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Abstract—This paper describes traffic analysis undertaken to
answer certain questions needed to design a hybrid network
traffic engineering system (HNTES). The hybrid network in
question consists of an IP-routed network and a dynamic virtual-
circuit network, and the role of HNTES is to identify and redirect
α-flows, which are defined as flows in which the number of bytes
exceeds a threshold H (1 GB) over at least one α-interval (1
minute). NetFlow data from ESnet was analyzed. Our findings
show that raw IP α-flows (identified by the 5-tuple) are mostly
short-lived (80% are shorter than 2 minutes), which implies that
HNTES should use an offline mechanism for identifying α-flows
and preconfiguring policy-based routes to redirect packets for
these flows to virtual circuits since setup delay is about 1 minute.
Prefix flows, which are aggregates of raw IP flows, identified
by /24 subnet IDs, show persistency with 16% of these flows
appearing in more than quarter of the days in the observed
period.

I. INTRODUCTION

Scientific computing applications used in fields such as
high-energy physics, climate science, genomics, etc., generate
large (tera- to peta-byte sized) data sets. These data sets need
to be moved from the supercomputing facilities on which the
computing applications are executed to servers located at the
various scientists’ universities and laboratories.

To offer scientists a rate-guaranteed high-speed file transfer
service, core research-and-education networks (RENs), such as
the Department of Energy (DOE)’s Energy Sciences Network
(ESnet) [1] and Internet2 [2], are now offering a new type
of connectivity service, i.e., a dynamic circuit service1, as a
complement to their IP-routed service. ESnet operates separate
networks for these two services, using the name “Science
Data Network (SDN)” [3] for its virtual-circuit network.
Such dynamic circuit services are also offered by commercial
providers, such as AT&T and Verizon [4].

While core networks, such as ESnet and Internet2, support
the dynamic virtual circuit service, regional RENs and campus
networks lag behind. To realize the benefits of using this
service for large file transfers, i.e., low throughput variability,
the virtual circuits need to extend end-to-end. Therefore, the
usage of these core dynamic circuit networks and service has
been limited. This has led to an identification of a different

1Different providers use circuit (such as SONET/WDM) or virtual circuit
(such as MPLS) networks to support this service. In this paper, the terms
“circuit” and ”virtual circuit” are used interchangeably.

usage model, one that has value even when the virtual circuits
are just intra-domain in scope.

This alternative usage of a core virtual circuit service is as
follows. Core providers have recognized that some scientific
users have the required end equipment (cluster computers with
parallel file systems and high-speed disk arrays), as well as
high-speed links end-to-end on their IP-routed paths, to cause
their TCP senders to increase their sending rates to significant
fractions of the core network link capacities. For example,
with high-end computing and storage devices, scientists can
move files end-to-end at multiple, e.g, 2-3, Gbps, which is a
significant fraction of the typical core network link capacity,
which is 10 Gbps. Such transfers cause spikes in the loading
conditions of the core IP-routed network links, which in turn,
have adverse effects on general-purpose flows carried on the
links.

To handle this problem, core providers are interested in
developing and deploying hybrid network traffic engineering
systems (HNTES) that can (i) identify these high-rate flows
as they enter the core network at ingress IP routers, and (ii)
redirect them to their deployed, but lightly used, virtual-circuit
networks. In other words, by offloading these high-rate flows
from the IP-routed network to the virtual-circuit network, core
providers expect to have fewer reports of problems from their
general-purpose users. Solutions to this problem only require
intra-domain deployment, and can hence yield the immediate
benefits of reduced operational costs.

Section II provides background information presenting the
specific problem addressed in this work. Section III reviews
related work. Alternatives for several aspects of a HNTES
design are discussed in Section IV. To choose between these
alternatives, traffic analysis is required. Section V describes
our findings from an analysis of ESnet traffic data. The paper
is concluded in Section VI.

II. BACKGROUND AND PROBLEM STATEMENT

Background information on the terminology used, NetFlow,
policy based routes, virtual circuit setup delay, and flow char-
acteristics, is provided before presenting the problem statement
of this work.

Terminology. A flow is identified by the 5-tuple {source IP
address, destination IP address, source port number, destina-
tion port number, protocol type}. Such a flow is referred to



as a raw IP flow in [5]. A second term, prefix flow, is also
introduced in [5] to characterize aggregates of raw IP flows.
For example, a prefix flow can be defined as the aggregate of
all raw IP flows between the same source and destination IP
addresses. Another example is a prefix flow that aggregates
raw IP flows from hosts in a source subnet to hosts in a
destination subnet. This terminology of “raw IP flows” and
“prefix flows” is adopted in this work.

NetFlow. Part of the task of classifying packets into flows is
done by NetFlow [6], which is a feature available in most
IP routers. NetFlow enables IP routers to collect a sample
of packet headers, which carry the 5-tuple flow identification
information described above. Each IP router’s NetFlow system
maintains a running set of flow reports. For each such report,
it maintains the timestamp of the first and last packets as
well as the total flow size. At the end of each active timeout
interval, which is typically set to 60 seconds, the stored flow
reports are exported from the IP router to a collector. Process-
ing and maintaining volumes of NetFlow data can be both
computationally and storage intensive, especially for routers
with high-speed links. Therefore, packet sampling is used,
e.g., NetFlow is configured to sample 1-in-100 and 1-in-1000
packets in Internet2 routers and ESnet routers, respectively.
The associated drawback lies in the accuracy of flow feature
estimates made from NetFlow data. Nevertheless, the starting
point for our flow identification algorithm is NetFlow data.

Policy-Based Routing (PBR). Another feature of routers
that will be leveraged in our system design is support for
flow redirection. The PBR feature allows administrators to
configure alternate routes other than the typical IP route for
packets belonging to specific flows, which could be raw IP
flows or prefix flows. The PBR table is consulted before
the IP routing table to determine how to forward incoming
packets. This PBR feature can be used in our application
in the following manner. After determining the identifiers of
heavy-hitter flows, the traffic engineering system can set PBR
entries in the IP routers to cause packets from these flows to
be redirected automatically to virtual circuits. For operational
reasons, e.g., troubleshooting in case of performance problems
or failures, administrators would prefer to limit the number of
policy based routes.

Virtual circuit setup overhead. In current deployments, such
as ESnet’s virtual circuit network, virtual circuit setup delays
can be as large as 1 minute. The type of flows that cause
adverse effects on general-purpose flows are those whose
senders are capable of sending data at a rate that is a significant
fraction of link capacity. Such flows may not be of long
durations, which could make the 1 minute virtual circuit setup
delay overhead significant. For example, a TCP sender of a
10 GB file may be able to send the data at say 2 Gbps (with
high-end computing and storage at the end hosts), but such a
transfer would only last a few seconds. The implication is that
online (dynamic) virtual circuit setup (after packets of these
high-rate flows are identified at ingress IP routers in real-time)

may not be effective because these flows could end before the
virtual circuit is set up. The implications of this constraint on
our traffic engineering system are considered in Section IV.

Flow characteristics. For classification purposes, four dimen-
sions of flows have been identified in [7]: size, duration, rate,
and burstiness. For purposes of our intended application, i.e.,
hybrid network traffic engineering, a dimension identified in
[8] is more appropriate. Flows are classified as “alpha-flows” if
the number of bytes exceeds a threshold within a prespecified
(small) duration of its lifetime. Such flows are shown in [8] to
be the primary source of burstiness of IP traffic, and further the
cause of such flows is identified to be large file transfers across
high-speed bottleneck link paths. The latter match exactly the
type of large scientific data transfers seen on ESnet. These
have been identified by ESnet administrators as the primary
cause of performance degradation for general-purpose flows,
and are hence the primary targets for flow redirection to virtual
circuits. Therefore, alpha flows (for which we use the notation
α-flows) will be the ones selected for redirection.

Problem statement. There are many aspects in the design of
a hybrid network traffic engineering system that can identify
and redirect α-flows from the IP-routed network to a virtual
circuit network. Design alternatives for some of these aspects
are considered in Section IV. Based on this discussion, a set
of hypotheses about the core network traffic is formulated.
Section V describes our approach for testing these hypotheses,
and our findings from ESnet traffic data.

III. RELATED WORK

Several papers report on elephant flows, such as [5], [7]–
[9], though the definition of elephant flows varies. In [7],
elephant flows are defined as flows whose size (number of
bytes transferred) is larger than some threshold. But [5] defines
elephant flows to be the top-ranked flows that send the most
number of bytes within 1-minute intervals. This is consistent
with the definition on α-flows in [8], which is a concept
adopted in our work. The difference between our work and
that of [5] is primarily in time scale. The persistency of raw IP
flows that are elephants is noted to be high within the elephant
flows’ lifetimes in [5]. The authors note “once an elephant”
implies “always an elephant.” Conclusions about persistency
on a longer time scale and for prefix flows are less clear in
[5]. The definition of elephant flows in [9] is more complex
in that the threshold is changed at every time interval to meet
a requirement that the aggregate elephant traffic is 80% of the
total traffic load.

More generally, flow classification algorithms have been of
interest for reasons such as identifying the type of applications
that generate the most traffic [10]. A survey paper [11]
groups flow classification methods into three categories: (i)
Port based, (ii) Payload based, and (iii) Flow statistics based.
Our solution falls in the last category, that of using statistical
properties of flows. While our flow identification technique is
designed specifically for our intended application, i.e., hybrid
network traffic engineering, algorithms designed for more



open-ended applications, typically use machine learning tech-
niques because of the “large datasets and multi-dimensional
spaces of flow and packet attributes” [11].

IV. TRAFFIC ENGINEERING SYSTEM DESIGN
CONSIDERATIONS

Listed below are a few questions that need answers before
designing HNTES.

1) Should packets entering a router be mirrored to a
HNTES server for flow identification, or should NetFlow
data, in spite of packet sampling, be used?

2) Should raw IP flows or prefix flows be redirected?
3) Should α-flow identification be online or offline, i.e.

should identification algorithms be executed after or
before packets appear at an ingress router? If flow iden-
tification is online, then correspondingly, circuit setup
and PBR configuration will need to be online.

4) If flow identification is offline, it implies circuits should
be set up a priori. If so, how should link capacity from an
ingress router to its core network neighbors be divided
among (N − 1) virtual circuits, where N is the number
of routers in the core network?

Question 1: NetFlow data usability. For the first question,
mirroring packets to a server and performing header extraction
and flow identification externally appears infeasible at high
rates. To answer whether NetFlow data is sufficient to identify
α-flows in spite of it being sampled data, an experimental
study was conducted.

Two high-end hosts, anl-diskpt1 located at Argonne
National Laboratory, Chicago, and lbl-diskpt1 located at
Lawrence Berkeley Laboratory, Berkeley, were used to run a
GridFTP server and GridFTP client, respectively. There are
eight ESnet IP routers on the path between these hosts, with
10 Gb/s links between the routers. This experimental setup is
such that high rates of data transfer can be sustained as the
disks in the end hosts have multi-Gbps access rates and the
bottleneck link rate on the end-to-end path is 10 Gbps.

GridFTP transfers of known sizes were executed between
the server and client, and NetFlow data was collected from two
transit routers. From the GridFTP logs stored at the server,
the TCP ports of the data connections were obtained. All
flow records corresponding to the GridFTP transfers were
filtered out using the five-tuple identifier, and the size of
each transfer was estimated using the 1000 factor multiplier
on the total size reported by the flow records for the data
connection, since the ESnet NetFlow sampling rate is 1-in-
1000. A size-accuracy ratio is defined to be the ratio
of the NetFlow estimated size and actual file size. For each
file size (100MB, 1GB, and 10 GB), multiple runs were
executed since the packet sampling at the router makes the
size-accuracy ratio a random variable. For all three file sizes,
the sample mean shows a size-accuracy ratio close to 1, and
more interestingly, the standard deviation is smaller for larger
files (0.28 for 100 MB files to 0.04 for 10 GB files).

These findings show that NetFlow data can not only be
used to detect flows of large size, but can also be used for the
estimation of sizes. Since NetFlow data is based on random
packet sampling, and large-sized flows across high-rate paths
have more packets within the NetFlow active timeout intervals,
the probability of packets from these flows being captured is
higher than those from small-sized flows or large-sized flows
across low-rate paths.

Questions 2 and 3. The second and third questions at the start
of this section are discussed together. Raw IP flow identifiers
include transport-layer port numbers, which are ephemeral for
most file transfer applications. If raw IP flow identifiers are
used to set PBRs, flow identification needs to online. A design
consisting of online flow identification, and correspondingly
dynamic circuit setup and PBR configuration, is feasible if
the flow durations are considerably longer than circuit setup
delay.

If this is not the case, flow identification, circuit provision-
ing, and PBR configuration, should be performed offline. In
such a design the selected flow identifiers should stay constant
over long periods of time, and there should be some level
of persistency in the arrival of these flows. Given the first
criterion, prefix flow identifiers are better suited than raw IP
flows since the latter include the ephemeral port numbers.
The next question is whether prefix flow identifiers should
be /32 source and destination IPv4 addresses, or source and
destination subnet identifiers, e.g, /24, addresses?

Questions 4. If circuits are provisioned a priori, and such
circuits are required between all ingress-egress router pairs,
will the division of the link capacity between (N − 1) virtual
circuits, where N is the number of ingress/egress routers in
the core network, lower file transfer throughput? If the virtual
circuit network is an MultiProtocol Label Switching (MPLS)
network, rateless virtual circuits can be used [12]. By not rate
limiting Label Switched Paths (LSPs), which is the name used
for virtual circuits in an MPLS network, (N − 1) LSPs can
be provisioned from each ingress router to each egress router,
and yet any α-flow can burst to the full link capacity if it is
the only flow occurring at that time.

Hypotheses. Toward answering the questions raised above,
we formulate a set of hypotheses for testing with traffic data.
These are as follows:

1) Durations of raw IP α-flows are not several multiples of
circuit setup delay.

2) The number of prefix flows that contain α-flows for
which PBRs are configured is not that large, making
it manageable from an operational point of view.

3) Prefix flows do show some level of persistency.

V. TRAFFIC ANALYSIS

A. Traffic analysis approach

First, a few terms are defined. An α-flow is defined as a
raw IP flow in which the number of bytes exceeds a threshold
H over at least one α-interval, denoted t1, within its lifetime.



The number of bytes sent in that interval is referred to as α-
bytes2. Ideally, the α-interval should be as small as possible.
Given that the algorithm will use NetFlow data, t1 is set to
equal the NetFlow active timeout interval. In addition to the α-
interval, t1, two other time intervals are used in this algorithm:
(i) t2 is the time period over which flow reports are aggregated
into raw IP flows, and raw IP flows are aggregated into prefix
flows, and is hence referred to as the aggregation interval,
and (iii) t3 is a monitoring interval. Parameter τ denotes the
number of aggregation intervals in the monitoring interval,
i.e., τ = (t3/t2).

Three sets are defined: Ri, the set of NetFlow reports for
all α-intervals, Fi, the set of unique raw IP flows, and Pi, the
set of unique prefix flows, where 1 ≤ i ≤ τ . For example, if
the AI is one day, τ is the number of days in the monitoring
interval. Table I shows the notation used.

• NetFlow reports: By definition, the α-bytes of all Net-
Flow reports in sets Ri are lower-bounded by H , i.e.,

βij ≥ H, 1 ≤ i ≤ τ, 1 ≤ j ≤ mi (1)

• Raw IP flows: Each raw IP flow fik, 1 ≤ k ≤ ni, as
listed in Table I, is created by aggregating a subset of
reports from Ri. The common feature of all the reports
in this subset is that they share a common identifier, that
of the raw IP flow γik. Thus, a set of indices Jik =
{j1, j2, · · · , jcik} is selected from report set Ri such that
the identifiers ωija =γik for 1 ≤ a ≤ cik and ja ε (1,mi).
For each raw IP flow, fik the α-bytes

δik =

cik∑
j=1

βij , s.t., j ε Jik, 1 ≤ i ≤ τ, 1 ≤ k ≤ ni (2)

The α-time of a raw IP flow is

ξik =

cik∑
j=1

(eij − sij), s.t., j ε Jik, 1 ≤ i ≤ τ, 1 ≤ k ≤ ni

(3)
• Prefix flows: First, a procedure is required to define a

set of prefix flows Pi by aggregating raw IP flows from
the set Fi, for each aggregation interval (AI) i, where
i ε(1, τ). Assume that the indices of the raw IP flows in
the set Fi aggregated into prefix flow pil is denoted Kil =
{k1, k2, · · · , kgil}, 1 ≤ l ≤ di. The identifiers γika

of the
corresponding raw IP flows should all be aggregatable
into the prefix flow identifier ζil, for 1 ≤ a ≤ gil and
1 ≤ ka ≤ ni. Moreover, the ingress router IDs, RI

ika
,

of these raw IP flows are all the same and equal to RI
il,

and the egress router IDs, RE
ika

, of these raw IP flows
are all the same and equal to RE

il . For each prefix flow,
the α-bytes value is determined as follows:

ηil =

gil∑
k=1

δik, s.t., k ε Kil, 1 ≤ i ≤ τ, 1 ≤ l ≤ di (4)

2The term “size” is not used to avoid confusion with the term “size of a
flow,” which is the aggregate size, in bytes, of all packets within a flow’s
duration.

The next step is to determine the α-time of each prefix
flow (see Table I). While the α-intervals of a raw IP
flow are necessarily non-overlapping (given how NetFlow
formulates its reports), α-intervals from different raw IP
flows that are part of the same prefix flow can have over-
laps. To find the α-time of a prefix flow, the overlapping
intervals should be merged to find the total time across an
AI in which a prefix flow has a constituent raw IP flow
experiencing an α-interval. The α-intervals of each prefix
flow pil are divided into two sets: Oil consisting of xil
overlapping α-intervals, and Nil consisting of yil non-
overlapping α-intervals. A new set of non-overlapping
intervals Mil of size uil is derived from Oil as follows:
from a contiguous set of overlapping α-intervals within
set Oil, a new interval is created for set Mil with the
earliest start time, seiv , and the latest end time, eliv ,
v ε(1, uil). The α time is then computed as

µil ,
uil∑
v=1

(eliv − seiv) +
yil∑
u=1

(eiu − siu),

1 ≤ i ≤ τ, 1 ≤ l ≤ di (5)

B. Traffic analysis findings

ESnet NetFlow data (which uses 1-in-1000 packet sampling)
was collected from one ESnet provider edge router. Data was
collected for two months: July and August 2011 (62 days).
NetFlow samples were limited to flows entering ESnet at this
router. Flow tools [13], Perl and R [14] programs were used
to analyze the data.

The following parameter values were used (see above sub-
section for the meaning of these parameters): t1 is 1 minute;
t2 is 1 day; t3 is 62 days; and H is 1 GB. Two types of prefix
flows are used: /32 source and destination IP addresses, and
/24 source and destination subnets.

The total number of raw IP flows, total α-bytes, and total
α-time, is plotted on a per-day basis in Fig. 1. All three values
peaked on day 28 and 29, e.g., on day 28, there were 659 raw
IP flows, 2.65 TB α-bytes, and 33416 seconds of α-time.

Fig. 2 shows a histogram of the 0th−95th percentile raw IP
flows when sorted on the total α-time. The highest frequency
occurs for 60 seconds, which means most α-flows have only
one α-interval. As our algorithm for filtering out α-flows
requires the amount of bytes sent in a minute to be greater than
a threshold (1 GB in this analysis), if a flow lasts 70 seconds,
its rate in the second minute could have been high but because
this bytes threshold is not crossed, it is not recorded.

Not shown in the graph are the top 5 percentile of flows
because these stretch out in time. The top flow lasted almost
3 hours. Online circuit setup is feasible for at least 1.6% of
these flows if we use a factor of ten for the flow duration
relative to the 1-minute circuit setup delay. But mechanisms
are needed to predict which new incoming flows will last this
long. Combining this problem with the finding that the most α-
flows are relatively short-lived, the offline identification, circuit
setup and PBR configuration design for HNTES seems more
appropriate. This confirms our first hypothesis in Section IV.



TABLE I: Notation

Set symbol Description Number of elements Elements of a set Attributes of an element
Identifier α-bytes Start and end time α-time Number of reports Ingress and egress

/raw IP flows router ID pair
Ri Set of NetFlow reports mi rij ωij βij (sij , eij) NA NA NA
1 ≤ i ≤ τ 1 ≤ j ≤ mi

Fi Set of raw IP flows ni fik γik δik NA ξik cik (RI
ik, RE

ik)
1 ≤ i ≤ τ 1 ≤ k ≤ ni
Pi Set of prefix flows di pil ζil ηil NA µil gil (RI

il, R
E
il )

1 ≤ i ≤ τ 1 ≤ l ≤ di
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Fig. 1: Total number, α-bytes, and α-time (sec), of raw IP
flows on a per-day basis
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The total number of prefix flows across all 62 days is 60 for
the /24 flows and 501 for the /32 flows. While these are fairly
small numbers, the persistency measure becomes important
before accepting our second hypothesis from Section IV. Fig. 3
shows that the number of prefix flows added per day, especially
for the /24, decreases with time. On day 1, there were ten /24
new prefix flows but after day 41, there were only 0 or 1
new flows. The implication is we can keep adding /24 prefix
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Fig. 3: The number of new prefix flows per day

flow identifiers to the PBR table without much concern for a
growth in this table size. The cost of using /24 identifiers will
be quantified in a future paper. General-purpose flows whose
identifiers fall within these aggregated prefix identifiers will
be redirected to the virtual circuits where they will face the
adverse effects of α-flows.

To use provisioned circuits and offline configured PBRs,
there should be some persistency of prefix flows. A histogram
of the number of days in which each prefix flow appeared
is plotted in Figure 4 for both /24 and /32 prefix flows. The
maximum number of days (out of 62) in which a /24 prefix
flow appeared is 33. 16.7% of /24 prefix flows appeared more
than 15 days (which is a quarter of the observation period).

Data for the /24 and /32 prefix flows were sorted based on
total α-bytes (where the total was computed across all 62 days
for each prefix flow), per-day α-time, and per-day number of
constituent raw IP flows. The data for 12 flows (/24 and /32)
at 6 different percentiles is presented in Table II. For example,
the data shown for the 100th percentile flow corresponds to
the top flow in each category, while the data shown for the
50th percentile flow corresponds to the median flow in each
category.

The prefix flow that had the maximum amount of total data
transferred over 62 days, i.e. 11.9 TB, had constituent α-flows
in 13 out of the 62 days, while the 80th percentile flow when
prefix flows were sorted by the maximum α-time per day had
constituent α-flows in 33 out of the 62 days. On its worst day,
this prefix flow had constituent raw IP flows with α-intervals
that totaled 28.4 minutes. The worst prefix flow, in terms of



TABLE II: Data for particular flows corresponding to the percentiles
(the max/day and total numbers are over 62 days)

Percentiles 100% 90% 80% 70% 60% 50%
Subnet length /24 /32 /24 /32 /24 /32 /24 /32 /24 /32 /24 /32

Sorted on max(α-bytes/day) (TB) 2.6 0.4588 0.18 0.0092 0.12 0.0046 0.0095 0.0045 0.0042 0.0029 0.0184 0.0022
total α-bytes total bytes (TB) 11.87 3.22 0.3843 0.03 0.124 0.00815 0.07 0.0045 0.0309 0.0029 0.0184 0.0022

no. of occurrences 13 12 23 8 3 2 23 1 17 1 1 1
Sorted on max(α-time/day) (min) 540.6 278.2 124.9 9.0 28.4 3.0 12.85 1.8 7.69 1.0 5.38 1.0
max(α-time/day) total α-time (min) 2974.4 470.5 130.8 9.0 172.9 3.0 14.1 7.3 7.69 1.0 5.38 1.3

no. of occurrences 13 6 2 1 33 1 2 8 1 1 1 2
Sorted on no. max no. per day 649 221 67 9 14 4 9 2 6 2 4 1
of raw IP flows/day no. of occurrences 13 6 5 1 1 2 4 1 4 1 2 1
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Fig. 4: Histogram of the number of days in which each prefix
flow appeared

having constituent raw IP flows with the most per-day α-time,
had α-flows occurring in 9 out of the 24 hours in the day (i.e.,
540 mins). The final category was created by sorting on the
per-day number of constituent raw IP flows. The prefix flow
with the maximum value here had constituent raw IP flows in
13 days out of 62. The maximum value among these 13 for
the per-day number of constituent raw IP flows was 649.

VI. CONCLUSIONS

A certain type of flows, referred to as α-flows, which
generate a large number of bytes that exceeds some high
threshold within fixed intervals (e.g., 1 min) are known to
dominate other flows adding to the burstiness of the traffic, and
are typically generated by large file transfers across paths with
high bottleneck link rates. There is an interest in the scientific
community to identify these flows and redirect them off the
IP-routed network to reduce their negative impact on general-
purpose flows. Toward this goal, designs for a hybrid network
traffic engineering system that would identify such flows from
NetFlow data and redirect them to a virtual-circuit network
are considered. To determine whether these actions should
be online or offline, we undertook traffic analysis of ESnet
NetFlow records. Our findings are that α-flows identified by
their 5-tuple (referred to as raw IP flows) are short-lived (80%
are 2 minutes or less) making the use of online circuits with its
high cost of setup delay infeasible. But to redirect prefix flows

(identified by /32 or /24 source and destination IP addresses)
to provisioned virtual circuits, persistency is required. For the
observed period, 70% of the /24 prefix flows occur more than
once.
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