algorithm, two problems on how to effectively incorporate 
the quality index into the iterative process arise: how to de-
termine if the algorithm has converged and how to foretell 
which �  is better than the others before convergence. An 
effective solution to both problems is crucial to accelerate 
the automatic parameter selection process.  

To illustrate the effects of parameter selection on image 
quality, Brain1 image [21] is reconstructed with 30 values of  
� in Figure 2, with selected images illustrated in Figure 3. 
These parameter values are uniformly sampled from 
1.22 × 10�� to 10 in log scale. The  image  quality index as  
a  function  of  the  number  of  iterations with different � is 
plotted in Figure 2(a), among which 4 lines which corre-
spond to the smallest, the largest, the middle and the best of 
parameter value, are highlighted. Reconstructed image qual-
ity in both SSIM and Metric Q is plotted after 160 iterations 
for each value of � in Figure 2(b).  

Inspired by the fact that iterative algorithms mainly in-
troduce gradual global change rather than dramatic local  
changes, we  determine  the  convergence  point  by the 
mean squared difference (MSD) without considering the 
high level features in an image, like structure. 
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            (a)                  (b)                  (c)                   (d) 

Figure 3. (a): original Brain1 image [21]; (b): recon-
structed result with � = �. �� × ����; (c): reconstruction 

with � = 0.446; (d): reconstructed image with � = ��.  
 

 
           (a)                  (b)                  (c)                   (d) 

Figure 4. (a): original Brain2 image [21]; (b): recon-
structed result with � = �. �� × ����; (c): reconstruction  
with � = � × ����; (d): reconstructed image with � = ��.  

 

 
    (a)                  (b)                  (c)                   (d) 

Figure 5. (a): original House [19]; (b): reconstructed re-
sult with � = �. �� × ����; (c): reconstruction with � = �; 

(d): reconstructed image with � = ��.  

Let �(�) be the reconstructed image after the ��� itera-
tion,  �� = �����(�), �(� − 1)� , ����  is the length of the 

window to confirm the convergence and ����  is a user-

defined threshold. Convergence of the reconstruction pro-
cess is determined by the following criterion: 

if                 ��� (��, ����, … . , �������
) < ����  

converge 
else 

continue iterating 

Depending on the accuracy requirement of different applica-
tions, the strictness of the convergence criterion can be ad-
justed by changing ����and ����. A larger ���� and a small-

er ���� ensure tighter convergence. 

We model the mathematics of predicting the converged 
quality based on two factors: its current quality index and 
the derivative of its quality curve during iteration at current 
position. After the ���  iteration, for the ���  regularization 
parameter ( �) we do the quality assessment ��

� of the corre-

sponding reconstructed result. �� represents the convergence 

process of the ��� beta and �� represents the value of every 
�  after the ���  iteration. A map P  initialized with zero is 
maintained to make the trimming decision. �(�, �) = � 
means in the last � iterations, the ��� beta is always better 
than  the  ��� beta.  The  predicted quality  index of  the ���  

 
                          (a)                                           (b) 
Figure 6. (a): relation between convergence and iteration 
on Brain1 Image; (b): relation between convergence and 

iteration on House Image. 

beta is ���(�) = ���(�) + ���(�) ∗ ���� . Here,���(�) 

is the current quality index of ��� beta, ���(�) is the nu-
merical derivative of ��  at ��� iteration and ����  is the pre-

dicting length in iterations. ����� is introduced to make the 
trimming method robust to the nonmonotonic part of the 
reconstruction process. The following criterion is used for 
parameter trimming: 

if  �1 − �������(�)�� ∙ ���(�) > ���(�) 

�(�, �) = �(�, �) + 1 
else 

 �(�, �) = 0 

if  �(�, �) = ����� , the ��� beta is terminated  

Since a candidate value will not come back once trimmed 
and part of the convergence process may not be monotonic, 
we adopt two criteria to prevent mistrimming. First, parame-
ters that show significant quality change will not be trimmed 
out by combining ���(�) and ���(�) with ���� , and add-

ing the �1 − �������(�)�� term. Second, �����  ensures that 

one parameter candidate is trimmed only if it is exceeded by 
another candidate in the last consecutive ����� iterations. It 
is the shown in the experiment part that even under the con-
servative trimming criteria, the proposed approach effective-
ly speeds up the parameter selection process.  

3. EXPERIMENTS 

We first portray some reconstruction results and then pre-
sent a real situation in which our parameter trimming algo-
rithm demonstrates obvious advantage over the parameter 
selection algorithm without it. 

In Figures 3-5, we show the reconstructions of two 
brain images and the House image. Only 50% Fourier trans-
form data are used to reconstruct the image and in order to 
be more realistic, Fourier transform data are distorted by 
Gaussian noise. The SNR is kept at 40 dB in all reconstruc-
tion experiments.  

In order to study the relation between convergence and 
the number of iterations, we develop a function  

��(�) = min (��, ��, ��, … , ��) 
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Figure 7. Convergence in Metric Q 

 
in which ��, � = 1,2,3, … , �, satisfies 

min ��
�∗��

��
, … , �

�∗��

��
� > ��∗

� ∗ (1 − �) 

�∗ is best parameter candidate (in order number here), N is 
the iteration number from where �∗ convergences, and � is 

the relative tolerance of deviation from ��∗
� .  

 We illustrate the function G with �  from 1 to 5 of 
Brain1 and House image in Figure 6. Point (�, �) on the line 
corresponding to �  means after s iterations, all the image 
quality index in the set of {�∗ − �, … , �∗ + �} enter our ac-
cepted quality range determined by �. Larger �  means we 
have to make sure more � have entered the accepted quality 
range. The starting point of each line indicates after how 
many iterations the quality stop increasing and the best qual-
ity this set of � could achieve. In the two examples, we can 
see that all sets of � stop increasing after about 100 itera-
tions.  

The previous experiments illustrate convergence analy-
sis on all the data we have after 500 iterations. However, we 
don’t have such information in real situations. So how to 
determine the convergence point and foretell the trend of 
each � based on existing data is of significance. Figure 7 
demonstrates how we determine convergence for different � 
of the Brain1 image reconstruction with our MSD-based 
convergence criteria. In Figure 7, the second vertical line 
indicates the convergence point for each iteration line. The 
iterations between the first and the second lines are the pro-
cess of confirming the convergence. In our experiment, we 
used ���� = 10�� and ���� = 20 to determine convergence. 

Please notice that though we do the convergence judgment 
using MSD values, we illustrate the convergence point in 
Metric Q values for we use Metric Q to trim parameter can-
didates. 

Figures 8 and 9 illustrate the difference between select-
ing � with and without parameter trimming. We set ���� = 5 

and ����� = 5 for our trimming predictor here. In Figures 8 
(a) and 9 (a), each � continues iterating until convergence 
criteria are satisfied; in Figures 8(b) and 9(b), � values with 
poor performance are terminated  before  convergence.  It  is  

 

(a)                                            (b) 

Figure 8. (a): Brain1 image reconstruction process with-
out parameter trimming; (b) Brain1 image reconstruc-
tion process with parameter trimming 

 

                             (a)                                          (b) 
 Figure 9. (a): House image reconstruction process with-
out parameter trimming; (b) House image reconstruc-
tion process with parameter trimming 

clear that considerably many iterations are saved with pa-
rameter trimming. 

Table 1 quantitatively compares these two versions of 
parameter selection on more images (Peppers, Boat and 
Cameraman are standard images which can be found from 
[19]). The # Total iteration1 and # Total iteration2 values 
are the summations of iterations before the best � is selected, 
without and with parameter trimming respectively. The Best 
��and best �� values are the best � selected without and with 
parameter trimming, in order number (30 � values are uni-
formly sampled from 1.22 × 10�� to 10 in log scale).  

Table 1 Effectiveness of parameter trimming 

Clearly, a lot of computation is saved with parameter 
trimming. In each of our experiments, more than 50% com-
putation is saved and the selected � are the same. 

Through these experiments our proposed parameter 
trimming method meets the two aims: (1) automatically 
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selecting the best parameters among a set of candidates; (2) 
accelerating the process of parameter selection by foretell-
ing the trend of each parameter.  

4. CONCLUSION 

We examine the idea of adopting parameter trimming during 
the convergence process of an iterative reconstruction algo-
rithm and verify this idea by demonstrating significant re-
duction in total number of iterations while still choosing the 
best regularization parameter in multiple images. The poten-
tial improvement by adopting the idea of parameter trim-
ming is considerable, especially when the number of itera-
tions is large or the accuracy requirement is high. We expect 
that the idea of parameter trimming would result in noticea-
bly improved computational efficiency in related image pro-
cessing problems like deblurring or denoising as well. 

A single parameter algorithm is used to evaluate pa-
rameter trimming in this paper. However, in many situations 
where multiple parameters are used, more comprehensive 
parameter trimming methods should be studied to more ac-
curately predict the convergence trend. 
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