
Leveraging Social Network Concepts for Efficient
Peer-to-Peer Live Streaming Systems

Haiying Shen, Ze Li and Hailang Wang
Dept. of Electrical and Computer Engineering

Clemson University, Clemson, SC 29634
{shenh, zel, hailanw}@clemson.edu

Jin Li
Microsoft Research

Redmond, WA 98052
jinl@microsoft.com

ABSTRACT
In current peer-to-peer (P2P) live streaming systems, nodes
in a channel form a P2P overlay for video sharing. To watch
a new channel, a node depends on the centralized server to
join in the overlay of the channel. The increase in the num-
ber of channels in today’s live streaming applications trig-
gers users’ desire of watching multiple channels successively
or simultaneously. However, the support of such watch-
ing modes in current applications is no better than joining
in different channel overlays successively or simultaneously,
which if widely used, poses heavy burden on the centralized
server. In order to achieve higher efficiency and scalability,
we propose a Social network-Aided efficient liVe strEam-
ing system (SAVE). SAVE regards users’ channel switching
or multi-channel watching as interactions between channels.
By collecting the information of channel interactions and
nodes’ interests and watching times, SAVE forms nodes in
multiple channels with frequent interactions into an overlay,
constructs bridges between overlays of channels with less
frequent interactions, and enables nodes to identify friends
sharing similar interests and watching times. Thus, a node
can connect to a new channel while staying in its current
overlay, using bridges or relying on its friends, reducing the
need to contact the centralized server. Extensive experimen-
tal results from the PeerSim simulator and PlanetLab verify
that SAVE outperforms other popular protocols in system
efficiency and server load reduction.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed applications;
H.3.5 [Online Information Services]: Data sharing

General Terms
Algorithms, Design, Performance

Keywords
P2P live streaming, Social networks, P2P networks

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MM’12, October 29–November 2, 2012, Nara, Japan.
Copyright 2012 ACM 978-1-4503-1089-5/12/10 ...$15.00.

1. INTRODUCTION
Peer-to-Peer (P2P) live streaming applications [1, 2, 3]

such as PPLive and UUSee are attracting millions of viewers
every day. In current P2P live streaming systems, all nodes
watching a channel form into a P2P overlay for streaming
video sharing between each other. To watch a new channel, a
node needs to contact the centralized server for the nodes in
the channel in order to join in the channel’s overlay. Nowa-
days, the wide coverage of broadband Internet enables users
to enjoy live streaming programs effortlessly, and the in-
crease of channels triggers users’ desire of watching multiple
channels successively or simultaneously (i.e., multi-channel
watching mode). A typical multi-channel interface contains
one main view and one or more secondary views (i.e., Picture
in Picture (PIP)), so that users can switch freely between
main view and PIPs.

However, since most current P2P live streaming systems
only allow users to share the stream in one channel, the
support of successive and simultaneous watching modes in
current applications is no better than joining in different
channel overlays successively or simultaneously. Although
today’s PPStream [3] application can support PIP, it also
uses this strategy. A node watching multiple channels stays
in multiple P2P overlays, and thus needs to take part in
maintaining multiple overlays. As a node opens more chan-
nels, its maintenance cost for overlay connections increases
dramatically. Also, in order to join in an overlay, a node
needs to ask the server which nodes it can connect to. Thus,
the successive-channel or multi-channel watching of millions
of users poses heavy burden on the centralized server and
delayed response leads to inefficiency in P2P live streaming
systems [4].

In this paper, we aim to improve the efficiency and scal-
ability of P2P live streaming systems with many users en-
gaging many successive-channel watching or multi-channel
watching by releasing the load on the centralized server. We
propose a Social network-Aided efficient liVe strEaming sys-
tem (SAVE). The key of its design is the utilization of so-
cial network concepts. By considering channels as nodes
in a social network, SAVE regards users’ channel switch-
ing or multi-channel watching as interactions between chan-
nels. By considering users as nodes in a social network,
SAVE identifies users with the same interests and watching
times as friends with social connections. Note that we lever-
age social network behavior properties rather than online
social networks. Specifically, SAVE incorporates two main
schemes: channel clustering and friendlist.

Channel clustering scheme. A node’s watching ac-

249Area Chair: Nalini Venkatasubrahanian

tivity is driven by its interests [5, 6]. Thus, nodes with
similar interests tend to routinely watch the same channels
and may watch them in the same time periods. Also, the
channel watching activities of each node is mostly limited
to a small number of channels that it is mostly interested
in [7, 8, 9]. Therefore, SAVE clusters channels with fre-
quent interactions. It merges channels with high frequent
interactions into one overlay and builds bridges between the
channels with less frequent interactions. Thus, in successive-
or multi-channel watching, nodes can stay in the same over-
lay or take the inter-channel bridges to join in a new overlay
without relying on the server with high probability. We pro-
pose a centralized algorithm and a decentralized algorithm
for the channel clustering.

Friendlist scheme. Following the small-world property
[10, 9, 11] that a node can always find another node within a
limited number of hops, a node in a channel can find a node
in another channel in a few steps via social connections be-
tween friends. Therefore, each node in SAVE maintains a
friendlist recording nodes sharing common-interest channels
and watching time periods. When a node wants to switch
to a channel which is not in its current cluster or when a
node returns to the system, it refers to its friendlist to find
nodes in the desired channel to join the overlay. We pro-
pose an algorithm for identifying friends for the friendlist
construction.

From the perspective of the entire system, for the indi-
vidual nodes’ skewed interests, some interests are shared by
a large portion of the nodes in the system while others are
shared by a small portion of the nodes. The former interests
are handled by the channel clustering scheme and the lat-
ter interests are handled by the friendlist scheme. The two
schemes contribute to three main features of SAVE listed
below, and hence enhancing the system efficiency and scala-
bility and the QoS in terms of satisfactory user experience.

• Low overhead. In SAVE, nodes can stay in the same
overlay when they switch channels or watch multiple
channels in most cases, which greatly reduces the over-
head caused by frequent join and leave operations and
overlay maintenance.

• Quick response. When switching channels, users ex-
perience delay, which is decided by both the buffer-
ing speed and the time cost of joining a channel [4].
Switching channels in SAVE in most cases does not
cause users to leave current overlay and join in a new
overlay, leading to low delay and better user experi-
ence.

• Light server load. Light server load can greatly re-
duce the bandwidth and hardware cost and improve
system scalability. In SAVE, nodes can join in a new
channel overlay without the participation of the server
most of the time, reducing the sever load.

We conducted a survey on user streaming video watching
activities. The survey result shows that: (1) users tend to
watch different channels successively, (2) the distribution of
a user’s interests is skewed, and (3) many users share the
same interests and watching times. Survey results confirm
the social network properties in P2P live streaming systems
and demonstrate the feasibility and necessity of SAVE to a
certain extent. We conducted simulation in PeerSim [12] and
deployed SAVE on PlanetLab [13]. Extensive experimental
results prove that SAVE outperforms other popular proto-
cols in terms of system efficiency and server load reduction.

2. RELATED WORK
P2P live streaming channel overlays. P2P live stream-

ing overlays fall into four categories: tree [14, 15, 16, 17,
18, 19], mesh [20, 21, 22, 23, 24, 25, 26, 27], hybrid struc-
ture [28, 29, 30, 31, 32, 33] and Distributed Hash Table
(DHT) [34]. In tree-based methods, parent nodes push all
received chunks to their children. Mesh-based methods [21,
22, 23] connect nodes in a random manner. Each node usu-
ally serves a number of nodes while also receives chunks from
others. Mesh-based methods are naturally resilient to churn,
but they generate higher overhead. Hybrid methods syn-
ergistically combine tree-based and mesh-based structures.
Wang et al. [30, 31] proposed a hybrid structure consist-
ing of two tiers. PRIME [28] is a hybrid system featuring
segmented and two-phase chunk delivery. It builds a tree
in which nodes’ topological distances to the server depend
on their hops away from the server. The DHT-based struc-
ture [34] builds a hierarchical structure, in which the upper
tier consists of stable DHT nodes and the lower tier consists
of normal nodes. A video chunk requester relies on DHT
functions to find a chunk owner for subsequent chunk re-
trieval. SAVE can help this approach to join multiple DHT
overlays of different channels based on user preference to
enhance efficiency.

Multi-channel P2P live streaming techniques. Cur-
rent works on multi-channel P2P live streaming are mainly
focused on bandwidth allocation optimization. In order to
optimize the allocation of each node’s upload capacity to
each channel it is watching, Wu et al. [35, 36, 37] used game
theory to resolve the conflicts in allocating bandwidth. By
noticing that overlays are overlapped in multi-channel appli-
cations, DAC [38] divides the nodes in an overlap to several
virtual logical nodes, each in a single channel overlay. Then,
by mapping the service relationship among the independent
overlays, DAC models the bandwidth allocation problem to
a solvable global optimization problem. AnySee [22] uses
the mesh overlay structure and maps logical overlay to the
physical location topology. Path selection is based on phys-
ical location topology. Wang et al. [39] established linear
programming models to answer a question: under what cir-
cumstances, should a particular design be used to achieve
the desired streaming quality with the lowest implementa-
tion complexity?

Social network aided video-on-demand systems.
There are few works on video streaming with the aid of social
networks. In the video-on-demand system area, Cheng et
al. [40] investigated the social networks in YouTube videos.
They further proposed NetTube [5] that uses the links be-
tween related videos to generate a social network of nodes,
and then uses a social network assisted prefetching strategy
to achieve smooth transition between video playbacks.

3. DESIGN OF THE SAVE SYSTEM

3.1 An Overview of SAVE
Figure 1 shows a high-level view of the structure of SAVE.

The server node (denoted by ns) is the center of the entire
network. Initially, all nodes in each channel form an over-
lay. When a node wants to join an overlay (i.e., to watch
a channel), it asks for nodes in the overlay from ns and
then joins in the overlay through the recommended nodes.
In SAVE, each channel overlay has a channel head denoted
by hc, which is a stable node with the highest capacity and

250

longest lifetime staying in the channel. We assume that the
cluster heads will not be overloaded in this paper, and leave
the study of the additional load for functioning as cluster
heads as our future work. SAVE has two main schemes:
channel clustering and friendlist.

C

Friendlist scheme

C

Joining in a new channel:
1. Use channel clusters
2. Use friendlists
3 Use the server

User social network

A
1

AskA
2 B

3. Use the server

channel cluster channel cluster

B3

ns

h l l

One DHT (Channel)

channel cluster
DHTs (Channels)

Channel clustering scheme

Channel social network

Figure 1: A high-level view of the SAVE structure.

Channel clustering scheme (Section 3.2). This scheme
considers the interactions between channels, and connects
the frequently-interacted channels (i.e., connects a group of
nodes with similar successive- and multi-channel watching
activities). As time proceeds, the information of watching
activities of the nodes is collected, and the single channels
are gradually grouped into channel clusters. Channel over-
lays in one channel cluster, denoted by cr, are merged into
one overlay or are bridged. By bridged, we mean the head
(hc) of each channel overlay is connected with the heads
of other channel overlays in the cluster. Each cluster also
has a cluster head, denoted by hcr, connecting with all hcs
in its cluster. The nodes in each channel cluster can, with
great probability, quickly switch between or simultaneously
watch their favorite channels without the involvement of the
central server.

Friendlist scheme (Section 3.3). The friendlist scheme en-
ables a node to maintain a friendlist recording nodes with
similar individual channel watching patterns (i.e., interest
channels and watching time). When a node wants to join
a channel which is not in its current cluster, it can quickly
join in the channel relying on the friendlist. Also, when a
returning node (non-first-time user) starts to watch a chan-
nel, it can rely on its friendlist rather than the server to join
the desired overlay.

As a result, when a node connects to a new channel, it
first attempts to take advantage of the channel cluster. The
node can directly request chunks in its current overlay if the
overlay owns the channel. Otherwise, the node tries to take
a bridge connecting to the new channel. If it fails, it uses
its friendlist. If it cannot find a friend in its desired channel
within certain hops, it resorts to the server finally.

3.2 Channel Clustering
We define s(x, y) as a switching activity from channel x

to channel y and define m(x, y) as a multi-channel watching
activity on both channels x and y. For a node’s activity
of s(x, y), we define age as the time interval between when
the switching occurred and the current time, which is used
to represent the freshness of the switching activity. We de-
fine duration(x) as the time interval that the node stays in
channel x before the switching of s(x, y), and define dura-
tion(y) as the time interval that the node stays in channel
y before its next switching. Similarly, for a node’s activity

of m(x, y), we define age as the time interval between when
the multi-channel watching occurred and the current time.
We define duration(x) and duration(y) as the time interval
that the node stays in both channels x and y before the
multi-channel watching stops. Parameter I(x) = 1 when
duration(x) ≥ Ts; otherwise I(x) = 0.1, where Ts is a pre-
defined threshold. In SAVE, each node has a profile that lists
the node’s interested channels specified by the node. If both
x and y are in the node’s interested channels, we consider
the switching non-accidental, and set the value of parameter
inTags to 1. Otherwise, we set inTags = 0.1 in order to
minimize the influence of accidental switching activities.

The duration and inTags reflect, to a certain extent, whether
both x and y are the node’s favorite channels, and the switch-
ing or multi-channel watching is the node’s routine activity.
We use channel closeness of two channels to reflect the fre-
quency of interactions between the channels. If a node’s
switching or multi-channel watching activity occurred more
recently, it spent a certain time period in both channels, and
inTags = 1, it means the node tends to watch both channels
routinely. Such activities of many nodes indicate the higher
closeness between the two channels. The channel head of
channel y keeps a record of channel watching and switching
activities of nodes in channel y, and calculates the channel
closeness between channel x and y by

C(x, y) =
∑

Ω

I(x) · I(y)
ωage

· inTags, (1)

where Ω stands for all the activities of s(x, y) and m(x, y),
ω is the scaling parameter which exponentially reduces the
freshness of switching and watching activities.

In fact, the closeness of two channels can be regarded as
an undirected weighted link between the two channels in
the social network graph, and the channel clustering is the
process of grouping channels with high-weight links. SAVE
aims to generate clusters that maximize the number of intra-
cluster interactions and minimize the inter-cluster interac-
tions. Driven by this objective, we first develop a central-
ized method using the server to collect global inter-channel
activities for channel clustering. Then, we further develop
a decentralized method to cluster channels by utilizing the
local inter-channel activity information.

3.2.1 Centralized Channel Clustering
In the centralized clustering method, the centralized server

node ns needs the information of closeness between channels
for channel clustering. To fulfill this information collection
task, we use a two-tier information aggregation method, in
which the activities are reported from nodes to their channel
heads which calculate channel closeness and report the infor-
mation to the server. For the channel clustering, the server
relies on the minimum cut tree based algorithm, which gen-
erates sub-optimal clustering result but has low computa-
tion complexity. First, the server generates an undirected
graph G(V,E), where vertices (V) represent channels and
edges (E) represent the interactions between channels. The
weight of the edge connecting channels x and y is the sum of
channel closeness C(x, y) and C(y, x). The server then uses
the algorithm to divide the vertices in the entire graph to
subsets. Consequently, all channels are clustered into differ-
ent channel clusters. As shown in Figure 2, a cut is a divide
of all the nodes V in graph G that separates G into two
node subsets A and B. The value of a cut equals the sum of

251

the weights of the edges crossing the cut. The minimum cut
tree algorithm creates clusters that have small sum of inter-
cluster cuts values and relatively large sum of intra-cluster
cut values. Algorithm 1 shows the pseudo-code of the clus-
tering algorithm. First, we insert an artificial sink t into the

sinksink
node

node

node
node

Figure 2: Minimum-cut
tree-based clustering al-
gorithm.

graph G(V,E) (step 1).
The sink is connected
with all nodes in the
graph with weight α
(0 ≤ α ≤ 1) (steps 2-
4). α is used to control
the number of generated
clusters. If α = 0, all
channels will be in one
giant cluster, while α =
1 will make all nodes be-
come singletons. Then,
we use the maximum flow algorithm [41] which involves a
recursive process to construct a minimum cut tree with the
minimum sum of the values of cuts (step 5). After that, we
remove the sink and graph G is divided into several clusters
(steps 6-7). The intra-cluster cut value can be used to mea-
sure the tightness of channels in each cluster. If a cluster
has tightness higher than a pre-defined threshold, its chan-
nels are merged to one overlay. Otherwise, its channels build
bridges between each other.

Algorithm 1: Centralized channel clustering algorithm
executed by ns.

1 V ′ = V ∪ t; //t is the sink;
2 //Connect t to V to generate an expanded graph
G′(V ′, E′);

3 for all nodes v ∈ V do
4 Connect v to t with an edge of weight α;

5 Calculate the minimum cut tree T ′ of G′;
6 Remove t from T ′;
7 Divide G to clusters with small sum of inter-cluster cut
values and large sum of intra-cluster cut values;

8 Return all connected sub-graphs as the clusters of G;

3.2.2 Decentralized Channel Clustering
For ease of presentation, we use channel cluster to denote

both individual channels and a cluster of multiple channels.
Each cluster has a head, which is the most stable node with
the highest capacity and longest lifetime staying in the clus-
ter in all channel heads in the cluster. In the decentralized
method, each cluster head collects both the intra-cluster and
inter-cluster communications in a distributed manner in or-
der to find the clusters with frequent interactions to group
with. Consequently, the created clusters converge to a sta-
ble status, i.e., they have small sum of inter-cluster closeness
and relatively large sum of intra-cluster channel closeness.

The channel head of channel y belonging to channel clus-
ter cri collects the information of I(x), I(y), age and inTags
for activities of s(x, y) and m(x, y), and reports the infor-
mation to its cluster head hcri . Then, hcri builds a cluster
stability vector denoted by Vd with length d, which is the
number of channel clusters that its cluster has interacted
with. We define an interaction from cluster cri to cluster
crj as a channel switching from a channel in cri to a channel
in crj . Each element in the vector V (cri, crj) (1 ≤ j ≤ d),
called stability value, is defined as:

V (cri, crj) =
∑

Ψ

I(x) · I(y)
ωage

· ∇ · inTags, (2)

where (x ∈ cri, y ∈ cri or crj), Ψ stands for all the activi-
ties of s(x, y) and m(x, y) of channel x and channel y; chan-
nel xmust be a channel in cri, while channel y can be a chan-
nel in cri or crj . This means the interactions can be within
cri or between cri and crj . When y ∈ cri , ∇ = 1 and when
y ∈ crj , ∇ = −1. Thus, the interactions between channels in
cri increase the stability value, and the interactions between
cri and crj decrease the stability value. V (cri, crj) indicates
the stability of cri relative to crj , and higher V (cri, crj)
means more channel interactions within cri than between
cri and crj . This metric is used to form clusters so that the
number of intra-cluster interactions is maximized while the
number of inter-cluster interactions is minimized.

We use Vi
d and Vk

d to denote the Vd of cri and crk, respec-
tively. If we group cri and crk into one cluster (i.e., cr(i,k) =
cri ∪ crk), the inter-cluster interactions between cri and crk
become intra-cluster interactions. Then, each element in
the cluster stability vector of cr(i,k), V (cr(i,k), cra) (cra ∈
Vi
d ∪ Vk

d), equals:

V (cri, cra) + V (crk, cra) + V (cri, crk) + V (crk, cri), (3)
where V (cri, cra) = 0 if cra /∈ Vi

d, and V (crk, cra) = 0 if
cra /∈ Vk

d .
A channel cluster with higher popularity would attract

more viewers, which shows the future trend in channel switch-
ing. Thus, we further consider the popularity of each chan-
nel cluster, measured by the number of users in the clus-
ter, denoted by p, in calculating the cluster stability. If the
channels in crj are very popular, nodes in cri have a higher
tendency to watch the channels in crj and vice versa. We
define inverse popularity vector (Pd), which includes 1/p of
each channel cluster of cri’s interacted clusters, and calcu-
late the cluster stability degree D by

D = Pd · Vd
�. (4)

Channel clusters with larger D are more stable, i.e., more in-
teractions occur within the cluster than outside the cluster.

Thus, in the decentralized channel clustering method, each
cluster head periodically collects the information of intra-
cluster and inter-cluster interactions between its own clus-
ter and other clusters. It also asks for Vd from the cluster
head of every other channel clusters it knows, and calculates
the D of the cluster that combines its channel cluster and
that cluster. Two clusters are combined if their combination
leads to higher D than their individual Ds. Specifically, the
head of each channel cluster cri conducts Algorithm 2 to
identify channel clusters in all clusters Θ known to itself
that it can group with so that its D is maximized. hcri se-
lects each cluster crk (step 3) and generates a virtual cluster
cr(i,k) = cri ∪ crk (step 4). Then, hcri calculates this vir-
tual cluster’s D (step 6-10). If cr(i,k) is more stable than
cri (Dcri < D), cri and crk will be combined. Finally, cri
finds the cluster to group with that can make the cluster
more stable, i.e., the number of inter-cluster interactions is
minimized and the number of intra-cluster interactions is
maximized (step 15).

If channel cluster cri selects crk to combine with, it sends
an invitation to crk along with its vector Vi

d. crk then de-
cides whether adding cri will cause an increase of itsD based
on its own knowledge and Vi

d. If yes, it accepts the invita-
tion. If Dcr(i,k)

is greater than a pre-defined threshold, two

252

Algorithm 2: Decentralized channel clustering proce-
dure executed by cluster head hcri .

1 Calculate Vi
d and Dcri ;

2 for each channel cluster crk ∈ (Θ− cri) do
3 cr(i,k) = cri ∪ crk ;

4 Ask for Vk
d from hcrk ;

5 for each current channel cluster cra in Vi
d ∪ Vk

d do

6 Calculate V (cr(i,k), cra) in V(i,k)
d (Equ.(3));

7 Prepare Pd;

8 Calculate Dcr(i,k)
= Pd × Vd

(i,k)�;
9 if Dcri < Dcr(i,k)

then
10 //cr(i,k) is more stable than cri;
11 Return crk; //return the selected crk

Table 1: The record for a friend in the friendlist.
IP address Similarity Profile Entry creation time

clusters merge to one overlay. Otherwise, they build bridges
between each other. In order to make sure that the channels
in one cluster have frequent interactions, each cluster head
also periodically calculates the degree of its cluster exclud-
ing each channel. If excluding one channel leads to higher
D, then the cluster head splits the channel from its cluster.

3.2.3 Cluster Combination and Partition
We use “cluster combination and partition” to represent

both“bridge construction and removal”and“overlay integra-
tion and separation”. SAVE has a hierarchical tree structure
composed of the server, cluster heads (only in the decentral-
ized clustering method), channel heads and nodes in each
level from the top to the bottom. In the centralized cluster-
ing method, the server notifies channel heads to combine or
partition. In the decentralized clustering method, the clus-
ter heads communicate between each other for the cluster
combination and partition. After a bridge is built between
several channel clusters, the more stable and higher-capacity
cluster head becomes the cluster head of the new cluster.
The cluster head notifies the channel heads in other clus-
ters, which update their connections with the new cluster
head. The method for the overlay combination is based on
the overlay construction method in different overlay struc-
tures. The newly selected head maintains a record of the
head in each overlay before combination, which is used for
possible subsequent overlay partition.

For bridge removal, the notified channel head removes the
bridges to other channels in the cluster and becomes the
head of the separated channel. The cluster head also notifies
the channel heads in other channels in the cluster, which re-
move corresponding bridges. For overlay partition, the clus-
ter head or server notifies the previous head of the identified
cluster to separate its overlay from the cluster, and the re-
maining nodes in the cluster conduct corresponding updates.

3.3 Friendlist Construction
In SAVE, each node maintains a profile based on its own

channel watching activities as shown in Figure 3. The “In-
terest tag” is a channel category such as comedy, sports and
news that a node likes to watch. Today’s live streaming
applications usually list a number of interest tags for chan-
nels. SAVE requests users to fill their interest tags manually
when they initially join in the system, and to periodically
update their tags along with their increasing watching activ-

ities. In the figure, the “Channel” lists the channels that the
node frequently watches in an interest tag. “Frequency”and
“Watch time” stand for the frequency and time of watching
the channels in an interest tag during a certain period. “Ac-
tive vector” represents the daily watching routine of a node.
By dividing the 24 hours of a day to T time slots, we can
use a binary string to represent the activity of a node during
a day. For example, 00010010 means that each digit stands
for 3 hours and the user usually watches video from 10:00am
to 1:00pm and 6:00pm to 9:00pm.

Interest tag Channel Frequency Watch time Active vector
Comedy CNN, BBC 0.5/day 12 hours 00010010
Sports ABC…. 1.5/day 33 hours 00011010
… … … …

Figure 3: The profile of a node.
To determine the similarity of two nodes’ watching pat-

terns, we consider not only their common interests but also
their common frequently watched channels and the overlap
of their watching time periods. We define the similarity of
two nodes, ni and nj , as the product of the proportion of
overlapping interest tags and the active vector,

S(ni, nj) =
∑

tagi∩tagj

Scl(ni, nj)× Sav(ni, nj), (5)

where tagi ∩ tagj is the common tags between ni and nj ;
Scl(ni, nj) is the similarity between their two channel lists

cli and clj , defined as Scl(ni, nj) =
|cli∩clj|
|cli∪clj| ; Sav(ni, nj) is

the similarity of active vectors vi and vj of node ni and nj ,

define as Sav(ni, nj) =
|vi∩vj|

T
. The similarity of two nodes

represents the probability that they watch the same channel
at the same time. Unlike other social network based meth-
ods [5] that only consider common interests, SAVE considers
both interests and watching time for friend clustering, which
leverages user routine behavior for efficient video sharing.

Each node in SAVE maintains a friendlist recording a cer-
tain number of friends sharing high similarity with itself.
The record of a friend consists of the items listed in Ta-
ble 1. One question is how a node can find friends to build
and update its friendlist. Recall that for channel clustering,
nodes report their channel switching activities to their chan-
nel heads. Then, the channel heads periodically report the
information to the server in the centralized channel cluster-
ing method, and to their cluster heads which further forward
the information to the server in the decentralized channel
clustering method. Thus, nodes can piggyback their pro-
files on the reports. Consequently, the channel heads, and
(or) cluster heads and (or) the server have profiles of many
nodes. When node ni communicates with the heads or the
server during video watching, it can piggyback its profile on
the message. The heads or server then send back a list of
friends sharing high similarity with ni, which updates its
friendlist. To keep the friendlist updated, node ni period-

ically updates its friendlist by calculating
S(ni,nj)

Age(nj)
, where

Age(nj) is the time interval between the creation/update
time of the friend nj in the friendlist and current time. The
profiles with the similarity values less than a pre-defined
threshold are discarded.

3.4 Efficient Multi-Channel Video Streaming
When node ni initially joins in SAVE, it requests ns to rec-

ommend nodes in its desired channel. The node then joins
in the channel overlay by connecting to the recommended

253

nodes and retrieve and share chunks with other nodes in
the overlay. In a cluster, channels could be merged into one
overlay or bridged. Because the channels in a merged overlay
are very close to each other (i.e., nodes frequently conduct
successive- or multi-channel watchings on these channels),
when a node in a merged overlay wants to switch channel
or watch multi-channels, it can find its requested chunks
from its current overlay using the original chunk search al-
gorithm with high probability. Because the bridged channels
are relatively close to each other, a node can easily use the
bridges to join in the overlay of its desired channel with high
probability. If there is no bridge connecting to the desired
channel, the node then uses its friendlist, and finally resorts
to the server. The bridges in a channel cluster help a node
join a channel frequently watched by itself and other nodes.
The friendlist helps a node join a channel frequently watched
by itself and its friends. The centralized server handles the
case that a node occasionally watches a channel outside of
its interests.

To use bridges for switching to channel cj , node ni in
channel ci directly sends a request with chunkName to its
channel head hci , which checks whether it connects to hcj .
If yes, it forwards the request to hcj . Then, hcj responds to
ni with a few nodes in its channel overlay and also finds the
owner of the requested chunk. The chunk owner sends the
requested chunk to ni. ni connects to the returned nodes,
and hence has joined in cj . If hci is not bridged with hcj ,
then ni tries to use its friendlist to find a bootstrap node for
joining cj . ni sends a request with TTL to all of its friends
and TTL denotes the number of hops a request will be for-
warded. After receiving the request, a node checks whether
it is in the overlay of cj . If not, it decreases the TTL by one
and further forwards the request to its friends. Otherwise,
it responds to the requester with a few nodes in its channel
overlay. It also finds a chunk provider, which returns the
requested chunk to ni. Then, ni connects to the returned
nodes and has joined in cj . The node with TTL=0 will no-
tify ni the failure of search. Then, ni resorts to the server.

3.5 Structure Maintenance in Node Churn
The node churn is mainly about the node joins and depar-

tures from the system, namely the nodes are getting offline
or online. SAVE needs to maintain its structure in node
churn. To ensure there is always a head node in each chan-
nel, when a current channel head is departing, it selects a
new head node and transfers all of its information to the new
head. Also, it notifies all related nodes including all nodes
in its channel and the channel heads of other channels in
its cluster about the new channel head. It also notifies the
server in the centralized method and notifies its cluster head
in the decentralized method. In the decentralized clustering
method, before a cluster head leaves, it notifies all channel
heads in its cluster and the server about the new cluster
head. The notified nodes update their connections accord-
ingly. The new channel head or cluster head is a newly
selected node. The joins and departures of normal nodes
are handled by the original protocol in the P2P live stream-
ing system. If node ni has not received a response from its
connected node nj after a certain period of time, it assumes
that nj is dead or has left the system without warning. If
nj is a head, a new head will be elected. SAVE can use
multiple channel heads and cluster heads to enhance system
reliability, but at the cost of higher maintenance overhead.

0

20

40

60

80

100

120

140

Ch
an

ne
l s

wi
tc

h
in

te
rv

al

Different users

Figure 4: Channel switch
interval.

40

50

60

wi
tc

he
s

20

30

40

of
 c

ha
nn

el
 s

w

0

10

Nu
m

o

Different users

Figure 5: Number of
channel switches.

4. SURVEY RESULTS
We conducted an online survey1 on SurveyMonkey [42] on

live streaming video watching activities. Though the survey
is not as strong as real trace data, the survey results con-
firm the social network properties in online live streaming
systems to a certain extent. We collected 60 responses in
the community of undergraduate and graduate students in
Clemson University. We will study more characteristics of
successive and simultaneous multiple channel accessing in
our future work.

4.1 Channel Switching Activities
One question in the survey is “how long on average do you

watch a channel before you switch to another?” Figure 4
shows the channel switch interval in minutes for each user
while watching streaming videos. We can see that most users
have an interval between 10-30 minutes. 43% users have an
interval of 20 minutes, 18% have an interval of more than
40 minutes and 7% have an interval of 120 minutes. The
average interval between channel switches for all users is
30 minutes. The result shows a relatively frequent channel
switching pattern of most users. We use session to repre-
sent the process that a user logs in the system, watches the
streaming videos and logs out the system. Figure 5 plots the
average number of channel switches per session of each user.
We see 67% users switch channel 5 times, 22% switch chan-
nel 10 times, 9% and 2% switch channel 20 and 50 times,
respectively. We then reach the following observation:

Observation(O)1. On average, a significant percent of
users switch channels relatively frequently. A small percent
of users stay in a channel for a relatively long time. Most
users switch a certain number of channels per session, and
a small percent of users switch channels many times per ses-
sion.

The frequent channel switch requests from millions of users
would overload the centralized server and increase the la-
tency of responses. This shows the necessity of SAVE. The
nodes staying in a channel for a relatively long time can
function as cluster heads that build bridges between each
other in order to link the channels in a cluster. This reduces
the maintenance overhead of bridges.

4.2 Feasibility of Channel Clustering
The result in Figure 5 implies that most users may have

a certain number of favorite channels. From Figure 6, we
see that the number of interests of each user varies from 1
to 10, with 50% of all users having no more than 3 interests
and 96% of all users having no more than 7 interests. Based
on Figures 5 and 6, we can reach:

1Survey link: http://www.surveymonkey.com/s/CQ2SZ2G

254

0

2

4

6

8

10

12
In

te
re

ste
d

ca
te

go
rie

s

Different users

Figure 6: Number of inter-
ests.

Figure 7: Interest correla-
tion.

0

5

10

15

20

25

1 4 7 10 13 16 19 22

Nu
m

be
r o

f p
eo

ple
 o

nli
ne

Hours of a day

Figure 8: Online periods.

0

1

2

3

4

5

6

7

To
ta

l o
nli

ne
 tim

e

Different users

Figure 9: Online time.

O2. On average, most users usually watch channels in a
few interests. A very small percentage of users switch be-
tween many channels.

SAVE merges or bridges the channels that most users al-
ways watch, these users can share chunks in multiple chan-
nels or directly jump between the channels without relying
on the centralize server. For the very small percent of users
that switch between many channels, they can use friendlists
for the switching. The server is needed for random channel
switches.

We drew a graph for the 18 interests in the questionnaire,
shown in Figure 7, in which a vertex represents an interest
and a link connecting two interest vertices means one user
has both interests. The link between two interest nodes has
higher weight when these two interests are shared by more
users. We observe that a certain number of interests have
high-weight links between each other. This means that a
relatively large percent of users share certain interests. In
SAVE, clustering the channels in these interests by merging
or bridging can facilitate fast switching between these chan-
nels. Also, the benefits of clustering would be more than the
cost of cluster maintenances since many nodes would bene-
fit from the merged overlay and bridges. We also find that
some vertices have links with median weights. The nodes
with these interests can use friendlists for switching chan-
nels. We arrive at an observation:

O3. Many nodes sharing common interests (i.e., watch-
ing and switching between the same channels) makes chan-
nel clustering and friendlist schemes viable and effective ap-
proaches for high video steaming efficiency.

4.3 Video Watching Behavior Pattern
The user watching behaviors have a large impact on the

performance of SAVE in terms of peer online time and chan-
nel switching behavior. Figure 8 shows the number of online
users at specific hours within the day. We can see that most
people watch videos between 18:00-23:00, which we called
the “active period” (five hours in total). If we consider a
node that has been online for more than half of this pe-
riod as stable node, then from Figure 9, we can see that
about 25% nodes qualify. Actually, according to [31], in
video streaming applications, nodes generally have around
1.5 hours online time.

O4. Users are online for a relatively long time, with a
considerable part of them being stable nodes.

This observation is consistent with that in [43]. The sta-
ble nodes can serve as cluster heads to connect channels in
a cluster together by building bridges between each other.
Then, the adverse effect of churn on the clusters of SAVE is
mitigated.

5. PERFORMANCE EVALUATION
We conducted experiments on the event-driven simulator

PeerSim and PlanetLab which is a high-performance com-
puting cluster in Clemson University. Each test lasts for 24
hours. In our simulation, the system consists of 10000 nodes
and 100 channels. We set the video bit rate, which is the
size of a video segment per second, to 600kbps. The ω in
Equ.(2) was set to 1.02. In the PlanetLab experiment, we
selected 300 online nodes and chose the computer with IP
address 128.112.139.26 in Princeton University as the server.
Considering that the PlanetLab test have much fewer nodes
than the simulation, we reduced the number of channels to
30 in these two tests.

The TTL for friend lookup through friendlists was set to
2. The number of interests of each node is distributed in
[1,7] according to the survey results shown in Figure 6. We
regarded one interest as an interested channel. We divided
the 30 or 100 channels to 5 groups, and each group has 6
or 20 channels. Each node chose 90% of its interested chan-
nels from one group randomly chosen from the 5 groups, and
chose the remaining 10% of its interested channels randomly
from the channels in other groups. When a node switches
channels, it has 90% probability to watch a channel in its
interested channels. The warm-up period lasted for 2 hours.
The online time for nodes is distributed according to the
survey result in Figure 9. The channel switching time is
distributed according to the survey result in Figure 4. A
node periodically switches channel after its switching inter-
val time has elapsed. In order to keep the same number of
nodes in the test while simulating node churn, after a node
leaves the system, another node joins in the system. The
statistics in [44, 5] is for the distribution of the download
bandwidth in the simulation. A node’s upload bandwidth is
set to 1/3 of its download bandwidth [45].

In all previous P2P live streaming systems, a node needs
to contact the central server for changing channels. Since
mesh structure is used in most current P2P live streaming
systems, we first built SAVE on the mesh structure and
compared it with mesh-based system [2] (Mesh), tree-based
system [16] (Tree) and DHT-based system (DCO) [34]. For
SAVE, we have two variations using the centralized (Sec-
tion 3.2.1) and decentralized (Section 3.2.2) channel cluster-
ing methods, represented by “SAVE-C” and “SAVE-D”, re-
spectively. We also built SAVE upon DCO for comparison.

5.1 Switching Delay and Server Load
Figure 10(a) and Figure 11(a) show the switch delays in

the simulation and PlanetLab experiments, respectively. We
randomly chose 1000 switchings from all switchings. We
then ordered the switch delays in an increasing order, calcu-
lated the average value of every 100 values, and finally got

255

0

500

1000

1500

2000

2500

100 200 300 400 500 600 700 800 900 1000

Sw
itc

h
de

la
y

(m
s)

Number of channel switches

SAVE-C
SAVE-D
Mesh
Tree
DCO

(a) Channel switching delay.

0

100000

200000

300000

400000

500000

600000

0 100 200 300 400 500 600 700 800 900 1000

Se
rv

er
 lo

ad

Number of channel switches

SAVE-C
SAVE-D
Mesh
Tree
DCO

(b) Server load.

0

10

20

30

40

50

60

70

80

Cluster Friend Server

Pe
rc

en
t o

f r
es

ol
ve

d
sw

itc
hi

ng
 re

qu
es

ts
 (%

)

SAVE-C
SAVE-D

(c) Distribution of resolved
switching requests.

0
100000
200000
300000
400000
500000

C
lu

st
er

in
g

co
st

Number of nodes in the system

SAVE-C
SAVE-D

(d) Clustering cost.

0.0E+0
5.0E+8
1.0E+9
1.5E+9
2.0E+9
2.5E+9

10 15 20 25 30M
ai

nt
en

an
c

e
ov

er
he

ad

Node churn rate (min.)

SAVE‐C
SAVE‐D

(e) Maintenance overhead.
Figure 10: Experimental results from simulation on PeerSim.

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

100 200 300 400 500 600 700 800 900 1000

Sw
itc

h
de

la
y

(m
s)

Number of channel switches

SAVE-C
SAVE-D
Mesh
Tree
DCO

(a) Channel switching delay.

0

200

400

600

800

1000

1200

1400

0 200 400 600 800 1000

Se
rv

er
 lo

ad

Number of channel switches

SAVE-C
SAVE-D
Mesh
Tree
DCO

(b) Server load.

0

10

20

30

40

50

60

70

80

90

Cluster Friend Server

Pe
rc

en
t o

f r
es

ol
ve

d
sw

itc
hi

ng
 re

qu
es

ts
 (%

)

SAVE-C
SAVE-D

(c) Distribution of resolved
switching requests.

0

500

1000

1500

50 100 150 200 250 300C
lu

st
er

in
g

co
st

Number of nodes in the system

SAVE-C
SAVE-D

(d) Clustering cost.

0

10000

20000

30000

40000

10 15 20 25 30M
ai

nt
en

an
ce

ov

er
he

ad

Node churn rate (min.)

SAVE‐C
SAVE‐D

(e) Maintenance overhead.
Figure 11: Experimental results from the PlanetLab testbed.

10 average values. We see that both SAVE-C and SAVE-
D achieve the fastest switching, which confirms their highly
efficient video streaming. In other systems, a node needs
to contact the centralized server in order to join in another
overlay, generating a longer delay. SAVE-D has a slightly
larger startup delay than SAVE-C. This is because SAVE-C
has the global information of all channel switching activi-
ties of all nodes in the system for more accurate clustering
channels, while SAVE-D relies on local cluster information
exchanges. We also see that Tree produces slightly shorter
delay than Mesh. This is because a node in Mesh needs to
pull a chunk from its neighbors, while Tree uses push. DCO
generates lower delay than Mesh and Tree in simulation, and
generates lower delay than Mesh but higher delay than Tree
in the PlanetLab results. DCO uses stable nodes as DHT
nodes for locating chunk owners. In the simulation with a
stable environment, nodes in DCO can always find chunk
owners relying on DHT, leading to lower delay. However,
in a less stable environment in the PlanetLab testbed, DHT
nodes may fail, leading to chunk owner location failures and
longer delay. We also observe that the delay on Planet-
Lab exhibits exponential growth, which is different from the
simulation results. This is because in the simulation test,
the bandwidths of nodes are constant while in PlanetLab,
nodes’ real bandwidth varies and some nodes have very low
bandwidth, resulting in long delay in communication.

Figure 10(b) and Figure 11(b) show the server load (to-
tal number of requests served by the server) over time in the
simulation and PlanetLab experiments, respectively. We ob-
serve that SAVE incurs significantly lower server load than
other systems. SAVE releases the load on the server by
clustering channels with frequent interactions and building
friendlists. SAVE-C generates slightly lower server load than
SAVE-D due to its more accurate clustering of channels. We
see that Mesh generates slightly lower server load than Tree.
This is because nodes in Tree needs to contact the server
node more frequently because chunks often fail to transmit
due to the vulnerability of the tree structure to churn. DCO
produces lower server load than Mesh and Tree due to two

reasons. First, nodes can easily find chunk owners relying on
DHT. Second, nodes can subsequently receive chunks from
the located owners.

5.2 Effectiveness of the Social Network in SAVE
Figures 10(c) and 11(c) show the percent of resolved switch

requests using clusters, friends and the server in SAVE-C
and SAVE-D in the simulation and PlanetLab experiments,
respectively. In both systems, a significantly higher percent
of switch requests are resolved by clusters. A moderate per-
cent of requests are resolved by friends and a very small
percent of requests are resolved by the server. The results
demonstrate the effectiveness of the channel clustering and
friendlist schemes. We also see that SAVE-C has higher per-
cent in using clusters than SAVE-D because SAVE-C has
higher accuracy in clustering channels than SAVE-D with
global information.

5.3 Cost of SAVE
Figures 10(d) and 11(d) show the clustering cost of SAVE-

C and SAVE-D measured by the total number of messages
to cluster channels in the simulation and PlanetLab exper-
iments, respectively. The clustering cost increases as the
number of nodes in the system increases. Also, SAVE-D re-
quires more communications than SAVE-C in building the
clusters. This is because in SAVE-C, channel heads report
to the server about node channel switching activities. In
SAVE-D, channel heads report to their cluster heads about
node channel switchings, and all cluster heads need to com-
municate with each other for cluster combining and split-
ting. However, the communication messages are distributed
among many cluster head nodes, which does not increase
server load.

Next, we test the maintenance overhead of SAVE in node
churn measured by the total number of messages to han-
dle node joins and departures. The lifetime of each node
is chosen from [x − 0.2x, x + 0.2x]min, where the average
lifetime x was varied from 10 to 30 with an increment of 5
in each step. Figures 10(e) and 11(e) show the maintenance

256

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4E+6 3E+7 6E+7 8E+7

P2
P

Co
nt

rib
ut

ion

Time (ms)

SAVE-C
SAVE-D
Mesh
Tree
DCO

Figure 12: P2P contribu-
tion.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

8 16 32 64

Fi
ll r

at
io

Number of neighbors per node

SAVE-C
SAVE-D
Mesh
Tree
DCO

Figure 13: Fill ratio.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

10 20 40 60 90

Se
rv

er
 b

an
dw

id
th

co

ns
um

pt
io

n
(M

bp
s)

Ave. peer online time (min.)

SAVE-C
SAVE-D
Mesh
Tree
DCO

Figure 14: Server band-
width consumption.

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60

CD
F

of
 th

e
%

 o
f u

se
rs

Number of served join requests

SAVE-C
SAVE-D

X

Figure 15: Load balance
status.

overhead of SAVE-C and SAVE-D in the simulation and
PlanetLab experiments, respectively. As the average life-
time increases, the maintenance overhead decreases. This is
because slower node join and departure rate generates less
messages for maintaining the SAVE structure. This is be-
cause in SAVE-C, channel heads connect with the server,
while in SAVE-D, channel heads connect with cluster heads
which connect with the server. We can see that SAVE’s
clustering cost and maintenance overhead is acceptable.

5.4 Overall P2P Performance
Below, we present simulation results for SAVE built on

the DHT structure. Figure 12 shows the P2P contribution
percentages over time measured by the number of chunk
requests that are resolved by peers rather than the server.
We see that all the percentages exhibit an increase at the
beginning and then become stable. As time goes on, more
and more chunks are disseminated to nodes, and chunks can
be retrieved from nodes. Tree has a lower P2P contribution
because it is more vulnerable to churn.

Fill ratio is defined as the ratio of nodes holding a chunk
at a certain time. Figure 13 is the average fill ratio of dif-
ferent systems two seconds after a chunk is distributed by
the server. We see that SAVE achieves much higher fill ra-
tio than DCO. Because of SAVE’s channel clustering and
friendlist schemes, a node can join or switch channels with-
out relying on the server. In DCO, a node needs to contact
the centralized server in order to join in another overlay,
generating a certain delay in chunk dissemination. SAVE-
D has a slightly lower fill ratio than SAVE-C because the
decentralized method is not as accurate as the centralized
method in channel clustering, increasing the probability that
a node’s desired channel is not in its current cluster.

We also see that SAVE and DCO generate higher fill ra-
tio than Mesh. In SAVE and DCO, the chunk discovery in
each channel is based on DHT, which can guarantee chunk
provider discovery. After a provider is located, the client
directly asks the provider for subsequent chunks. In Mesh,
a node pulls a chunk from their neighbors. As the number
of neighbors per node increases, the fill ratio of Mesh in-
creases significantly because more neighbors means chunks
can be more quickly delivered to nodes. Tree’s fill ratio is
better than Mesh’s when the number of neighbors is small,
but becomes worse as the number increases. This is because
each node has a bandwidth constraint. The chunk dissemi-
nation speed slows down as the number of children of a node
increases.

Figure 14 shows the server bandwidth consumption as
a function of the average peer online time. The results
follow Tree>Mesh>DCO>SAVE-D>SAVE-C. SAVE based
on DHT achieves the least sever bandwidth consumption
due to its cluster clustering and friendlist schemes. SAVE-
D>SAVE-C is because the centralized clustering method is

more accurate. DCO provides high chunk availability with
the aid of DHT, generating less sever bandwidth consump-
tion than Mesh. Tree exhibits the highest server side band-
width consumption because nodes have a higher probability
of failing to obtain chunks from its parents under high net-
work churn.

Figure 15 shows the CDF of nodes versus the load (num-
ber of channel or switch requests served) of different nodes
in SAVE-C and SAVE-D. We see that up to 90% of all nodes
have a load less than 20 requests, while more than 20% of all
nodes have the opportunity to server other nodes. Hence,
SAVE can utilize a significant portion of all nodes in a rela-
tively even manner. Balance load distribution will not over-
load a node and thus user experience is not greatly degraded.

6. CONCLUSIONS
In this paper, we propose SAVE, a social network-aided ef-

ficient P2P live streaming system. SAVE supports successive-
and multiple-channel viewing with low switch delay and low
server overhead by optimizing the operations of joining and
switching channels. SAVE considers the historical channel
switching activities as the social relationships among chan-
nels and clusters the frequently interacted channels together
by merging overlays or building bridges between the over-
lays. This maximizes the probability that existing users can
locate their desired channels within its channel cluster and
can take the bridges for channel switches. In addition, each
node has a friendlist recording nodes with similar watching
patterns, which is used to join a new channel overlay. Our
survey on user video streaming watching activities confirms
the necessity and feasibility of SAVE. Through the experi-
ments on the PeerSim simulator and PlanetLab testbeds, we
prove that SAVE outperforms other representative systems
in terms of overhead, video streaming efficiency and server
load reduction. Our future work lies in further reducing the
cost of SAVE in structure maintenance and node communi-
cation. Also, we will design algorithms for cluster separation
and cluster head re-election.

Acknowledgements
This research was supported in part by U.S. NSF grants
OCI-1064230, CNS-1049947, CNS-1156875, CNS-0917056 and
CNS-1057530, CNS-1025652, CNS-0938189, CSR-2008826,
CSR-2008827, Microsoft Research Faculty Fellowship 8300751,
and Oak Ridge Award 4000111689.

7. REFERENCES
[1] PPLive. http://www.pplive.com.

[2] UUSee. http://www.uusee.com.

[3] PPStream. http://www.ppstream.com.

[4] F. Dobrian, V. Sekar, I. Stoica, and H. Zhang.
Understanding the impact of video quality on user
engagement. In Proc. of SIGCOMM, 2011.

257

[5] X. Cheng and J. Liu. Nettube: Exploring social
networks for peer-to-peer short video sharing. In Proc.
of INFOCOM, 2009.

[6] M. Mcpherson. Birds of a feather: Homophily in social
networks. Annual Review of Sociology, 27(1):415–444,
2001.

[7] C. Wilson, B. Boe, A. Sala, K. P.N. Puttaswamy, and
B. Y. Zhao. User interactions in social networks and
their implications. In Proc. of EuroSys, pages 205–218,
2009.

[8] A. Fast, D. Jensen, and B. Levine. Creating social
networks to improve peer-to-peer networking. In Proc.
of SIGKDD, 2005.

[9] A. Iamnitchi, M. Ripeanu, and I. Foster. Small-World
File-Sharing Communities. In Proc. of INFOCOM,
2004.

[10] J. Kleinberg. The small-world phenomenon: An
algorithmic perspective. In Proc. of STOC, pages
163–170, 2000.

[11] S. Milgram. The small world problem. Psychology
Today, 1967.

[12] The PeerSim simulator. http://peersim.sf.net.

[13] PlanetLab. http://www.planet-lab.org/.

[14] Y. Chu, A. Ganjam, T. Ng, S. Rao,
K. Sripanidkulchai, J. Zhang, and H. Zhang. Early
experience with an internet broadcast system based on
overlay multicast. In Proc. of USENIX, 2004.

[15] S. Banerjee, B. Bhattacharjee, and C. Kommareddy.
Scalable application layer multicast. In Proc. of
SIGCOMM, Pittsburgh, PA, USA, 2002.

[16] Y. Chu, S. Rao, and H. Zhang. A case for end system
multicast. In Proc. of ACM SIGMETRICS, 2000.

[17] D. Tran, K. Hua, and T. Do. Zigzag: An efficient
peer-to-peer scheme for media streaming. In Proc. of
INFOCOM, 2003.

[18] V. N. Padmanabhan, H. J. Wang, P. A. Chou, and
K. Sripanid-kulchai. Distributed streaming media
content using cooperative networking. In Proc. of
ACM NOSSDAV, 2002.

[19] M. Castro, P. Druschel, A. Kermarrec, A. Nandi,
A. Rowstron, and A. Singh. Splitstream:
High-bandwidth multicast in cooperative
environments. In Proc. of SOSP, 2003.

[20] S. Asaduzzaman, Y. Qiao, and G. Bochmann.
CliqueStream: an efficient and fault-resilient live
streaming network on a clustered peer-to-peer overlay.
In Proc. of P2P, 2008.

[21] X. Zhang, J. Liu, B. Li, and T. P. Yum.
CoolStreaming/DONet: a data-driven overlay network
for peer-to-peer live media streaming. In Proc. of
INFOCOM, 2005.

[22] X. Liao, H. Jin, Y. Liu, L. M. Ni, and D. Deng.
AnySee: Peer-to-Peer Live Streaming. In Proc. of
IEEE INFOCOM, 2006.

[23] V. Pai, K. Kumar, K. Tamilmani, V. Sambamurthy,
and A. E. Mohr. Chainsaw: eliminating trees from
overlay multicast. In Proc. of IPTPS, 2005.

[24] T. Locher, S. Schmid, and R. Wattenhofer. eQuus: a
provably robust and locality-aware peer-to-peer
system. In Proc. of P2P, 2006.

[25] Y. Guo, C. Liang, and Y. Liu. Adaptive queue-based

chunk scheduling for P2P live streaming. In Proc. of
IFIP Networking, 2008.

[26] L. Massoulie, A. Twig, C. Gkantsidis, and
P. Rodriguez. Randomized decentralized broadcasting
algorithms. In Proc. of INFOCOM, 2007.

[27] F. Picconi and L. Massoulie. Is there a future for
mesh-based live video streaming? In Proc. of P2P,
2008.

[28] N. Magharei and R. Rejaie. PRIME: peer-to-peer
receiver-driven mesh-based streaming. In Proc. of
INFOCOM, 2007.

[29] J. Venkataraman and P. Francis. Chunkyspread:
multi-tree unstructured peer-to-peer multicast. In
Proc. of IPTPS, 2006.

[30] F. Wang, Y. Xiong, and J. Liu. mTreebone: a hybrid
tree/mesh overlay for application-layer live video
multicast. In Proc. of ICDCS, 2007.

[31] F. Wang, J. Liu, and Y. Xiong. Stable Peers:
Existence, Importance, and Application in
Peer-to-Peer Live Video Streaming. In Proc. of
INFOCOM, pages 1364–1372, 2008.

[32] J. Mol, A. Bakker, J. Pouwelse, D. Epema, and
H. Sips. The design and deployment of a bittorrent
live video streaming solution. In Proc. of ICM, 2009.

[33] Y. Liu. Delay bounds of chunk-based peer-to-peer
video streaming. TON, 18(4):1195–1206, 2010.

[34] H. Shen, L. Zhao, Z. Li, and J. Li. A DHT-Aided
Chunk-Driven Overlay for Scalable and Efficient
Peer-to-Peer Live Streaming. In Proc. of ICPP, 2010.

[35] C. Wu and B. Li. Strategies of conflict in coexisting
streaming overlays. In Proc. of INFOCOM, pages
481–489, 2007.

[36] C. Wu, B. Li, and Z. Li. Dynamic bandwidth auctions
in multioverlay p2p streaming with network coding.
IEEE TPDS, 2008.

[37] C. Wu, B. Li, and S. Zhao. Multi-channel live P2P
streaming: Refocusing on servers. In Proc. of
INFOCOM, 2008.

[38] M., L. Xu, and B. Ramamurthy. Flexible
divide-and-conquer protocol for multi-view
peer-to-peer live streaming. In Proc. of P2P, 2009.

[39] M. Wang, L. Xu, and B. Ramamurthy. Linear
Programming Models For Multi-Channel P2P
Streaming Systems. In Proc. of INFOCOM, 2010.

[40] X. Cheng, C. Dale, and J. Liu. Statistics and social
network of youtube videos. In Proc. of IWQoS, 2008.

[41] R. Gomory and T. Hu. Multi-Terminal Network
Flows. Journal of the Society for Industrial and
Applied Mathematics, 9(4):551 – 570, 1961.

[42] Surveymonkey: Free online survey software and
questionnaire tool. http://www.surveymonkey.com/.

[43] F. Wang, J. Liu, and Y. Xiong. Stable peers:
existence, importance, and application in peer-to-peer
live video streaming. In Proc. of IEEE INFOCOM,
2008.

[44] C. Huang, J. Li, and K. W. Ross. Can internet
video-on-demand be profitable? In Proc. of
SIGCOMM, 2007.

[45] The difference between upload and download speed for
broadband DSL.
http://www.broadbandinfo.com/cable/speed-test.

258

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

